DIRECTORY
AtomButtons, CodeTimer, GGBasicTypes, GGCaret, GGCircles, GGInterfaceTypes, GGModelTypes, GGMultiGravity, GGSegmentTypes, GGState, GGUtility, Lines2d, Real, RealFns, Rope, Vectors2d;

GGMultiGravityImpl: CEDAR PROGRAM

IMPORTS AtomButtons, CodeTimer, GGCaret, GGCircles, GGState, Lines2d, RealFns, Vectors2d
EXPORTS GGMultiGravity = BEGIN

AlignBag: TYPE = REF AlignBagObj;
AlignBagObj: TYPE = GGInterfaceTypes.AlignBagObj;
AlignmentCircle: TYPE = GGInterfaceTypes.AlignmentCircle;
AlignmentLine: TYPE = GGInterfaceTypes.AlignmentLine;
AlignmentPoint: TYPE = REF AlignmentPointObj;
AlignmentPointObj: TYPE = GGInterfaceTypes.AlignmentPointObj;
Arc: TYPE = GGBasicTypes.Arc;
Caret: TYPE = GGInterfaceTypes.Caret;
Circle: TYPE = GGBasicTypes.Circle;
Edge: TYPE = GGBasicTypes.Edge;
FeatureData: TYPE = REF FeatureDataObj;
FeatureDataObj: TYPE = GGModelTypes.FeatureDataObj;
GGData: TYPE = GGInterfaceTypes.GGData;
GoodPoint: TYPE = REF GoodPointObj;
GoodPointObj: TYPE = GGMultiGravity.GoodPointObj;
JointGenerator: TYPE = GGModelTypes.JointGenerator;
Line: TYPE = GGBasicTypes.Line;
NearDistances: TYPE = REF NearDistancesObj;
NearDistancesObj: TYPE = GGMultiGravity.NearDistancesObj;
NearFeatures: TYPE = REF NearFeaturesObj;
NearFeaturesObj: TYPE = GGMultiGravity.NearFeaturesObj;
NearPoints: TYPE = REF NearPointsObj;
NearPointsAndCurves: TYPE = REF NearPointsAndCurvesObj;
NearPointsAndCurvesObj: TYPE = GGMultiGravity.NearPointsAndCurvesObj;
NearPointsObj: TYPE = GGMultiGravity.NearPointsObj;
Outline: TYPE = GGModelTypes.Outline;
OutlineDescriptor: TYPE = REF OutlineDescriptorObj;
OutlineDescriptorObj: TYPE = GGModelTypes.OutlineDescriptorObj;
OutlinePointPairGenerator: TYPE = GGModelTypes.OutlinePointPairGenerator;
Point: TYPE = GGBasicTypes.Point;
PointPairAndDone: TYPE = GGModelTypes.PointPairAndDone;
PointPairGenerator: TYPE = GGModelTypes.PointPairGenerator;
Segment: TYPE = GGSegmentTypes.Segment;
SegmentGenerator: TYPE = GGModelTypes.SegmentGenerator;
Sequence: TYPE = GGModelTypes.Sequence;
Slice: TYPE = GGModelTypes.Slice;
SliceDescriptor: TYPE = GGModelTypes.SliceDescriptor;
TriggerBag: TYPE = REF TriggerBagObj;
TriggerBagObj: TYPE = GGInterfaceTypes.TriggerBagObj;

BestPoints: TYPE = REF BestPointsObj;
BestPointsObj: TYPE = RECORD [
size: NAT,
max, min: REAL,
bestTossed: REAL, -- the distance of the closest object that has been thrown away
dTol: REAL, -- min + s
innerR: REAL, -- find all curves within this radius even if they are not neighbors of the nearest
s: REAL, -- the size of neighborhoods.  BestPoints should contain all objects that have been seen such that min <= dist(o, q) <= min+s, unless BestPoints overflows.
overflow: BOOL,
points: SEQUENCE len: NAT OF GoodPoint];
MultiGravityPool: TYPE = REF MultiGravityPoolObj;
MultiGravityPoolObj: TYPE = RECORD [
distances: NearDistances,
features: NearFeatures,
bestpoints: BestPoints,
bestcurves: BestPoints
];



EmptyBag: PROC [alignBag: AlignBag] RETURNS [BOOL] = {
RETURN[
alignBag.slopeLines = NIL AND
alignBag.angleLines = NIL AND
alignBag.radiiCircles = NIL AND
alignBag.distanceLines = NIL AND
alignBag.midpoints = NIL AND
alignBag.intersectionPoints = NIL AND
alignBag.anchor = NIL];
};

EmptyTriggers: PROC [triggerBag: TriggerBag] RETURNS [BOOL] = {
RETURN[
triggerBag.slices = NIL AND
triggerBag.intersectionPoints = NIL AND
triggerBag.anchor = NIL
];
};

Problem: PUBLIC SIGNAL [msg: Rope.ROPE] = CODE;


Map: PUBLIC PROC [testPoint: Point, criticalR: REAL, alignBag: AlignBag, sceneBag: TriggerBag, ggData: GGData, useAlignBag: BOOL] RETURNS [resultPoint: Point, feature: FeatureData, hitData: REF ANY] = {
ENABLE UNWIND => ggData.multiGravityPool _ NewMultiGravityPool[];  -- in case an ABORT happened while pool was in use
CodeTimer.StartInt[$MultiMap, $Gargoyle];
IF GGState.Gravity[ggData] THEN {
SELECT ggData.hitTest.gravityType FROM
strictDistance =>
[resultPoint, feature, hitData] _ StrictDistance[testPoint, criticalR, alignBag, sceneBag, ggData];
innerCircle =>
[resultPoint, feature, hitData] _ PointsPreferred[testPoint, criticalR, ggData.hitTest.innerR, alignBag, sceneBag, ggData, useAlignBag];
ENDCASE => ERROR;
}
ELSE {
resultPoint _ testPoint;
feature _ NIL;
};
CodeTimer.StopInt[$MultiMap, $Gargoyle];
};

StrictDistance: PUBLIC PROC [testPoint: Point, criticalR: REAL, alignBag: AlignBag, sceneBag: TriggerBag, ggData: GGData] RETURNS [resultPoint: Point, feature: FeatureData, hitData: REF ANY] = {
nearPointsAndCurves: NearPointsAndCurves;
count: NAT;
[nearPointsAndCurves, count] _ MultiStrictDistance[testPoint, criticalR, alignBag, sceneBag, ggData];
IF count = 0 THEN RETURN [testPoint, NIL, NIL];
IF count = 1 THEN RETURN PrepareWinner[nearPointsAndCurves, 0]
ELSE {
mgp: MultiGravityPool _ NARROW[ggData.multiGravityPool, MultiGravityPool];
distances: NearDistances _ mgp.distances;
features: NearFeatures _ mgp.features;
nearestDist: REAL _ -1;
bestSceneObject: INT _ -1;
neighborCount: NAT _ 1;
s: REAL = 0.072; -- 1/1000 inches
FOR i: NAT IN [0..count) DO
goodPoint: GoodPoint _ nearPointsAndCurves[i];
distances[i] _ goodPoint.dist;
features[i] _ goodPoint.featureData;
ENDLOOP;
nearestDist _ distances[0];
FOR i: NAT IN [1..count) DO
IF distances[i] - nearestDist < s THEN neighborCount _ neighborCount + 1;
ENDLOOP;
IF neighborCount = 1 THEN RETURN PrepareWinner[nearPointsAndCurves, 0];
bestSceneObject _ -1;
RETURN PrepareWinner[nearPointsAndCurves, 0];
};
};
PointsPreferred: PUBLIC PROC [testPoint: Point, criticalR: REAL, innerR: REAL, alignBag: AlignBag, sceneBag: TriggerBag, ggData: GGData, useAlignBag: BOOL] RETURNS [resultPoint: Point, feature: FeatureData, hitData: REF ANY] = {
count: NAT;
nearPointsAndCurves: NearPointsAndCurves;
[nearPointsAndCurves, count] _ MultiPointsPreferred[testPoint, criticalR, innerR, alignBag, sceneBag, ggData, useAlignBag];
IF count = 0 THEN RETURN [testPoint, NIL, NIL];
IF count = 1 THEN RETURN PrepareWinner[nearPointsAndCurves, 0]
ELSE {
mgp: MultiGravityPool _ NARROW[ggData.multiGravityPool, MultiGravityPool];
distances: NearDistances _ mgp.distances;
features: NearFeatures _ mgp.features;
neighborCount: NAT _ 1;
s: REAL = 0.072; -- 1/1000 inches
nearestDist: REAL _ -1;
FOR i: NAT IN [0..count) DO
goodPoint: GoodPoint _ nearPointsAndCurves[i];
distances[i] _ goodPoint.dist;
features[i] _ goodPoint.featureData;
ENDLOOP;
nearestDist _ distances[0];
FOR i: NAT IN [1..count) DO
IF distances[i] - nearestDist < s THEN neighborCount _ neighborCount + 1;
ENDLOOP;
IF neighborCount = 1 THEN RETURN PrepareWinner[nearPointsAndCurves, 0];
FOR i: NAT IN [0..neighborCount) DO
IF features[i].type = outline OR features[i].type = slice THEN {
RETURN PrepareWinner[nearPointsAndCurves, i];
};
REPEAT
FINISHED => RETURN PrepareWinner[nearPointsAndCurves, 0];
ENDLOOP;
};
};
PrepareWinner: PROC [nearPointsAndCurves: NearPointsAndCurves, index: NAT] RETURNS [resultPoint: Point, feature: FeatureData, hitData: REF ANY] = {
goodPoint: GoodPoint _ nearPointsAndCurves[index];
resultPoint _ goodPoint.point;
feature _ goodPoint.featureData;
hitData _ goodPoint.hitData;
};

