DIRECTORY GGAngle, GGBasicTypes, GGCircles, GGLines, GGUtility, GGVector, RealFns; GGCirclesImpl: CEDAR PROGRAM IMPORTS GGAngle, GGLines, GGVector, RealFns EXPORTS GGCircles = BEGIN Arc: TYPE = REF ArcObj; ArcObj: TYPE = GGBasicTypes.ArcObj; Circle: TYPE = REF CircleObj; CircleObj: TYPE = GGBasicTypes.CircleObj; Point: TYPE = GGBasicTypes.Point; Edge: TYPE = GGBasicTypes.Edge; Line: TYPE = GGBasicTypes.Line; Vector: TYPE = GGBasicTypes.Vector; CreateEmptyCircle: PUBLIC PROC [] RETURNS [circle: Circle] = { circle _ NEW[CircleObj _ [ origin: [0.0, 0.0], radius: 0.0 ]]; }; CopyCircle: PUBLIC PROC [from: Circle, to: Circle] = { to.origin _ from.origin; to.radius _ from.radius; }; FillCircleFromPointAndRadius: PUBLIC PROC [pt: Point, radius: REAL, circle: Circle] = { circle.origin _ pt; circle.radius _ radius; }; CircleFromPointAndRadius: PUBLIC PROC [pt: Point, radius: REAL] RETURNS [circle: Circle] = { circle _ CreateEmptyCircle[]; FillCircleFromPointAndRadius[pt, radius, circle]; }; CircleFrom3Points: PUBLIC PROC [p0, p1, p2: Point] RETURNS [circle: Circle, linear: BOOL] = { circle _ CreateEmptyCircle[]; linear _ FillCircleFrom3Points[p0, p1, p2, circle]; }; FillCircleFrom3Points: PUBLIC PROC [p0, p1, p2: Point, circle: Circle] RETURNS [linear: BOOL] = { OPEN GGVector; IF p0 = p2 THEN { circle.origin _ [(p0.x+p1.x)*0.5, (p0.y+p1.y)*0.5]; -- center of the circle circle.radius _ Distance[circle.origin, p0]; -- vector from center to p0 linear _ FALSE; } ELSE { m1: Point _ [(p0.x+p1.x)*0.5, (p0.y+p1.y)*0.5]; -- midpoint of segment from p0 to p1 v1: Point _ [m1.y-p0.y, p0.x-m1.x]; -- direction vector of perpendicular bisector a1: REAL _ v1.y; b1: REAL _ -v1.x; c1: REAL _ a1*m1.x+b1*m1.y; m2: Point ~ [(p0.x+p2.x)*0.5, (p0.y+p2.y)*0.5]; -- midpoint of segment from p1 to p2 v2: Point ~ [m2.y-p0.y, p0.x-m2.x]; a2: REAL ~ v2.y; b2: REAL ~ -v2.x; c2: REAL ~ a2*m2.x+b2*m2.y; det: REAL ~ a1*b2-a2*b1; IF det = 0 OR ABS[det] < ABS[a1*b2]*0.000005 THEN { circle.origin _ [0.0, 0.0]; circle.radius _ 12.0; -- magic number for debugging linear _ TRUE; } ELSE { circle.origin _ [(c1*b2-c2*b1)/det, (a1*c2-a2*c1)/det]; -- solve the linear system circle.radius _ Distance[circle.origin, p0]; linear _ FALSE; }; }; }; RatherClose: PROC [p1, p2: Point] RETURNS [BOOL] = { epsilon: REAL = 1.0e-5; RETURN[ABS[p1.x - p2.x] < epsilon AND ABS[p1.y - p2.y] < epsilon]; }; CircleMeetsLine: PUBLIC PROC [circle: Circle, line: Line] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL _ FALSE] = { d, magD, b: REAL; p, h: Point; epsilon: REAL = GGUtility.epsilonInPoints; d _ GGLines.SignedLineDistance[circle.origin, line]; magD _ ABS[d]; SELECT magD - circle.radius FROM > epsilon => hitCount _ 0; IN [-epsilon..epsilon] => { -- tangent. One intersection point. hitCount _ 1; points[1] _ GGVector.Sub[circle.origin, GGVector.Scale[[-line.s, line.c], d]]; tangent _ TRUE; }; < -epsilon => { -- two intersections hitCount _ 2; p _ GGVector.Sub[circle.origin, GGVector.Scale[[-line.s, line.c], d]]; b _ RealFns.SqRt[circle.radius*circle.radius - d*d]; h _ GGVector.Scale[[line.c, line.s], b]; points[1] _ GGVector.Sub[p, h]; points[2] _ GGVector.Add[p, h]; }; ENDCASE => ERROR; }; CircleMeetsEdge: PUBLIC PROC [circle: Circle, edge: Edge] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL] = { line: Line _ edge.line; testPoints: ARRAY [1..2] OF Point; testCount: [0..2]; [testPoints, testCount, tangent] _ CircleMeetsLine[circle, line]; hitCount _ 0; FOR i: NAT IN [1..testCount] DO IF GGLines.OnEdge[testPoints[i], edge] THEN { hitCount _ hitCount + 1; points[hitCount] _ testPoints[i]; }; ENDLOOP; }; CircleMeetsCircle: PUBLIC PROC [circle1, circle2: Circle] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL _ FALSE] = { o1ToO2, o1ToO2Hat: Vector; epsilon: REAL = GGUtility.epsilonInPoints; magO1ToO2, outerTangent, innerTangent: REAL; IF RatherClose[circle1.origin, circle2.origin] THEN { -- concentric circles hitCount _ 0; RETURN; }; o1ToO2 _ GGVector.Sub[circle2.origin, circle1.origin]; magO1ToO2 _ GGVector.Magnitude[o1ToO2]; outerTangent _ circle1.radius + circle2.radius; innerTangent _ ABS[circle1.radius - circle2.radius]; SELECT magO1ToO2 FROM > outerTangent+epsilon => hitCount _ 0; -- circles far apart IN [outerTangent-epsilon .. outerTangent+epsilon] => { -- circles just touch as shown hitCount _ 1; tangent _ TRUE; o1ToO2Hat _ GGVector.Scale[o1ToO2, 1.0/magO1ToO2]; points[1] _ GGVector.Add[circle1.origin, GGVector.Scale[o1ToO2Hat, circle1.radius]]; }; IN (innerTangent+epsilon .. outerTangent-epsilon) => { p: Point; normal: Vector; s, h, m: REAL; b: REAL _ circle1.radius; a: REAL _ circle2.radius; hitCount _ 2; o1ToO2Hat _ GGVector.Scale[o1ToO2, 1.0/magO1ToO2]; s _ 0.5*(b + a + magO1ToO2); h _ 2.0*RealFns.SqRt[s*(s-magO1ToO2)*(s-b)*(s-a)]/magO1ToO2; IF b > a THEN { m _ RealFns.SqRt[b*b - h*h]; p _ GGVector.Add[circle1.origin, GGVector.Scale[o1ToO2Hat, m]]; } ELSE { m _ RealFns.SqRt[a*a - h*h]; p _ GGVector.Sub[circle2.origin, GGVector.Scale[o1ToO2Hat, m]]; }; normal _ [-h*o1ToO2Hat.y, h*o1ToO2Hat.x]; points[1] _ GGVector.Sub[p, normal]; points[2] _ GGVector.Add[p, normal]; }; IN [innerTangent-epsilon .. innerTangent+epsilon] => { hitCount _ 1; tangent _ TRUE; IF circle1.radius > circle2.radius THEN { o1ToO2Hat _ GGVector.Scale[o1ToO2, 1.0/magO1ToO2]; points[1] _ GGVector.Add[circle1.origin, GGVector.Scale[o1ToO2Hat, circle1.radius]]; } ELSE { o1ToO2Hat _ GGVector.Scale[o1ToO2, -1.0/magO1ToO2]; points[1] _ GGVector.Add[circle2.origin, GGVector.Scale[o1ToO2Hat, circle2.radius]]; }; }; < innerTangent-epsilon => { hitCount _ 0; }; ENDCASE => ERROR; }; CircleMeetsArc: PUBLIC PROC [circle: Circle, arc: Arc] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL] = { IF arc.edge # NIL THEN [points, hitCount, tangent] _ CircleMeetsEdge[circle, arc.edge] ELSE { pts: ARRAY [1..2] OF Point; hCount: [0..2]; [pts, hCount, tangent] _ CircleMeetsCircle[circle, arc.circle]; hitCount _ 0; FOR i: NAT IN [1..hCount] DO IF OnArc[pts[i], arc] THEN { hitCount _ hitCount + 1; points[hitCount] _ pts[i]; }; ENDLOOP; }; }; ArcMeetsLine: PUBLIC PROC [arc: Arc, line: Line] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL _ FALSE] = { IF arc.edge # NIL THEN { noHit: BOOL; [points[1], noHit] _ GGLines.LineMeetsEdge[line, arc.edge]; hitCount _ IF noHit THEN 0 ELSE 1; } ELSE { pts: ARRAY [1..2] OF Point; hCount: [0..2]; [pts, hCount, tangent] _ CircleMeetsLine[arc.circle, line]; hitCount _ 0; FOR i: NAT IN [1..hCount] DO IF OnArc[pts[i], arc] THEN { hitCount _ hitCount + 1; points[hitCount] _ pts[i]; }; ENDLOOP; }; }; ArcMeetsEdge: PUBLIC PROC [arc: Arc, edge: Edge] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL _ FALSE] = { IF arc.edge # NIL THEN { noHit: BOOL; [points[1], noHit] _ GGLines.EdgeMeetsEdge[edge, arc.edge]; hitCount _ IF noHit THEN 0 ELSE 1; } ELSE { pts: ARRAY [1..2] OF Point; hCount: [0..2]; [pts, hCount, tangent] _ CircleMeetsEdge[arc.circle, edge]; hitCount _ 0; FOR i: NAT IN [1..hCount] DO IF OnArc[pts[i], arc] THEN { hitCount _ hitCount + 1; points[hitCount] _ pts[i]; }; ENDLOOP; }; }; ArcMeetsArc: PUBLIC PROC [arc1, arc2: Arc] RETURNS [points: ARRAY [1..2] OF Point, hitCount: [0..2], tangent: BOOL] = { IF arc1.edge # NIL THEN [points, hitCount, tangent] _ ArcMeetsEdge[arc2, arc1.edge] ELSE { pts: ARRAY [1..2] OF Point; hCount: [0..2]; [pts, hCount, tangent] _ CircleMeetsArc[arc1.circle, arc2]; hitCount _ 0; FOR i: NAT IN [1..hCount] DO IF OnArc[pts[i], arc1] THEN { hitCount _ hitCount + 1; points[hitCount] _ pts[i]; }; ENDLOOP; }; }; SignedCircleDistance: PUBLIC PROC [pt: Point, circle: Circle] RETURNS [d: REAL] = { originToPoint: REAL; originToPoint _ GGVector.Magnitude[GGVector.Sub[pt, circle.origin]]; d _ originToPoint - circle.radius; }; CircleDistance: PUBLIC PROC [pt: Point, circle: Circle] RETURNS [d: REAL] = { d _ ABS[SignedCircleDistance[pt, circle]]; }; PointProjectedOntoCircle: PUBLIC PROC [pt: Point, circle: Circle] RETURNS [projectedPt: Point] = { epsilon: REAL = 1.0e-5; originToPoint: Vector; magOriginToPoint: REAL; originToPoint _ GGVector.Sub[pt, circle.origin]; magOriginToPoint _ GGVector.Magnitude[originToPoint]; IF magOriginToPoint < epsilon THEN { projectedPt _ [circle.origin.x + circle.radius, circle.origin.y]; RETURN; }; projectedPt _ GGVector.Add[circle.origin, GGVector.Scale[originToPoint, circle.radius/magOriginToPoint]]; }; CreateArc: PUBLIC PROC [v0, v1, v2: Point] RETURNS [arc: Arc] = { arc _ CreateEmptyArc[]; FillArc[v0, v1, v2, arc]; }; CreateEmptyArc: PUBLIC PROC [] RETURNS [arc: Arc] = { arc _ NEW[ArcObj _ [circle: CreateEmptyCircle[], ccw: FALSE, p0: [0.0,0.0], p2: [0.0,0.0], theta0: 0.0, deltaTheta: 0.0]]; }; FillArc: PUBLIC PROC [v0, v1, v2: Point, arc: Arc] = { theta0, theta1, theta2, deltaTheta: REAL; vector0, vector1, vector2: Vector; linear: BOOL; linear _ FillCircleFrom3Points[v0, v1, v2, arc.circle]; IF linear THEN { arc^ _ [circle: arc.circle, ccw: TRUE, p0: v0, p2: v2, theta0: 0.0, deltaTheta: 0.0, edge: GGLines.CreateEdge[v0, v2]]; } ELSE { vector0 _ GGVector.Sub[v0, arc.circle.origin]; theta0 _ GGVector.AngleFromVector[vector0]; vector1 _ GGVector.Sub[v1, arc.circle.origin]; theta1 _ GGVector.AngleFromVector[vector1]; vector2 _ GGVector.Sub[v2, arc.circle.origin]; theta2 _ GGVector.AngleFromVector[vector2]; IF theta0 = theta2 THEN { deltaTheta _ 360.0; arc^ _ [circle: arc.circle, ccw: TRUE, p0: v0, p2: v2, theta0: theta0, deltaTheta: deltaTheta, edge: NIL]; } ELSE { IF GGAngle.IsInCCWInterval[theta1, theta0, theta2] THEN { -- CCW arc deltaTheta _ GGAngle.CounterClockwiseAngle[theta0, theta2]; arc^ _ [circle: arc.circle, ccw: TRUE, p0: v0, p2: v2, theta0: theta0, deltaTheta: deltaTheta, edge: NIL]; } ELSE { deltaTheta _ GGAngle.CounterClockwiseAngle[theta2, theta0]; arc^ _ [circle: arc.circle, ccw: FALSE, p0: v2, p2: v0, theta0: theta2, deltaTheta: deltaTheta, edge: NIL]; }; }; }; }; CopyArc: PUBLIC PROC [from: Arc, to: Arc] = { CopyCircle[from.circle, to.circle]; to.ccw _ from.ccw; to.p0 _ from.p0; to.p2 _ from.p2; to.theta0 _ from.theta0; to.deltaTheta _ from.deltaTheta; IF from.edge # NIL THEN { to.edge _ GGLines.CreateEmptyEdge[]; GGLines.CopyEdge[from: from.edge, to: to.edge]; }; }; CirclePointOnArc: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [BOOL] = { direction: Vector _ GGVector.Sub[pt, arc.circle.origin]; angle: REAL _ GGVector.AngleFromVector[direction]; IF arc.edge # NIL THEN RETURN[GGLines.LinePointOnEdge[pt, arc.edge]]; RETURN[GGAngle.IsInCCWInterval2[angle, arc.theta0, arc.deltaTheta]]; }; NearestEndpoint: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [endpoint: Point] = { IF arc.edge # NIL THEN RETURN[GGLines.NearestEndpoint[pt, arc.edge]]; BEGIN IF ABS[pt.x-arc.p0.x] <= ABS[pt.x-arc.p2.x] THEN { IF ABS[pt.y-arc.p0.y] <= ABS[pt.y-arc.p2.y] THEN RETURN[arc.p0] ELSE GOTO DoMath } ELSE IF ABS[pt.y-arc.p0.y] > ABS[pt.y-arc.p2.y] THEN RETURN[arc.p2] ELSE GOTO DoMath; EXITS DoMath => IF GGVector.DistanceSquared[pt, arc.p0] < GGVector.DistanceSquared[pt, arc.p2] THEN endpoint _ arc.p0 ELSE endpoint _ arc.p2; END; }; DistanceSquaredToNearestEndpoint: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [distanceSquared: REAL] = { distance2ToPLo, distance2ToPHi: REAL; distance2ToPLo _ GGVector.DistanceSquared[pt, arc.p0]; distance2ToPHi _ GGVector.DistanceSquared[pt, arc.p2]; RETURN[MIN[distance2ToPLo, distance2ToPHi]]; }; NearestPointOnArc: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [onArc: Point] = { projectedPt: Point; IF arc.edge # NIL THEN RETURN[GGLines.NearestPointOnEdge[pt, arc.edge]]; projectedPt _ PointProjectedOntoCircle[pt, arc.circle]; IF CirclePointOnArc[projectedPt, arc] THEN onArc _ projectedPt ELSE onArc _ NearestEndpoint[pt, arc]; }; DistancePointToArc: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [distance: REAL] = { projectedPt, nearEndpoint: Point; IF arc.edge # NIL THEN RETURN[GGLines.DistancePointToEdge[pt, arc.edge]]; projectedPt _ PointProjectedOntoCircle[pt, arc.circle]; IF CirclePointOnArc[projectedPt, arc] THEN distance _ ABS[CircleDistance[pt, arc.circle]] ELSE { nearEndpoint _ NearestEndpoint[pt, arc]; distance _ GGVector.Distance[pt, nearEndpoint]; }; }; DistanceSquaredPointToArc: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [distanceSquared: REAL] = { projectedPt: Point; IF arc.edge # NIL THEN RETURN[GGLines.DistanceSquaredPointToEdge[pt, arc.edge]]; projectedPt _ PointProjectedOntoCircle[pt, arc.circle]; IF CirclePointOnArc[projectedPt, arc] THEN {distanceSquared _ CircleDistance[pt, arc.circle]; distanceSquared _ distanceSquared*distanceSquared} ELSE distanceSquared _ DistanceSquaredToNearestEndpoint[pt, arc]; }; OnArc: PUBLIC PROC [pt: Point, arc: Arc] RETURNS [BOOL] = { d2: REAL; epsilon: REAL = 1.0e-5; d2 _ DistanceSquaredPointToArc[pt, arc]; RETURN[d2 < epsilon]; }; END. ��â��GGCirclesImpl.mesa Author: Eric Bier on June 4, 1985 4:58:33 pm PDT Last edited by Bier on January 26, 1987 11:02:16 pm PST Contents: Routines for finding the intersections of various types of circles, lines, and points. Pier, May 30, 1986 5:24:52 pm PDT Circles Find the perpendicular bisectors of [p0, p1] and [p1, p2]. Their intersection is the center of circle. The distance of p0 or p1 or p2 from the center is the radius. a1*x + b1*y = c1 is the equation of the first perpendicular bisector a2*x + b2*y = c2 is the equation of the second perpendicular bisector These lines are now two simultaneous linear equations. The determinant is: Line: cy -sx - d = 0. (f(x) = 0) Circle: x2 + y2 = r2. (g(x) = 0) [Artwork node; type 'ArtworkInterpress on' to command tool] The two circles overlap. We expect two roots. In the picture below, point C is one of the circle intersection points. Segment AB is the segment O1O2 in the picture above. We wish to find the altitude h of the triangle. b = r1 and a = r2. From Heron's formula for the area of a triangle, area K = sqrt(s(s-a)(s-b)(s-c)), where s = (a+b+ c)/2. We also know that the area K = 0.5ch. So h = 2K/c. This gives us the y coordinate of the intersection points. The x coordinate is the point where the altitude hits the base, which we get from the Pythagorean Theorem. [Artwork node; type 'ArtworkInterpress on' to command tool] We drop a normal from the point onto the circle and find where it hits. Arcs Assumes pt is on arc.circle. Is it on arc? Look for a winner with the infinity norm first. If that fails, use the 2 norm. The nearest point on arc.circle to pt, if the nearest point is on arc. Otherwise, the nearest endpoint. Distance[pt, NearestPointOnArc[pt, arc]]. �Êt��˜�Icode™Kšœ0™0Kšœ7™7šœa™aK™!—K˜�šÏk ˜ KšœH˜H—K˜�šœœ˜Kšœ$˜+Kšœ˜—Kš˜˜�Kšœœœ˜Kšœœ˜#Kšœœœ˜Kšœœ˜)Kšœœ˜!Kšœœ˜Kšœœ˜šœœ˜#K˜�——K™K˜�šÏnœœœœ˜>šœ œ˜Kšœ˜Kšœ˜Kšœ˜Kšœ˜——šž œœœ ˜7Kšœ˜Kšœ˜Kšœ˜—K˜�šžœœœœ˜XKšœ˜Kšœ˜Kšœ˜—K˜�š žœœœœœ˜]Kšœ˜Kšœ1˜1Kšœ˜K˜�—š žœœœœœ˜]Kšœ˜Kšœ3˜3Kšœ˜K˜�—š žœœœ&œ œ˜bKšœ¦™¦Kšœ ˜šœ œ˜Kšœ4Ïc˜KKšœ-Ÿ˜HKšœ œ˜Kšœ˜—šœ˜Kšœ0Ÿ$˜TKšœ$Ÿ-˜QKšœœ˜Kšœœ ˜šœœ˜K™D—Kšœ1Ÿ$˜UKšœ#˜#Kšœœ˜Kšœœ ˜šœœ˜KšœE™EKšÏbK™K—Kšœœ˜š œ œœœœ˜3Kšœ˜KšœŸ˜3Kšœ œ˜K˜—šœ˜Kšœ8Ÿ˜RKšœ,˜,Kšœ œ˜K˜—K˜—K˜K˜�—K˜�šžœœœœ˜4Kšœ œ ˜Kšœœœœ˜BK˜K˜�—K˜�šžœœœœ œœ#œ˜Kšœ œ™ Kš œ Ïuœ¡œ¡œ œ™ Kšœœ˜K˜Kšœ œ˜*Kšœ4˜4Kšœœ˜Kšœ˜ Kšœ˜šœŸ$˜@Kšœ ˜ KšœN˜NKšœ œ˜K˜—šœŸ˜$Kšœ ˜ KšœF˜FKšœ4˜4Kšœ(˜(Kšœ˜Kšœ˜K˜—Kšœœ˜Kšœ˜K˜�—šžœœœœ œœ#œ˜‡Kšœ˜Kšœœœ˜"K˜KšœA˜AKšœ ˜ šœœœ˜šœ%œ˜-Kšœ˜Kšœ!