NearestNeighborsPlusSome: PROC [q: Point, initialD: REAL, alignBag: AlignBag, sceneBag: TriggerBag, anchor: Caret, ggData: GGData, distinguishedPointsOnly: BOOL _ FALSE] RETURNS [g: NearPointsAndCurves, count: NAT] = {

};

MultiMap: PUBLIC PROC [testPoint: Point, criticalR: REAL, alignBag: AlignBag, sceneBag: TriggerBag, ggData: GGData, useAlignBag: BOOL] RETURNS [nearPointsAndCurves: NearPointsAndCurves, count: NAT] = {
ENABLE UNWIND => ggData.multiGravityPool _ NewMultiGravityPool[];  -- in case an ABORT happened while pool was in use
CodeTimer.StartInt[$MultiMap, $Gargoyle];
SELECT AtomButtons.GetButtonState[ggData.hitTest.gravButton] FROM
on => SELECT ggData.hitTest.gravityType FROM
strictDistance =>
[nearPointsAndCurves, count] _ MultiStrictDistance[testPoint, criticalR, alignBag, sceneBag, ggData];
innerCircle =>
[nearPointsAndCurves, count] _ MultiPointsPreferred[testPoint, criticalR, ggData.hitTest.innerR, alignBag, sceneBag, ggData, useAlignBag];
ENDCASE => ERROR;
off => {
nearPointsAndCurves _ NIL;
count _ 0;
};
ENDCASE => ERROR;
CodeTimer.StopInt[$MultiMap, $Gargoyle];
};

MultiStrictDistance: PUBLIC PROC [testPoint: Point, criticalR: REAL, alignBag: AlignBag, sceneBag: TriggerBag, ggData: GGData] RETURNS [nearPointsAndCurves: NearPointsAndCurves, count: NAT] = {
bestCurves: BestPoints;
bestPoints: BestPoints;
pointCount, curveCount: NAT;
IF EmptyBag[alignBag] AND EmptyTriggers[sceneBag] THEN
RETURN[NIL, 0];

[bestCurves, curveCount] _ CurvesInNeighborhoodPlus[alignBag, sceneBag, testPoint, ggData, criticalR, 0];
SortCurves[bestCurves, curveCount];

[bestPoints, pointCount] _ PointsInNeighborhoodPlus[bestCurves, curveCount, alignBag, sceneBag, testPoint, criticalR, ggData, FALSE];
SortPoints[bestPoints, pointCount];

count _ MIN[pointCount + curveCount, MaxFeatures];
nearPointsAndCurves _ NEW[NearPointsAndCurvesObj[count]];
MergePointsAndCurves[bestPoints, pointCount, bestCurves, curveCount, nearPointsAndCurves, count];
};

MultiPointsPreferred: PUBLIC PROC [testPoint: Point, criticalR: REAL, innerR: REAL, alignBag: AlignBag, sceneBag: TriggerBag, ggData: GGData, useAlignBag: BOOL] RETURNS [nearPointsAndCurves: NearPointsAndCurves, count: NAT] = {
bestCurves: BestPoints;
bestPoints: BestPoints;
pointCount, curveCount: NAT;
IF EmptyBag[alignBag] AND EmptyTriggers[sceneBag] THEN RETURN[NIL, 0];

[bestCurves, curveCount] _ CurvesInNeighborhoodPlus[alignBag, sceneBag, testPoint, ggData, criticalR, innerR];
SortCurves[bestCurves, curveCount];

[bestPoints, pointCount] _ PointsInNeighborhoodPlus[bestCurves, curveCount, alignBag, sceneBag, testPoint, criticalR, ggData, useAlignBag];
SortPoints[bestPoints, pointCount];

IF pointCount > 0 AND bestPoints[0].dist < innerR THEN {
count _ pointCount;
nearPointsAndCurves _ NEW[NearPointsAndCurvesObj[count]];
NearPointsFromPoints[bestPoints, pointCount, nearPointsAndCurves];
}
ELSE {
count _ MIN[pointCount + curveCount, MaxFeatures];
nearPointsAndCurves _ NEW[NearPointsAndCurvesObj[count]];
MergePointsAndCurves[bestPoints, pointCount, bestCurves, curveCount, nearPointsAndCurves, count];
};
};


PointsInNeighborhoodPlus: PROC [bestCurves: BestPoints, curveCount: NAT, alignBag: AlignBag, sceneBag: TriggerBag, q: Point, t: REAL, ggData: GGData, useAlignBag: BOOL] RETURNS [h: BestPoints, pointCount: NAT] = {
thisPoint: GoodPoint;
ProcessPoint: PROC [thisPoint: GoodPoint, featureData: FeatureData] = { -- used for the anchor
dSquared: REAL;
dTolSquared: REAL _ dTol*dTol;
dSquared _ Vectors2d.DistanceSquared[thisPoint.point, q];
thisPoint.hitData _ NIL;
IF dSquared < dTolSquared THEN {
thisPoint.dist _ RealFns.SqRt[dSquared];
thisPoint.featureData _ featureData;
dTol _ MergePoint[thisPoint, h, dTol];
};
};
ProcessSlice: PROC [sliceD: SliceDescriptor, thisPoint: GoodPoint, featureData: FeatureData] = {
[thisPoint.point, thisPoint.dist, thisPoint.hitData, success] _ sliceD.slice.class.closestPoint[sliceD, q, dTol];
IF success THEN {
IF thisPoint.dist < dTol THEN {
thisPoint.featureData _ featureData;
dTol _ MergePoint[thisPoint, h, dTol];
};
};
};
sliceD: SliceDescriptor;
featureData: FeatureData;
success: BOOL _ FALSE;
dTol: REAL _ t;
midpoints: BOOL _ GGState.Midpoints[ggData];

thisPoint _ NEW[GoodPointObj];
h _ BestPointsFromPool[ggData, t];

IF useAlignBag THEN
dTol _ FindIntersections[bestCurves, curveCount, thisPoint, q, dTol, h];
IF useAlignBag AND midpoints THEN
dTol _ FindMidpoints[bestCurves, curveCount, thisPoint, q, dTol, h];

FOR slices: LIST OF FeatureData _ sceneBag.slices, slices.rest UNTIL slices = NIL DO
featureData _ slices.first;
sliceD _ NARROW[featureData.shape, SliceDescriptor];
ProcessSlice[sliceD, thisPoint, featureData];
ENDLOOP;
featureData _ alignBag.anchor;
IF featureData # NIL THEN {
anchor: Caret _ NARROW[featureData.shape];
IF NOT GGCaret.Exists[anchor] THEN ERROR;
thisPoint.point _ GGCaret.GetPoint[anchor];
ProcessPoint[thisPoint, featureData];
};
pointCount _ h.size;
IF h.overflow THEN {
CodeTimer.StartInt[$PointOverflow, $Gargoyle];
CodeTimer.StopInt[$PointOverflow, $Gargoyle]; 
};
};
FindIntersections: PROC [bestCurves: BestPoints, curveCount: NAT, thisPoint: GoodPoint, q: Point, tolerance: REAL, h: BestPoints] RETURNS [dTol: REAL] = {
curveI, curveJ: GoodPoint;
theseIPoints: LIST OF Point;
thisTangency, tangentList: LIST OF BOOL;
success: BOOL;
dTol _ tolerance;
FOR i: NAT IN [0..curveCount) DO
curveI _ bestCurves[i];
FOR j: NAT IN [i+1..curveCount) DO
curveJ _ bestCurves[j];
[theseIPoints, thisTangency] _ CurveMeetsCurve[curveI, curveJ];
tangentList _ thisTangency;
FOR list: LIST OF Point _ theseIPoints, list.rest UNTIL list = NIL DO
thisPoint.point _ list.first;
thisPoint.dist _ Vectors2d.Distance[thisPoint.point, q];
success _ thisPoint.dist <= tolerance;
IF success THEN {
featureData: FeatureData _ NEW[FeatureDataObj];
alignmentPoint: AlignmentPoint _ NEW[AlignmentPointObj _ [
point: thisPoint.point,
tangent: tangentList.first,
curve1: curveI.featureData,
curve2: curveJ.featureData]];
featureData.type _ intersectionPoint;
featureData.shape _ alignmentPoint;
thisPoint.featureData _ featureData;
IF curveI.featureData.type = outline OR curveI.featureData.type = slice THEN {
thisPoint.hitData _ curveI.hitData;
}
ELSE IF curveJ.featureData.type = outline OR curveJ.featureData.type = slice THEN {
thisPoint.hitData _ curveJ.hitData;
}
ELSE thisPoint.hitData _ NIL;
dTol _ MergePoint[thisPoint, h, dTol];
};
tangentList _ tangentList.rest;
ENDLOOP;
ENDLOOP;
ENDLOOP;
};

FindMidpoints: PROC [bestCurves: BestPoints, curveCount: NAT, thisPoint: GoodPoint, q: Point, tolerance: REAL, h: BestPoints] RETURNS [dTol: REAL] = {
curve: GoodPoint;
midpoint: Point;
success: BOOL;
dTol _ tolerance;
FOR i: NAT IN [0..curveCount) DO
curve _ bestCurves[i];
IF curve.featureData.type # outline AND curve.featureData.type # slice THEN LOOP;
[midpoint, success] _ ComputeMidpoint[curve];
IF NOT success THEN LOOP;
thisPoint.point _ midpoint;
thisPoint.dist _ Vectors2d.Distance[thisPoint.point, q];
success _ thisPoint.dist <= tolerance;
IF success THEN {
featureData: FeatureData _ NEW[FeatureDataObj];
alignmentPoint: AlignmentPoint _ NEW[AlignmentPointObj _ [
point: thisPoint.point,
tangent: FALSE,
curve1: curve.featureData,
curve2: NIL]];
featureData.type _ midpoint;
featureData.shape _ alignmentPoint;
thisPoint.featureData _ featureData;
thisPoint.hitData _ curve.hitData;
dTol _ MergePoint[thisPoint, h, dTol];
};
ENDLOOP;
};

CurvesInNeighborhoodPlus: PROC [alignBag: AlignBag, sceneBag: TriggerBag, q: Point, ggData: GGData, t: REAL, innerR: REAL] RETURNS [h: BestPoints, curveCount: NAT] = {
ProcessLine: PROC [line: Line, thisCurve: GoodPoint, featureData: FeatureData] = {
thisCurve.dist _ Lines2d.LineDistance[q, line];
IF thisCurve.dist < t THEN {
thisCurve.featureData _ featureData;
thisCurve.point _ Lines2d.DropPerpendicular[q, line];
thisCurve.hitData _ NIL;
dTol _ MergeCurve[thisCurve, h, dTol];
}
};
ProcessCircle: PROC [circle: Circle, thisCurve: GoodPoint, featureData: FeatureData] = {
thisCurve.dist _ GGCircles.CircleDistance[q, circle];
IF thisCurve.dist < t THEN {
thisCurve.featureData _ featureData;
thisCurve.point _ GGCircles.PointProjectedOntoCircle[q, circle];
thisCurve.hitData _ NIL;
dTol _ MergeCurve[thisCurve, h, dTol];
};
};
ProcessSlice: PROC [sliceD: SliceDescriptor, thisCurve: GoodPoint, featureData: FeatureData] = {
success: BOOL;
[thisCurve.point, thisCurve.dist, thisCurve.hitData, success] _ sliceD.slice.class.closestSegment[sliceD, q, t];
IF success THEN {
IF thisCurve.dist < t THEN {
thisCurve.featureData _ featureData;
dTol _ MergeCurve[thisCurve, h, dTol];
};
};
};
line: Line;
circle: Circle;
sliceD: SliceDescriptor;
featureData: FeatureData;
added: BOOL _ FALSE;
thisCurve: GoodPoint _ NEW[GoodPointObj];
dTol: REAL _ t;
h _ BestCurvesFromPool[ggData, t, innerR];

FOR slopeLines: LIST OF FeatureData _ alignBag.slopeLines, slopeLines.rest UNTIL slopeLines = NIL DO
featureData _ slopeLines.first;
line _ NARROW[featureData.shape, AlignmentLine].line;
ProcessLine[line, thisCurve, featureData];
ENDLOOP;
FOR angleLines: LIST OF FeatureData _ alignBag.angleLines, angleLines.rest UNTIL angleLines = NIL DO
featureData _ angleLines.first;
line _ NARROW[featureData.shape, AlignmentLine].line;
ProcessLine[line, thisCurve, featureData];
ENDLOOP;
FOR dLines: LIST OF FeatureData _ alignBag.distanceLines, dLines.rest UNTIL dLines = NIL DO
featureData _ dLines.first;
line _ NARROW[featureData.shape];
ProcessLine[line, thisCurve, featureData];
ENDLOOP;
FOR circles: LIST OF FeatureData _ alignBag.radiiCircles, circles.rest UNTIL circles = NIL DO
featureData _ circles.first;
circle _ NARROW[featureData.shape, AlignmentCircle].circle;
ProcessCircle[circle, thisCurve, featureData];
ENDLOOP;
FOR slices: LIST OF FeatureData _ sceneBag.slices, slices.rest UNTIL slices = NIL DO
featureData _ slices.first;
sliceD _ NARROW[featureData.shape, SliceDescriptor];
ProcessSlice[sliceD, thisCurve, featureData];
ENDLOOP;
curveCount _ h.size;
IF h.overflow THEN {
CodeTimer.StartInt[$CurveOverflow, $Gargoyle];
CodeTimer.StopInt[$CurveOverflow, $Gargoyle]; 
};
}; -- end CurvesInNeighborhoodPlus



MaxFeatures: NAT _ 20;
BestCurvesFromPool: PROC [ggData: GGData, t: REAL, innerR: REAL] RETURNS [h: BestPoints] = {
h _ NARROW[ggData.multiGravityPool, MultiGravityPool].bestcurves;
h.size _ 0;
h.max _ 0;
h.min _ Real.LargestNumber;
h.dTol _ t;
h.innerR _ innerR;
h.s _ 0.072; -- 1/1000 inches
h.bestTossed _ Real.LargestNumber;
h.overflow _ FALSE;
FOR i: NAT IN [0..MaxFeatures-1] DO
h[i].dist _ Real.LargestNumber;
h[i].featureData _ NIL;
ENDLOOP;
};

BestPointsFromPool: PROC [ggData: GGData, t: REAL] RETURNS [h: BestPoints] = {
h _ NARROW[ggData.multiGravityPool, MultiGravityPool].bestpoints;
h.size _ 0;
h.max _ 0;
h.min _ Real.LargestNumber;
h.dTol _ t;
h.s _ 0.072; -- 1/1000 inches
h.bestTossed _ Real.LargestNumber;
h.overflow _ FALSE;
FOR i: NAT IN [0..MaxFeatures-1] DO
h[i].dist _ Real.LargestNumber;
h[i].featureData _ NIL;
ENDLOOP;
};

useNewMerge: BOOL _ TRUE;
MergePoint: PROC [thisPoint: GoodPoint, h: BestPoints, t: REAL] RETURNS [dTol: REAL] = {
IF useNewMerge THEN RETURN NewMergePoint[thisPoint, h]
ELSE RETURN OldMergeObject[thisPoint, h, t];
};
MergeCurve: PROC [thisPoint: GoodPoint, h: BestPoints, t: REAL] RETURNS [dTol: REAL] = {
IF useNewMerge THEN RETURN NewMergeCurve[thisPoint, h]
ELSE RETURN OldMergeObject[thisPoint, h, t];
};


OldMergeObject: PROC [thisPoint: GoodPoint, h: BestPoints, t: REAL] RETURNS [dTol: REAL] = {
d: REAL _ thisPoint.dist;
n: NAT = MaxFeatures;
dTol _ t;
BEGIN
SELECT TRUE FROM
h.size < n => GOTO Add;
d < h.max AND h.size = n => GOTO AddAndComputeNewMax;
d > h.max AND h.size = n => GOTO NoChange; -- we already have n and this is no better
d = h.max AND h.size = n => {h.overflow _ TRUE; GOTO NoChange};
ENDCASE => SIGNAL Problem[msg: "Impossible case."];
EXITS
Add => {
h[h.size]^ _ thisPoint^;
h.size _ h.size + 1;
h.min _ MIN[h.min, d];
h.max _ MAX[h.max, d];
};
AddAndComputeNewMax => {
iMax: NAT;
newMax: REAL _ 0.0;
bestDist: REAL;
iMax _ 0; bestDist _ 0.0;
FOR i: NAT IN [0..MaxFeatures-1] DO
IF h[i].dist > bestDist THEN {iMax _ i; bestDist _ h[i].dist};
ENDLOOP;
h[iMax].dist _ d;
h[iMax]^ _ thisPoint^;
iMax _ 0; bestDist _ 0.0;
FOR i: NAT IN [0..MaxFeatures-1] DO
IF h[i].dist > bestDist THEN {iMax _ i; bestDist _ h[i].dist};
ENDLOOP;
newMax _ h[iMax].dist;
h.overflow _ IF newMax # h.max THEN TRUE ELSE h.overflow;
h.max _ newMax;
};
NoChange => {
};
END;
};

NewMergePoint: PROC [thisPoint: GoodPoint, h: BestPoints] RETURNS [dTol: REAL] = {
d: REAL _ thisPoint.dist;
n: NAT = MaxFeatures;
BEGIN
SELECT TRUE FROM
h.size < n => GOTO Add;
h.size = n AND d <= h.dTol => GOTO ReplaceOrOverflow;
h.size = n AND d > h.dTol => GOTO Toss; -- the caller is not taking our hints and is passing us trash
ENDCASE => SIGNAL Problem[msg: "Impossible case."];
EXITS
Add => {
h[h.size]^ _ thisPoint^;
h.size _ h.size + 1;
h.min _ MIN[h.min, d];
dTol _ h.dTol _ h.min+h.s;
};
ReplaceOrOverflow => {
iWorst: NAT;
worstDist: REAL _ 0.0;
iWorst _ 0; worstDist _ 0.0;
FOR i: NAT IN [0..MaxFeatures-1] DO
IF h[i].dist > worstDist THEN {iWorst _ i; worstDist _ h[i].dist};
ENDLOOP;
IF d < worstDist THEN { -- do the replace
h[iWorst].dist _ d;
h[iWorst]^ _ thisPoint^;
h.bestTossed _ MIN[h.bestTossed, worstDist];
h.min _ MIN[h.min, d];
dTol _ h.dTol _ h.min+h.s;
h.overflow _ h.bestTossed <= dTol;
}
ELSE { -- toss the new item
dTol _ h.dTol;
h.bestTossed _ MIN[h.bestTossed, d];
h.overflow _ TRUE;
};
};
Toss => {
dTol _ h.dTol;
h.bestTossed _ MIN[h.bestTossed, d];
h.overflow _ h.bestTossed <= dTol;
};
END;
};

NewMergeCurve: PROC [thisPoint: GoodPoint, h: BestPoints] RETURNS [dTol: REAL] = {
d: REAL _ thisPoint.dist;
n: NAT = MaxFeatures;
BEGIN
SELECT TRUE FROM
h.size < n => GOTO Add;
h.size = n AND d <= h.dTol => GOTO ReplaceOrOverflow;
h.size = n AND d > h.dTol => GOTO Toss; -- the caller is not taking our hints and is passing us trash
ENDCASE => SIGNAL Problem[msg: "Impossible case."];
EXITS
Add => {
h[h.size]^ _ thisPoint^;
h.size _ h.size + 1;
h.min _ MIN[h.min, d];
dTol _ h.dTol _ MAX[h.min+h.s, h.innerR];
};
ReplaceOrOverflow => {
iWorst: NAT;
worstDist: REAL _ 0.0;
iWorst _ 0; worstDist _ 0.0;
FOR i: NAT IN [0..MaxFeatures-1] DO
IF h[i].dist > worstDist THEN {iWorst _ i; worstDist _ h[i].dist};
ENDLOOP;
IF d < worstDist THEN { -- do the replace
h[iWorst].dist _ d;
h[iWorst]^ _ thisPoint^;
h.bestTossed _ MIN[h.bestTossed, worstDist];
h.min _ MIN[h.min, d];
dTol _ h.dTol _ MAX[h.min+h.s, h.innerR];
h.overflow _ h.bestTossed <= dTol;
}
ELSE { -- toss the new item
dTol _ h.dTol;
h.bestTossed _ MIN[h.bestTossed, d];
h.overflow _ TRUE;
};
};
Toss => {
dTol _ h.dTol;
h.bestTossed _ MIN[h.bestTossed, d];
h.overflow _ h.bestTossed <= dTol;
};
END;
};