˜!K˜—Kšœ˜—K˜K˜�—šžœœœœ œœ#œ˜Icaption˜Lšœ œ˜*Kšœ'œ˜,šœ-œŸ˜KKšœ ˜ Kšœ˜K˜—Kšœ6˜6Kšœ'˜'Kšœ/˜/Kšœœ"˜4Icenter• InterpressÙInterpress/Xerox/3.0 f j k j¡¥“Ä��WB ¤ ¨ `#¡£§G ¢ ¨Ä™�ÄþS� ¢ ¨¡¡¨ÄWB�� ¤ ¨ r j¡¥“Ä��WB ¤ ¨¡¡¨¡¯“¡¡¨¢°“ ¡¨Þ™HÞ¡“¡¡¡¡™¡¡¨Þ™HÞ¡“¡¸¡¯“¡¯“¡¡¨¢°“ ¡¨H™€H¡“¡¡¡¡™¡¡¨H™€H¡“¡¸¡¯“¡¯“¡¡¨¢°“Ä�šH�Ä�¡¹¡¯“¡¯“¡¡¨¢°“Äs� Äa‘�ºd¡¹¡¯“ÅXeroxÅ PressFontsÅ Helvetica-mrr£¡ “ª ¤ ” • —Ä:�ƒ/ŠÁr1– —e ŠÁr2– —�ŠÁO1– —kŠÁO2–¡¯“¡¡¨¢°“d¡¹¡¯“ k é k g•Artwork Interpress•Bounds:0.0 mm xmin 0.0 mm ymin 67.73333 mm xmax 46.21388 mm ymax –G49.03611 mm topLeading 49.03611 mm topIndent 1.411111 mm bottomLeading šœ=™=Kšœ˜Kšœ(Ÿ˜<šœ5Ÿ˜UKšœ ˜ Kšœ œ˜Kšœ2˜2KšœT˜TK˜—šœ4˜6Kšœœµ™¸M–ŽInterpress/Xerox/3.0 f j k j¡¥“Ä��WB ¤ ¨ à~¡£ß» ¢ ¨ ¡ ¢ ¨¡¡¨ÄWB�� ¤ ¨ r j¡¥“Ä��WB ¤ ¨¡¡¨¡¯“¡¡¨¢°“x›ðL¡¹¡¯“¡¡¨¢°“ðL…›¡¹¡¯“¡¡¨¢°“…›x›¡¹¡¯“ÅXeroxÅ PressFontsÅ Helvetica-mrr£¡ “ª ¤ ” • —@þŠÁa– —©úŠÁb– —Ä>_�0Ä�Ó?��ãŠÁc–¡¯“¡¡¨¢°“ð›ðL¡¹¡¯“ —çÄŠÁh– —¸©ŠÁm– —rŠÁA– —Ä0G�”ŠÁB– —ÄQß�?SŠÁC– k é k g– Interpress–:0.0 mm xmin 0.0 mm ymin 112.8889 mm xmax 78.31667 mm ymax –G81.13889 mm topLeading 81.13889 mm topIndent 1.411111 mm bottomLeading šœ=™=K˜ K˜Kšœ œ˜Kšœœ˜Kšœœ˜Kšœ ˜ Kšœ2˜2Kšœ˜Kšœ<˜<šœœ˜Kšœ˜Kšœ?˜?K˜—šœ˜Kšœ˜Kšœ?˜?K˜—Kšœ)˜)Kšœ$˜$Kšœ$˜$K˜—šœ4˜6Kšœ ˜ Kšœ œ˜šœ!œ˜)Kšœ2˜2KšœT˜TK˜—šœ˜Kšœ3˜3KšœT˜TK˜—K˜—šœ˜Kšœ ˜ K˜—Kšœœ˜Kšœ˜—K˜�šžœœœœ œœ#œ˜ƒKšœœœ@˜Všœ˜Kšœœœ˜Kšœ˜Kšœ?˜?Kšœ ˜ šœœœ ˜šœœ˜Kšœ˜Kšœ˜K˜—Kšœ˜—K˜—K˜K˜�—šžœœœœ œœ#œ˜…šœœœ˜Kšœœ˜Kšœ;˜;Kšœœœœ˜"K˜—šœ˜Kšœœœ˜Kšœ˜Kšœ;˜;Kšœ ˜ šœœœ ˜šœœ˜Kšœ˜Kšœ˜K˜—Kšœ˜—K˜—K˜K˜�—šžœœœœ œœ#œ˜…šœœœ˜Kšœœ˜Kšœ;˜;Kšœœœœ˜"K˜—šœ˜Kšœœœ˜Kšœ˜Kšœ;˜;Kšœ ˜ šœœœ ˜šœœ˜Kšœ˜Kšœ˜K˜—Kšœ˜—K˜—K˜K˜�—šžœœœœ œœ#œ˜wKšœ œœ<˜Sšœ˜Kšœœœ˜Kšœ˜Kšœ;˜;Kšœ ˜ šœœœ ˜šœœ˜Kšœ˜Kšœ˜K˜—Kšœ˜—K˜—K˜—K˜�š žœœœœœ˜TKšœœ˜KšœD˜DKšœ"˜"Kšœ˜—š žœœœœœ˜NKšœœ#˜*Kšœ˜—šžœœœœ˜cKšœG™GKšœ œ ˜K˜Kšœœ˜Kšœ0˜0Kšœ5˜5šœœ˜$KšœA˜AKšœ˜K˜—Kšœi˜iKšœ˜—K™�K™K˜�šž œœœœ˜BKšœ˜Kšœ˜Kšœ˜K˜�—šžœœœœ˜5Kšœœ-œ?˜zKšœ˜—šžœœœ#˜7Kšœ$œ˜)Kšœ"˜"Kšœœ˜ Kšœ7˜7šœœ˜Kšœ!œR˜wK˜—šœ˜Kšœ.˜.Kšœ+˜+Kšœ.˜.Kšœ+˜+Kšœ.˜.Kšœ+˜+šœ˜Kšœ˜Kšœ!œ@œ˜jK˜—šœ˜šœ1œŸ ˜DKšœ;˜;Kšœ!œ@œ˜jK˜—šœ˜Kšœ;˜;Kšœ!œ@œ˜kK˜—K˜—K˜—Kšœ˜K˜�—šžœœœ˜-K˜#Kšœ˜Kšœ˜K˜K˜Kšœ ˜ šœ œœ˜Kšœ$˜$Kšœ/˜/K˜—Kšœ˜—š žœœœœœ˜GKšœ+™+Kšœ8˜8Kšœœ'˜2Kšœœœœ(˜EKšœ>˜DKšœ˜—šžœœœœ˜QKšœO™OKšœœœœ(˜EKš˜šœœœ˜2Kš œœœœœ˜?Kšœœ˜K˜—š˜Kš œœœœœ˜>Kšœœ˜—š˜šœ ˜ KšœL˜NKšœ˜Kšœ˜——Kšœ˜Kšœ˜K˜�—š ž œœœœœ˜gKšœ œ˜%Kšœ6˜6Kšœ6˜6Kšœœ"˜,Kšœ˜K˜�—šžœœœœ˜OKšœh™hKšœ˜Kšœœœœ+˜HKšœ7˜7Kšœ$œ˜>Kšœ"˜&Kšœ˜K˜�—š žœœœœœ˜SKšœ)™)Kšœ!˜!Kšœœœœ,˜IKšœ7˜7Kšœ$œœ ˜Yšœ˜Kšœ(˜(Kšœ/˜/Kšœ˜—Kšœ˜—š žœœœœœ˜aKšœ˜Kšœœœœ3˜PKšœ7˜7Kšœ#˜%Kšœ3˜7Kšœ3˜3Kšœ=˜AKšœ˜K˜�—š žœœœœœ˜;Kšœ¡œœ˜ Kšœ œ ˜Kšœ¡œ&˜(Kšœ¡œ˜K˜—K˜�K™�Kšœ˜K˜�K˜�—�…—����2V��M¬��