NearPointsFromPoints: PROC [bestPoints: BestPoints, pointCount: NAT, nearPointsAndCurves: NearPointsAndCurves] = {
FOR i: NAT IN [0..pointCount-1] DO
nearPointsAndCurves[i] _ bestPoints[i];
ENDLOOP;
};

MergePointsAndCurves: PROC [bestPoints: BestPoints, pointCount: NAT, bestCurves: BestPoints, curveCount: NAT, nearPointsAndCurves: NearPointsAndCurves, count: NAT] = {
pointIndex, curveIndex: NAT;
pointDist, curveDist: REAL;
pointIndex _ 0;
curveIndex _ 0;
FOR i: NAT IN [0..count-1] DO
IF pointIndex >= pointCount THEN GOTO NoMorePoints;
IF curveIndex >= curveCount THEN GOTO NoMoreCurves;
pointDist _ bestPoints[i].dist;
curveDist _ bestCurves[i].dist;
IF pointDist <= curveDist THEN {
nearPointsAndCurves[i] _ bestPoints[pointIndex];
pointIndex _ pointIndex + 1;
}
ELSE {
nearPointsAndCurves[i] _ bestCurves[curveIndex];
curveIndex _ curveIndex + 1;
};
REPEAT
NoMorePoints => { -- finish up with Curves data
FOR k: NAT _ i, k+1 UNTIL k >= count DO
nearPointsAndCurves[k] _ bestCurves[curveIndex];
curveIndex _ curveIndex + 1;
ENDLOOP};
NoMoreCurves => { -- finish up with points data
FOR k: NAT _ i, k+1 UNTIL k >= count DO
nearPointsAndCurves[k] _ bestPoints[pointIndex];
pointIndex _ pointIndex + 1;
ENDLOOP};
ENDLOOP;
};

SortPoints: PROC [bestPoints: BestPoints, pointCount: NAT] = {
temp: GoodPointObj;
FOR i: NAT IN [0..pointCount-2] DO
FOR j: NAT IN [1..pointCount-i-1] DO
IF bestPoints[j-1].dist > bestPoints[j].dist THEN {
temp _ bestPoints[j]^;
bestPoints[j]^ _ bestPoints[j-1]^;
bestPoints[j-1]^ _ temp;
};
ENDLOOP;
ENDLOOP;
};

SortCurves: PROC [bestCurves: BestPoints, curveCount: NAT] = {
temp: GoodPointObj;
FOR i: NAT IN [0..curveCount-2] DO
FOR j: NAT IN [1..curveCount-i-1] DO
IF bestCurves[j-1].dist > bestCurves[j].dist THEN {
temp _ bestCurves[j]^;
bestCurves[j]^ _ bestCurves[j-1]^;
bestCurves[j-1]^ _ temp;
};
ENDLOOP;
ENDLOOP;
};
ComputeMidpoint: PROC [curve: GoodPoint] RETURNS [midpoint: Point, success: BOOL _ TRUE] = {
class: NAT;
simpleCurve: REF ANY;
[class, simpleCurve] _ ClassifyCurve[curve];
SELECT class FROM
3 => { -- edge
edge: Edge _ NARROW[simpleCurve];
midpoint _ Vectors2d.Scale[Vectors2d.Add[edge.start, edge.end], 0.5];
success _ TRUE;
};
4 => { -- arc
arc: Arc _ NARROW[simpleCurve];
midpoint _ Vectors2d.Scale[Vectors2d.Add[arc.p0, arc.p2], 0.5];
success _ TRUE;
};
ENDCASE => RETURN[[0,0], FALSE];
};

ClassifyCurve: PROC [curve: GoodPoint] RETURNS [class: NAT, simpleCurve: REF ANY] = {
feature: FeatureData _ curve.featureData;
SELECT feature.type FROM
outline, slice => {
sliceD: SliceDescriptor _ NARROW[feature.shape];
hitData: REF ANY _ curve.hitData;
simpleCurve _ sliceD.slice.class.hitDataAsSimpleCurve[sliceD.slice, hitData];
IF simpleCurve = NIL THEN {
simpleCurve _ sliceD;
class _ 5;
RETURN;
};
};
radiiCircle => {
class _ 2;
simpleCurve _ NARROW[feature.shape, AlignmentCircle].circle;
RETURN;
};
slopeLine, angleLine => {
class _ 1;
simpleCurve _ NARROW[feature.shape, AlignmentLine].line;
RETURN;
};
distanceLine => {
class _ 1;
simpleCurve _ NARROW[feature.shape, Line];
RETURN;
};
ENDCASE => {class _ 0;  simpleCurve _ NIL; RETURN};
WITH simpleCurve SELECT FROM
circle: Circle => class _ 2;
edge: Edge => class _ 3;
arc: Arc => class _ 4;
ENDCASE => ERROR;
};

CurveMeetsCurve: PROC [c1, c2: GoodPoint] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL] = {
typeOfCurve1, typeOfCurve2: NAT;
simpleCurve1, simpleCurve2: REF ANY;
[typeOfCurve1, simpleCurve1] _ ClassifyCurve[c1];
[typeOfCurve2, simpleCurve2] _ ClassifyCurve[c2];
IF typeOfCurve1 >= typeOfCurve2 THEN
[iPoints, tangency] _ ComputeIntersection[typeOfCurve1][typeOfCurve2][simpleCurve1, simpleCurve2]
ELSE
[iPoints, tangency] _ ComputeIntersection[typeOfCurve2][typeOfCurve1][simpleCurve2, simpleCurve1]
};

IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
ComputeIntersection: ARRAY [0..5] OF ARRAY [0..5] OF IntersectionProc = [
[NoOpI,	NIL, 	NIL, 	NIL,	NIL,	NIL],	-- 0) NoOp
[NoOpI,	LinLinI, 	NIL,	NIL,	NIL,	NIL],	-- 1) Line
[NoOpI,	CirLinI,	CirCirI,	NIL,	NIL,	NIL],	-- 2) Circle
[NoOpI, 	EdgLinI, 	EdgCirI,	EdgEdgI,	NIL,	NIL],	-- 3) Edge
[NoOpI,	ArcLinI,	ArcCirI,	ArcEdgI,	ArcArcI,	NIL],	-- 4) Arc
[NoOpI,	SlcLinI,	SlcCirI,	NoOpI,	NoOpI,	NoOpI]	-- 5) Slice
];	

NoOpI: IntersectionProc = {
iPoints _ NIL;
tangency _ NIL;
};

LinLinI: IntersectionProc = {
l1: Line _ NARROW[c1];
l2: Line _ NARROW[c2];
point: Point;
parallel: BOOL;
[point, parallel] _ Lines2d.LineMeetsLine[l1, l2];
IF NOT parallel THEN {iPoints _ LIST[point]; tangency _ LIST[FALSE]}
ELSE {iPoints _ NIL; tangency _ NIL};
};

CirLinI: IntersectionProc = {
circle: Circle _ NARROW[c1];
line: Line _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] _ GGCircles.CircleMeetsLine[circle, line];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

CirCirI: IntersectionProc = {
circle1: Circle _ NARROW[c1];
circle2: Circle _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] _ GGCircles.CircleMeetsCircle[circle1, circle2];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

EdgLinI: IntersectionProc = {
edge: Edge _ NARROW[c1];
line: Line _ NARROW[c2];
point: Point;
noHit: BOOL;
[point, noHit] _ Lines2d.LineMeetsEdge[line, edge];
IF NOT noHit THEN {iPoints _ LIST[point]; tangency _ LIST[FALSE]}
ELSE {iPoints _ NIL; tangency _ NIL};
};

EdgCirI: IntersectionProc = {
edge: Edge _ NARROW[c1];
circle: Circle _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] _ GGCircles.CircleMeetsEdge[circle, edge];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

EdgEdgI: IntersectionProc = {
e1: Edge _ NARROW[c1];
e2: Edge _ NARROW[c2];
point: Point;
noHit: BOOL;
[point, noHit] _ Lines2d.EdgeMeetsEdge[e1, e2];
IF NOT noHit THEN {iPoints _ LIST[point]; tangency _ LIST[FALSE]}
ELSE {iPoints _ NIL; tangency _ NIL};
};

ArcLinI: IntersectionProc = {
arc: Arc _ NARROW[c1];
line: Line _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] _ GGCircles.ArcMeetsLine[arc, line];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

ArcCirI: IntersectionProc = {
arc: Arc _ NARROW[c1];
circle: Circle _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] _ GGCircles.CircleMeetsArc[circle, arc];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

ArcEdgI: IntersectionProc = {
arc: Arc _ NARROW[c1];
edge: Edge _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount, tangent] _ GGCircles.ArcMeetsEdge[arc, edge];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

ArcArcI: IntersectionProc = {
arc1: Arc _ NARROW[c1];
arc2: Arc _ NARROW[c2];
points: ARRAY [1..2] OF Point;
hitCount: [0..2];
tangent: BOOL;
[points, hitCount] _ GGCircles.ArcMeetsArc[arc1, arc2];
FOR i: NAT IN [1..hitCount] DO
iPoints _ CONS[points[i], iPoints];
tangency _ CONS[tangent, tangency];
ENDLOOP;
};

SlcLinI: IntersectionProc = {
sliceD: SliceDescriptor _ NARROW[c1];
line: Line _ NARROW[c2];
[iPoints, ----] _ sliceD.slice.class.lineIntersection[sliceD, line];
FOR list: LIST OF Point _ iPoints, list.rest UNTIL list = NIL DO
tangency _ CONS[FALSE, tangency];
ENDLOOP;
};
SlcCirI: IntersectionProc = {
sliceD: SliceDescriptor _ NARROW[c1];
circle: Circle _ NARROW[c2];
[iPoints, ----] _ sliceD.slice.class.circleIntersection[sliceD, circle];
FOR list: LIST OF Point _ iPoints, list.rest UNTIL list = NIL DO
tangency _ CONS[FALSE, tangency];
ENDLOOP;
};

SeqLineI: IntersectionProc = {
outlineD: OutlineDescriptor _ NARROW[c1];
line: Line _ NARROW[c2];
[iPoints, ----] _ outlineD.slice.class.lineIntersection[outlineD, line];
FOR list: LIST OF Point _ iPoints, list.rest UNTIL list = NIL DO
tangency _ CONS[FALSE, tangency];
ENDLOOP;
};

SeqCircleI: IntersectionProc = {
outlineD: OutlineDescriptor _ NARROW[c1];
circle: Circle _ NARROW[c2];
[iPoints, ----] _ outlineD.slice.class.circleIntersection[outlineD, circle];
FOR list: LIST OF Point _ iPoints, list.rest UNTIL list = NIL DO
tangency _ CONS[FALSE, tangency];
ENDLOOP;
};

SeqSeqI: IntersectionProc = {
od1: OutlineDescriptor _ NARROW[c1];
od2: OutlineDescriptor _ NARROW[c2];
iPoints _ NIL;
};


NewMultiGravityPool: PUBLIC PROC [] RETURNS [REF]= { -- reuseable storage for BestPointAndCurve proc to avoid NEWs
pool: MultiGravityPool _ NEW[MultiGravityPoolObj];
pool.distances _ NEW[NearDistancesObj[MaxFeatures]];
pool.features _ NEW[NearFeaturesObj[MaxFeatures]];
pool.bestpoints _ NEW[BestPointsObj[MaxFeatures]];
pool.bestcurves _ NEW[BestPointsObj[MaxFeatures]];
FOR i: NAT IN [0..MaxFeatures) DO
pool.bestpoints[i] _ NEW[GoodPointObj];
pool.bestcurves[i] _ NEW[GoodPointObj];
ENDLOOP;
RETURN[pool];
};

InitStats: PROC [] = {
interval: CodeTimer.Interval;
interval _ CodeTimer.CreateInterval[$MultiMap];
CodeTimer.AddInt[interval, $Gargoyle];
interval _ CodeTimer.CreateInterval[$CurveOverflow];
CodeTimer.AddInt[interval, $Gargoyle]; -- counting break
interval _ CodeTimer.CreateInterval[$PointOverflow];
CodeTimer.AddInt[interval, $Gargoyle]; -- counting break
};

InitStats[];

END.

���*@��GGMultiGravityImpl.mesa
Copyright c 1986 by Xerox Corporation.  All rights reserved.
Last edited by Bier on June 3, 1986 2:42:42 pm PDT
Contents:  Performs hit testing similar to GGGravity.  Instead of returning a single nearest feature, we return the N (or fewer) nearest features which are within a given tolerance distance from the test point.  The algorithm used is described in [Cyan]<Gargoyle>Documentation>MultiGravity.tioga.

Shared with GGGravityImpl

triggerBag.outlines = NIL AND
Arbitration
 [Artwork node; type 'ArtworkInterpress on' to command tool] 
We arbitrate between those points which are within an epsilon-width ring of the nearest point.
Dispatches to StrictDistance, PointsPreferred, or does nothing depending on the currently selected gravity type.  If useAlignBag is TRUE, compute the intersections of the objects that are in the bags.

Someday, GoodPoint and GoodPoint should become a single variant record and distances will be unnecessary.
Otherwise, let's do arbitration.
We have more than one "equally close" features.  Now we choose on the following basis:
1) Prefer scene objects to alignment lines.
2) Prefer points to lines.
Later, we will prefer objects that say the testpoint is "inside" them to those that don't.
FOR i: NAT IN [0..neighborCount) DO
IF features[i].type = outline OR features[i].type = slice THEN {
SELECT features[i].resultType FROM
joint, controlPoint, intersectionPoint =>
RETURN PrepareWinner[nearPointsAndCurves, i];
ENDCASE => IF bestSceneObject = -1 THEN bestSceneObject _ i;
};
REPEAT
FINISHED => {
IF bestSceneObject >= 0 THEN
RETURN PrepareWinner[nearPointsAndCurves, bestSceneObject]
ELSE RETURN PrepareWinner[nearPointsAndCurves, 0];
};
ENDLOOP;
Otherwise, let's do arbitration.
1) Prefer scene objects to alignment lines.
Later, we will prefer objects that say the testpoint is "inside" them to those that don't.


Multi-Gravity Routines

Dispatches to MultiStrictDistance or MultiPointsPreferred as appropriate.
Returns up to MaxFeatures closest features, their closest points, and their distances from the testpoint.  Features outside of the critical radius, criticalR, will not be included.  The results will be located in nearPointsAndCurves[0] .. nearPointsAndCurves[count-1].
Returns up to MaxFeatures closest features, their closest points, and their distances from the testpoint.  Features outside of criticalR, will not be included.  The results will be located in nearPointsAndCurves[0] .. nearPointsAndCurves[count-1].  If any points are within the inner radius innerR, then only points (e.g. vertices, control points, and intersection points) will be mentioned.  Otherwise, nearPointsAndCurves may consist of a mixture of points and curves.
For each gravity active point, find its distance from the testpoint.  Package this information up into the thisPoint record.  Then call MergeObject, which will add this point to the list of best points, if appropriate.
When PointsInNeighborhoodPlus returns, h will contain a set of up to MaxFeatures points all of which are within a distance t of q.
If h.overflow is FALSE, h contains the nearest point in the scene (distance h.min from q) and all other points o such that dist(o, q) <= h.min + h.s, and dist(o, q) <= t.
If h.overflow is TRUE, there were more than MaxFeatures such points.  In this case, h includes the nearest n such points n = MaxFeatures.
ProcessOutline: PROC [outlineD: OutlineDescriptor, thisPoint: GoodPoint, featureData: FeatureData] = {
[thisPoint.point, thisPoint.dist, thisPoint.hitData, success] _ outlineD.slice.class.closestPoint[outlineD, q, dTol];
IF success THEN {
IF thisPoint.dist < dTol THEN {
thisPoint.featureData _ featureData;
dTol _ MergePoint[thisPoint, h, dTol];
};
};
};

outlineD: OutlineDescriptor;
FOR midpoints: LIST OF FeatureData _ alignBag.midpoints, midpoints.rest UNTIL midpoints = NIL DO
featureData _ midpoints.first;
thisPoint.point _ NARROW[featureData.shape, AlignmentPoint].point;
ProcessPoint[thisPoint, featureData];
ENDLOOP;
FOR outlines: LIST OF FeatureData _ sceneBag.outlines, outlines.rest UNTIL outlines = NIL DO
featureData _ outlines.first;
outlineD _ NARROW[featureData.shape];
ProcessOutline[outlineD, thisPoint, featureData];
ENDLOOP;
Handle the anchor.

For each gravity active object, find the distance of the gravity active object from the testpoint.  Package this information up into the thisCurve record.  Then call MergeObject, which will add this curve to the list of best curves, if appropriate.
When CurvesInNeighborhood returns, h should contain some number of curves such that they are all within t of q.
If h.overflow is FALSE, then h contains the closest curve (at distance h.min) and all other curves o such that dist(o, q) < MAX[h.min + h.s, innerR] and dist(o, q) < t.
If h.overflow is TRUE then it wasn't possible to include all such curves.  h contains the closest n such curves (where n = MaxFeatures).
ProcessOutline: PROC [outlineD: OutlineDescriptor, thisCurve: GoodPoint, featureData: FeatureData] = {
success: BOOL;
[thisCurve.point, thisCurve.dist, thisCurve.hitData, success] _ outlineD.slice.class.closestSegment[outlineD, q, t];
IF success THEN {
IF thisCurve.dist < t THEN {
thisCurve.featureData _ featureData;
dTol _ MergeCurve[thisCurve, h, dTol];
};
};
};

outlineD: OutlineDescriptor;
Align Bag
Scene Bag.
FOR outlines: LIST OF FeatureData _ sceneBag.outlines, outlines.rest UNTIL outlines = NIL DO
featureData _ outlines.first;
outlineD _ NARROW[featureData.shape, OutlineDescriptor];
ProcessOutline[outlineD, thisCurve, featureData];
ENDLOOP;
Maintaining the Nearest-Neighbor Structure
Alias useNewMerge _ GGMultiGravityImpl.useNewMerge _ TRUE;
OldMergeObject maintains these invariants:  There is valid data in h[0] up to h[size-1].  Call these the Elements of h.  All other components of h have dist = infinity.  h.min is the minimum value of dist(q, x) for x element of h.  h.max is the maximum value of dist(q, x) for x element of h.
If overflow is FALSE, then h contains at least one representative of the objects at the farthest distance from q, and all representatives of closer distances.
Replace the worst element with the new one.
Find the new worst element.
If the new worst element isn't so bad as before, then we have had to throw away all elements at some distance.  This is overflow.
BestPointsObj: TYPE = RECORD [
size: NAT,
max, min: REAL,
s: REAL, -- the size of neighborhoods.  BestPoints should contain all objects that have been seen such that min <= dist(o, q) <= min+s, unless BestPoints overflows.
overflow: BOOL,
points: SEQUENCE len: NAT OF GoodPoint];

NewMergeObject maintains these invariants:  There is valid data in h[0] up to h[size-1].  Call these the Elements of h.  All other components of h have dist = infinity.  h.min is the minimum value of dist(q, x) for x element of h.
If overflow is FALSE, then h contains all objects o, seen so far, such that h.min <= dist(o, q) <= h.min+h.s.  h may contain other objects as well.
If overflow is TRUE, all objects in h satisfy h.min <= dist(o, q) <= h.min+h.s but there are one or more objects that satisfy this property that are not in h.  Those objects that are not included are at least as far from q as the farthest object in h.
dTol is a hint to the caller that the caller need not pass in objects that are more than dTol units away from q, since NewMergePoint is just going to throw them away.
When NewMergePoint returns, h.dTol = t if h.size = 0, h.dTol = h.min + h.s otherwise.

Replace the worst element with the new one if the new is better.

NewMergeCurve maintains these invariants:  There is valid data in h[0] up to h[size-1].  Call these the Elements of h.  All other components of h have dist = infinity.  h.min is the minimum value of dist(q, x) for x element of h.
If overflow is FALSE, then h contains all objects o, seen so far, such that h.min <= dist(o, q) <= MAX[h.min+h.s, innerR].  h may contain other objects as well.
If overflow is TRUE, all objects in h satisfy h.min <= dist(o, q) <= MAX[h.min+h.s, innerR] but there are one or more objects that satisfy this property that are not in h.  Those objects that are not included are at least as far from q as the farthest object in h.
dTol is a hint to the caller that the caller need not pass in objects that are more than dTol units away from q, since NewMergeCurve is just going to throw them away.
When NewMergeCurve returns, h.dTol = t if h.size = 0, h.dTol = MAX[h.min+h.s, innerR] otherwise.

Replace the worst element with the new one if the new is better.
Merge the bestPoints and the bestCurves.  There will be count elements in the result.
Sort the points in order of increasing distance.  Since n is likely to be small, bubble sort is sensible:
Sort the curves in order of increasing distance.  Since n is likely to be small, bubble sort is sensible:


Computing Intersections

0 => {
pointPairGen: OutlinePointPairGenerator;
segmentD: OutlineDescriptor _ NARROW[simpleCurve];
pointPairGen _ segmentD.slice.class.pointPairsInDescriptor[segmentD];
ppAndDone _ segmentD.slice.class.nextPointPair[pointPairGen];
IF ppAndDone.done THEN RETURN[[0,0], FALSE]
ELSE {
midpoint _ Vectors2d.Scale[Vectors2d.Add[ppAndDone.lo, ppAndDone.hi], 0.5];
success _ TRUE;
};
};
outline => {
The asymmetry here is OK.
sliceD: OutlineDescriptor _ NARROW[feature.shape];
hitData: REF ANY _ curve.hitData;
simpleCurve _ sliceD.slice.class.hitDataAsSimpleCurve[sliceD.slice, hitData];
IF simpleCurve = NIL THEN {
class _ 0;
RETURN;
};
};
0) NoOp	1) Line	2) Circle	3) Edge	4) Arc	5) Slice
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
IntersectionProc: TYPE = PROC [c1, c2: REF ANY] RETURNS [iPoints: LIST OF Point, tangency: LIST OF BOOL];
simpleCurve1, simpleCurve2: REF ANY;
simpleCurve1 _ od1.slice.class.hitDataAsSimpleCurve[od1.slice, hitData1];
simpleCurve2 _ od2.slice.class.hitDataAsSimpleCurve[od2.slice, hitData2];

Utilities
�Ê2a��˜�J˜�Icodešœ™Kšœ
Ïmœ1™<Kšœ2™2Kšœ¨™¨K™�šÏk	˜	Jšœ¶˜¶—K˜�KšÏnœžœž˜!K˜�JšžœQ˜XKšžœž˜˜�Kšœ
žœžœ
˜!Kšœ
žœ ˜1Kšœžœ$˜9Kšœžœ"˜5Kšœžœžœ˜-Kšœžœ&˜=Kšœžœ˜Kšœžœ˜%Kšœžœ˜#Kšœžœ˜Kšœ
žœžœ˜'Kšœžœ˜3Kšœžœ˜'Kšœžœžœ˜#Kšœžœ˜1Kšœžœ˜3Kšœžœ˜Kšœžœžœ˜+Kšœžœ#˜9Kšœžœžœ˜)Kšœžœ"˜7Kšœžœžœ˜%Kšœžœžœ˜7Kšœžœ)˜EKšœžœ ˜3Kšœ	žœ˜%Kšœžœžœ˜3Kšœžœ%˜?Kšœžœ*˜IKšœžœ˜!Kšœžœ!˜7Kšœžœ#˜;Kšœ	žœ˜'Kšœžœ!˜7Kšœ
žœ˜'Kšœžœ˜!Kšœžœ ˜5Kšœžœžœ˜%Kšœžœ"˜5K˜�Kšœžœžœ˜%šœžœžœ˜Kšœžœ˜
Kšœ
žœ˜KšœžœÏc?˜QKšœžœ 
˜Kšœžœ S˜aKšœžœ ›˜¤Kšœ
žœ˜Kšœžœžœžœ˜(—šœžœžœ˜1šœžœžœ˜$Kšœ˜Kšœ˜Kšœ˜Kšœ˜Kšœ˜—K˜�K˜�——K˜�Kšœ™K™�šŸœžœžœžœ˜6šžœ˜Kšœžœž˜Kšœžœž˜Kšœžœž˜Kšœžœž˜ Kšœžœž˜Kšœžœž˜%Kšœžœ˜—K˜K˜�—šŸ
œžœžœžœ˜?šžœ˜Kšœžœž™Kšœžœž˜Kšœ žœž˜'Kšœž˜K˜—K˜—K˜�Kš
Ÿœžœžœžœžœ˜/K˜�K™˜�I
artworkFigure•
Interpressš
Interpress/Xerox/3.0  f j k j¡¥“Ä��WB ¤ ¨  ªœ¡£É ¢ ¨ r j 
º ¢ ¨¡¡¨ÄWB�� ¤ ¨ r j¡¥“Ä��WB ¤ ¨¡¡¨ r jÄWÁ�Á ¤ÄDB�CÄ�Œ5��r ¢ ¥ ¨¡¡¨ÄŒZ¯“Ÿ ™¡ Ÿ ¡“¡¸ k é r jÄ	Ù¤ ¤Ä�˜j��eÄ[‹�B ¢ ¥ ¨ r j¡¡¨Ÿ ™¡ Ÿ ¡“¡¡ ¡™ k é¡¡¨ÄI\¯“Ÿ ™¡ Ÿ ¡“¡¸ k é r jÄ	Ù¤ ¤Ä.µ�0ÄYÕ�? ¢ ¥ ¨ r j¡¡¨Ÿ ™¡ Ÿ ¡“¡¡ ¡™ k é¡¡¨ÄI\¯“Ÿ ™¡ Ÿ ¡“¡¸ k é r jÄ	Ù¤ ¤ÄÅ�
Ä1� ¢ ¥ ¨ r j¡¡¨Ÿ ™¡ Ÿ ¡“¡¡ ¡™ k é¡¡¨ÄI\¯“Ÿ ™¡ Ÿ ¡“¡¸ k é r jÄ	Ù¤ ¤ÄÇa�SÄAh�/ ¢ ¥ ¨ r j¡¡¨Ÿ ™¡ Ÿ ¡“¡¡ ¡™ k é¡¡¨ÄI\¯“Ÿ ™¡ Ÿ ¡“¡¸ k é r jÄ�› ¤ÄDB�CÄ�Œ5��r ¢ ¥ ¨¡¡¨Ä�›Ž¯“Ÿ ™¡ Ÿ ¡“¡¸ k é r jÄ@¼�ñ ¤ÄDB�CÄ�Œ5��r ¢ ¥ ¨¡¡¨Ä�ñ ^¯“Ÿ ™¡ Ÿ ¡“¡¸ k é£¯“   £¡ˆ¡¡ÅXeroxÅResearchÅ	RGBLinear£¡¡¦ ç • ” ç­“¢·“¢°“ÄUÞ�UÕ™ÄDB�CÄ�Œ5��r—§Õ—˜ r jÄ�Ä'å��¹ ¢ ¨ÅXeroxÅ
TiogaFontsÅHelvetica10£¡ “¡•¡ —¡¡¨  ŠÁTolerance Radius– k é r j¡¡¨¢·“¡¯“¡¡¨ k é r jÄV9�^Ä�ú^��¹ ¢ ¨ÅXeroxÅ
TiogaFontsÅHelvetica10£¡ “¡•¡ —¡¡¨  ŠÁNearest– k é r j¡¡¨¢·“¡¯“¡¡¨ k é r jÄ_?�cÄ��ì ¢ ¨ÅXeroxÅ
TiogaFontsÅHelvetica10£¡ “¡•¡ —¡¡¨  ŠÁCaret– k é r j¡¡¨¢·“¡¯“¡¡¨ k é r jĤ�Äm� ¢ ¨ÅXeroxÅ
TiogaFontsÅHelvetica10£¡ “¡•¡ —¡¡¨  ŠÁNearest + Epsilon– k é r j¡¡¨¢·“¡¯“¡¡¨ k é k é k é k g•Artwork
Interpress•Bounds60.0 mm xmin 0.0 mm ymin 93.83888 mm xmax 88.9 mm ymax –G91.72222 mm topLeading 91.72222 mm topIndent 1.411111 mm bottomLeading šŸ=™=IartworkCaption™^—šŸœžœžœžœIžœžœ5žœžœ˜ÊKšœÈ™ÈKšžœžœ6 2˜uKšœ)˜)šžœžœ˜!šžœž˜&šœ˜Kšœc˜c—šœ˜Kšœˆ˜ˆ—Kšžœžœ˜—K˜—šžœ˜Kšœ˜Kšœ
žœ˜K˜—Kšœ(˜(K˜K˜�K™�—šŸœžœžœžœ<žœ5žœžœ˜ÂKšœi™iKšœ)˜)Kšœžœ˜KšœÏbœ3˜eKš
žœžœžœ
žœžœ˜/Kšžœžœžœ&˜>šžœ˜Kš¡ ™ Kšœžœ,˜JKšœ)˜)Kšœ&˜&Kšœ
žœ˜Kšœžœ˜Kšœžœ˜Kšœžœ
 ˜!šžœžœžœž˜Kšœžœž˜.Kšœ˜Kšœ$˜$Kšžœ˜—Kšœ˜šžœžœžœž˜Kšžœ žœ#˜IKšžœ˜—šžœžœžœ'˜GKš¡V™VKš¡+™+Kš¡™Kš¡Z™Z—K˜šžœžœžœž™#šžœžœžœ™@šžœž™"šœ)™)Kšžœ'™-—Kšžœžœžœ™<—K™—šž™šžœž™
šžœž™Kšžœ4™:—Kšžœ'™2K™——Kšžœ™—Kšžœ'˜-K˜—K˜—šŸœžœžœžœ
žœIžœžœ5žœžœ˜äKšœžœ˜Kšœ)˜)Kšœ{˜{Kš
žœžœžœ
žœžœ˜/Kšžœžœžœ&˜>šžœ˜Kš¡ ™ Kšœžœ,˜JKšœ)˜)Kšœ&˜&Kšœžœ˜Kšœžœ
 ˜!Kšœ
žœ˜šžœžœžœž˜Kšœžœ˜.Kšœ˜Kšœ$˜$Kšžœ˜—Kšœ˜šžœžœžœž˜Kšžœ žœ#˜IKšžœ˜—Kšžœžœžœ'˜GKš¡+™+Kš¡Z™Zšžœžœžœž˜#šžœžœžœ˜@Kšžœ'˜-K˜—šž˜Kšžœžœ'˜9—Kšžœ˜—K˜—K˜—K™�šŸ
œžœ3žœžœ5žœžœ˜“Kšœžœž˜2Kšœ˜Kšœ ˜ Kšœ˜K˜K˜�—šŸœžœžœdžœžœ!žœ˜ÚK˜�K˜K˜�—K™�Kšœ™K™�šŸœžœžœžœIžœžœ3žœ˜ÉKš¡I™IKšžœžœ6 2˜uKšœ)˜)šžœ7ž˜Ašœžœž˜,šœ˜Kšœe˜e—šœ˜KšœŠ˜Š—Kšžœžœ˜—šœ˜Kšœžœ˜Kšœ
˜
K˜—Kšžœžœ˜—Kšœ(˜(K˜K˜�—šŸœžœžœžœ<žœ3žœ˜ÁKš¡Œ™ŒKšœ˜Kšœ˜Kšœžœ˜šžœžœž˜6Kšžœžœ˜K˜�—Kšœ¡œ6˜iKšœ#˜#K˜�Kšœ¡œKžœ˜…Kšœ#˜#K˜�Kšœžœ'˜2Kšœžœ ˜9Kš¡œM˜aK˜K˜�—šÐbn¡žœžœžœ
žœIžœžœ3žœ˜ãKš¡Ö™ÖKšœ˜Kšœ˜Kšœžœ˜Kš
žœžœžœžœžœ˜FK˜�Kšœ¡œ;˜nKšœ#˜#K˜�Kšœ¡œX˜‹Kšœ#˜#K˜�šžœžœžœ˜8Kšœ˜Kšœžœ ˜9KšœB˜BK˜—šžœ˜Kšœžœ'˜2Kšœžœ ˜9Kšœa˜aK˜—K˜K˜�—K˜�šŸœžœ&žœ,¡œ	Ïiœžœžœžœžœ˜ÕKšœ˜KšœÚ™ÚKšœ‚™‚K™ªKšœ‰™‰šŸœžœ6 ˜^Kšœ
žœ˜Kšœ
žœ
˜Kšœ9˜9Kšœžœ˜šžœžœ˜ Kšœ(˜(Kšœ$˜$Kšœ&˜&K˜—K˜—šŸœžœN˜`Kšœ¡œQ˜qšžœ	žœ˜šžœžœ˜Kšœ$˜$Kšœ&˜&K˜—Kšœ˜—K˜—šŸœžœR™fKšœ¡œU™ušžœ	žœ™šžœžœ™Kšœ$™$Kšœ&™&K™—Kšœ™—K™K™�—K˜K™Kšœ˜Kšœ	žœžœ˜Kšœžœ˜Kšœžœ˜,K˜�Kšœžœ˜Kšœ"˜"K˜�šžœ
ž˜KšœH˜H—šžœ
žœž˜!KšœD˜D—K˜�š
žœ¡	œžœžœ2žœ
žœž™`Kšœ™Kšœžœ*™BKšœ%™%Kšžœ™—š
žœ¡œžœžœ,žœ
žœž˜TKšœ˜Kšœ	žœ%˜4Kšœ-˜-Kšžœ˜—š
žœ¡œžœžœ0žœžœž™\Kšœ™Kšœžœ™%Kšœ1™1Kšžœ™Kš¡™—Kšœ˜šžœžœžœ˜Kšœžœ˜*Kšžœžœžœžœ˜)Kšœ+˜+Kšœ%˜%K˜—Kšœ˜šžœžœ˜Kšœ.˜.Kšœ.˜.K˜—K˜K™�—šŸœžœ&žœ-žœžœžœ˜šKšœ˜Kšœžœžœ˜Kšœžœžœžœ˜(Kšœ	žœ˜Kšœ˜šžœžœžœž˜ Kšœ˜šžœžœžœž˜"Kšœ˜Kšœ?˜?Kšœ˜šžœžœžœ!žœžœž˜EKšœ˜Kšœ8˜8Kšœ&˜&šžœ	žœ˜Kšœžœ˜/šœ!žœ˜:Kšœ˜Kšœ˜Kšœ˜Kšœ˜—Kšœ%˜%Kšœ#˜#Kšœ$˜$šžœ#žœ!žœ˜NKšœ#˜#K˜—šžœžœ#žœ!žœ˜SKšœ#˜#K˜—Kšžœžœ˜Kšœ&˜&K˜—Kšœ˜Kšžœ˜—Kšžœ˜—Kšžœ˜—K˜K˜�—šŸ
œžœ&žœ-žœžœžœ˜–Kšœ˜Kšœ˜Kšœ	žœ˜Kšœ˜šžœžœžœž˜ šœ˜Kšžœ"žœ žœžœ˜QKšœ-˜-Kšžœžœ	žœžœ˜Kš¡œ˜Kš¡œ'¡œ˜8Kšœ&˜&šžœ	žœ˜Kšœžœ˜/šœ!žœ˜:Kšœ˜Kšœ	žœ˜Kšœ˜Kšœžœ˜—Kšœ˜Kšœ#˜#Kš¡œ˜$Kš¡œ˜"Kšœ&˜&K˜——Kšžœ˜—K˜K˜�—šŸœžœIžœ
žœžœžœ˜§Kšœø™øKšœo™oKšœ¨™¨K™ˆšŸœžœA˜RKšœ/˜/šžœžœž˜Kšœ$˜$Kšœ5˜5Kšœžœ˜Kšœ&˜&K˜—K˜—šŸ
œžœE˜XKšœ5˜5šžœžœ˜Kšœ$˜$Kšœ@˜@Kšœžœ˜Kšœ&˜&K˜—K˜—šŸœžœN˜`Kšœ	žœ˜Kšœp˜pšžœ	žœ˜šžœžœ˜Kšœ$˜$Kšœ&˜&K˜—K˜—K˜—šŸœžœR™fKšœ	žœ™Kšœt™tšžœ	žœ™šžœžœ™Kšœ$™$Kšœ&™&K™—K™—K™K™�—K˜K˜K˜K™Kšœ˜Kšœžœ˜Kšœžœ˜)Kšœžœ˜Kšœ*˜*K˜�Kš¡	™	š
žœ¡
œžœžœ4žœžœž˜dKšœ˜Kšœžœ(˜5Kšœ*˜*Kšžœ˜—š
žœ¡
œžœžœ4žœžœž˜dKšœ˜Kšœžœ(˜5Kšœ*˜*Kšžœ˜—š
žœ¡œžœžœ3žœ
žœž˜[Kšœ˜Kšœžœ˜!Kšœ*˜*Kšžœ˜—š
žœ¡œžœžœ3žœžœž˜]Kšœ˜Kšœ	žœ,˜;Kšœ.˜.Kšžœ˜—Kš¡
™
š
žœ¡œžœžœ,žœ
žœž˜TKšœ˜Kšœ	žœ%˜4Kšœ-˜-Kšžœ˜—š
žœ¡œžœžœ0žœžœž™\Kšœ™Kšœžœ'™8Kšœ1™1Kšžœ™—K˜šžœžœ˜Kšœ.˜.Kšœ.˜.K˜—Kšœ ˜"K˜�—K˜�K™*K˜�KšŸœžœ˜š
Ÿœžœžœ
žœžœ˜\Kšœžœ7˜AKšœ˜K˜
Kšœ˜K˜Kšœ˜Kšœ
 ˜Kšœ"˜"Kšœ
žœ˜šžœžœžœž˜#Jšœ˜Jšœžœ˜Jšžœ˜—J˜J˜�—šŸœžœžœžœ˜NKšœžœ7˜AKšœ˜K˜
Kšœ˜K˜Kšœ
 ˜Kšœ"˜"Kšœ
žœ˜šžœžœžœž˜#Jšœ˜Jšœžœ˜Jšžœ˜—J˜J˜�—Kšœ
žœžœ˜Kšœ5žœ™:š
Ÿ
œžœ*žœžœžœ˜XKšžœ
žœžœ˜6Kšžœžœ!˜,K˜—š
Ÿ
œžœ*žœžœžœ˜XKšžœ
žœžœ˜6Kšžœžœ!˜,K˜K˜�K˜�—Kšœ¤™¤K™žš
Ÿœžœ*žœžœžœ˜\Kšœžœ˜Kšœžœ˜Kšœ	˜	šž˜šžœžœž˜Kšœžœ˜Kšœ
žœžœ˜5Kšœ
žœžœ *˜UKšœ
žœžœžœ˜?Kšžœžœ"˜3—šž˜šœ˜Kšœ˜Kšœ˜Kšœžœ˜Kšœžœ˜K˜—˜Kšœžœ˜
Kšœžœ˜Kšœ
žœ˜Kš¡+™+Kšœ˜šžœžœžœž˜#Jšžœžœ"˜>Jšžœ˜—J˜Jšœ˜Kš¡™K˜šžœžœžœž˜#Jšžœžœ"˜>Jšžœ˜—J˜J𡁙Jš	œ
žœžœžœžœ˜9J˜J˜—˜
J˜——Jšžœ˜—K˜K˜�—šœžœžœ™Kšœžœ™
Kšœ
žœ™Kšœžœ ›™¤Kšœ
žœ™Kšœžœžœžœ™(K™�—Kšœæ™æK™“K™ûKšœ¦™¦KšœU™UK™�šŸ
œžœ'žœžœ˜RKšœžœ˜Kšœžœ˜šž˜šžœžœž˜Kšœžœ˜Kšœžœžœ˜5Kšœžœžœ =˜eKšžœžœ"˜3—šž˜šœ˜Kšœ˜Kšœ˜Kšœžœ˜Jšœ˜K˜—šœ˜Kšœžœ˜Kšœžœ˜Kš¡@™@Kšœ˜šžœžœžœž˜#Jšžœžœ%˜BJšžœ˜—šžœžœ ˜)Jšœ˜Jšœ˜Jšœžœ˜,Kšœžœ˜Jšœ˜Jšœ"˜"J˜—šžœ ˜Jšœ˜Jšœžœ˜$Jšœ
žœ˜J˜—J˜—šœ	˜	Jšœ˜Jšœžœ˜$Jšœ"˜"J˜——Jšžœ˜—K˜K˜�—K™�Kšœå™åKšœžœOžœ:™ KšœEžœÀ™ˆKšœ¦™¦Kšœ`™`K™�šŸ
œžœ'žœžœ˜RKšœžœ˜Kšœžœ˜šž˜šžœžœž˜Kšœžœ˜Kšœžœžœ˜5Kšœžœžœ =˜eKšžœžœ"˜3—šž˜šœ˜Kšœ˜Kšœ˜Kšœžœ˜Jšœžœ˜)K˜—šœ˜Kšœžœ˜Kšœžœ˜Kš¡@™@Kšœ˜šžœžœžœž˜#Jšžœžœ%˜BJšžœ˜—šžœžœ ˜)Jšœ˜Jšœ˜Jšœžœ˜,Kšœžœ˜Jšœžœ˜)Jšœ"˜"J˜—šžœ ˜Jšœ˜Jšœžœ˜$Jšœ
žœ˜J˜—J˜—šœ	˜	Jšœ˜Jšœžœ˜$Jšœ"˜"J˜——Jšžœ˜—K˜K˜�—šŸœžœ&žœ/˜ršžœžœžœž˜"Kšœ'˜'Kšžœ˜—K˜K˜�—š
Ÿœžœ&žœ&žœ3žœ˜§Kš¡U™UKšœžœ˜Kšœžœ˜K˜K˜šžœžœžœž˜Iprocšžœžœžœ˜3Nšžœžœžœ˜3Nšœ˜N˜šžœžœ˜ Nšœ0˜0Nšœ˜N˜—šžœ˜Nšœ0˜0N˜N˜—šž˜Nšœ ˜/šžœžœ
žœž˜'Nšœ0˜0Nšœ˜—Nšžœ˜	Nšœ ˜/šžœžœ
žœž˜'Nšœ0˜0Nšœ˜—Nšžœ˜	—Nšžœ˜K˜—K˜�—šŸ
œžœ&žœ˜>K™iKšœ˜šžœžœžœž˜"šžœžœžœž˜$šžœ+žœ˜3Kšœ˜Kšœ"˜"Kšœ˜K˜—Kšžœ˜—Kšžœ˜—˜K˜�——šŸ
œžœ&žœ˜>K™iKšœ˜šžœžœžœž˜"šžœžœžœž˜$šžœ+žœ˜3Kšœ˜Kšœ"˜"Kšœ˜K˜—Kšžœ˜—Kšžœ˜—K˜K™�—K™�K™K™�š
Ÿœžœžœžœžœ˜\Kšœžœ˜Kšœ
žœžœ˜Kšœ,˜,šžœž˜™Kšœ(™(Kšœžœ™2KšœE™EKšœ=™=Kšžœžœžœžœ™+šžœ™KšœK™KKšœ
žœ™K™—K™—˜Kšœ
žœ˜!KšœE˜EKšœ
žœ˜K˜—˜
Kšœžœ˜Kšœ?˜?Kšœ
žœ˜K˜—Kšžœžœžœ˜ —K˜K˜�—šŸ
œžœžœ	žœžœžœ˜UKšœ)˜)šžœž˜šœ˜Kšœžœ˜0Kšœ	žœžœ˜!KšœM˜Mšžœžœžœ˜Kšœ˜Kšœ
˜
Kšžœ˜K˜—Kšœ˜—šœ™Kš¡™Kšœžœ™2Kšœ	žœžœ™!KšœM™Mšžœžœžœ™Kšœ
™
Kšžœ™K™—Kšœ™—šœ˜Kšœ
˜
Kšœžœ(˜<Kšžœ˜K˜—šœ˜Kšœ
˜
Kšœžœ$˜8Kšžœ˜K˜—šœ˜Kšœ
˜
Kšœžœ˜*Kšžœ˜K˜—Kšžœžœžœ˜3—šžœ
žœž˜Kšœ˜Kšœ˜Kšœ˜Kšžœžœ˜—K˜K˜�—šŸœžœžœžœžœžœžœžœ˜fKšœžœ˜ Kšœžœžœ˜$Kšœ1˜1Kšœ1˜1šžœž˜$Kšœa˜a—šž˜Kšœa˜a—K˜K˜�—Kšœžœžœ
žœžœžœžœžœžœžœžœ˜iš
Ÿœžœžœžœžœ˜IK™1Kšœžœžœžœžœžœ 
˜.Kšœ¡œžœžœžœžœ 
˜1Kšœ¡œ¡œžœžœžœ ˜6Kšœ	¡œ¡œ¡œžœžœ 
˜:Kšœ¡œ¡œ¡œ¡œžœ 	˜;Kšœ¡œ¡œ ˜:Kšœ˜—K˜�šŸœ˜Kšœ
žœ˜Kšœžœ˜K˜K˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœžœ˜K˜
Kšœ
žœ˜Kšœ2˜2Kšžœžœ
žœžœžœžœ˜DKšžœžœ
žœ˜%J˜J˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœ
žœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜KšœF˜Fšžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜J˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœžœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜KšœL˜Lšžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜J˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœ
žœ˜Kšœ
žœ˜K˜
Kšœžœ˜Kšœ3˜3Kš
žœžœžœžœžœ˜AKšžœžœ
žœ˜%J˜J˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœ
žœ˜Kšœžœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜KšœF˜Fšžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜J˜�—š¡œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœžœ˜K˜
Kšœžœ˜Kšœ/˜/Kšžœžœžœžœžœžœ˜AKšžœžœ
žœ˜%J˜J˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœ
žœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜Kšœ@˜@šžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜J˜�—š¢œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœžœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜KšœD˜Dšžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜J˜�—š¡œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœ
žœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜Kšœ@˜@šžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜J˜�—š¡œ˜Kšœžœžœ
žœžœžœžœžœžœžœžœ™iKšœžœ˜Kšœžœ˜Kšœžœžœ˜Kšœ˜Kšœ	žœ˜Kšœ7˜7šžœžœžœž˜Kšœ
žœ˜#Kšœžœ˜#Kšžœ˜—J˜—K˜�šŸœ˜Kšœžœ˜%Kšœ
žœ˜Jšœ
 œ6˜Dšžœžœžœžœžœž˜@Kšœžœžœ˜!Kšžœ˜—K˜—šŸœ˜Kšœžœ˜%Kšœžœ˜JšœH˜Hšžœžœžœžœžœž˜@Kšœžœžœ˜!Kšžœ˜—K˜—K˜�šŸœ˜Kšœžœ˜)Kšœ
žœ˜JšœH˜Hšžœžœžœžœžœž˜@Kšœžœžœ˜!Kšžœ˜—J˜J˜�—šŸ
œ˜ Kšœžœ˜)Kšœžœ˜Jšœ
 œ>˜Lšžœžœžœžœžœž˜@Kšœžœžœ˜!Kšžœ˜—J˜J˜�—šŸœ˜Kšœžœ˜$Kšœžœ˜$K™$KšœI™IKšœI™IJšœ
žœ˜J˜J˜�—K™�K™	K˜�š	Ÿœžœžœžœ =˜rKšœžœ˜2Kšœžœ ˜4Kšœžœ˜2Kšœžœ˜2Kšœžœ˜2šžœžœžœž˜!Kšœžœ˜'Kšœžœ˜'Kšžœ˜—Kšžœ˜
K˜—K˜�šŸ	œžœ˜Kšœ˜Kšœ/˜/Kšœ&˜&Kšœ4˜4Kšœ' ˜8Kšœ4˜4Kšœ' ˜8K˜—K˜�K˜K˜�Kšžœ˜J˜�—�…—����z¨��×I��