<> <> DIRECTORY Asserting, Basics, CardHashTableThreaded, IntHashTable, Collections, IntFunctions, PairCollections, RefTab, Rope; LichenDataStructure: CEDAR DEFINITIONS IMPORTS RefTab, IntHashTable, Collections, IntFunctions = BEGIN OPEN Colls:Collections, PairColls:PairCollections, IntFns:IntFunctions; nyet: ERROR --not yet implemented--; Warning: SIGNAL [msg: ROPE, v1, v2, v3, v4, v5: REF ANY _ NIL]; Error: ERROR [msg: ROPE, v1, v2, v3, v4, v5: REF ANY _ NIL]; LNAT: TYPE ~ INT--[0 .. INT.LAST]--; LORA: TYPE = LIST OF REF ANY; LOLORA: TYPE = LIST OF LORA; ROPE: TYPE = Rope.ROPE; RopeList: TYPE = LIST OF ROPE; LOR: TYPE ~ LIST OF ROPE; LOLOR: TYPE ~ LIST OF LOR; Assertions: TYPE = Asserting.Assertions; Assertion: TYPE = Asserting.Assertion; ColorTable: TYPE = CardHashTableThreaded.Table; Set: TYPE ~ Colls.Set; VarSet: TYPE ~ Colls.VarSet; ConstSet: TYPE ~ Colls.ConstSet; ConstFilter: TYPE ~ Colls.ConstFilter; Function: TYPE ~ PairColls.Function; VarFunction: TYPE ~ PairColls.VarFunction; UWFunction: TYPE ~ PairColls.UWFunction; ConstFunction: TYPE ~ PairColls.ConstFunction; Relation: TYPE ~ PairColls.Relation; VarRelation: TYPE ~ PairColls.VarRelation; ConstRelation: TYPE ~ PairColls.ConstRelation; OneToOne: TYPE ~ PairColls.OneToOne; VarOneToOne: TYPE ~ PairColls.VarOneToOne; ConstOneToOne: TYPE ~ PairColls.ConstOneToOne; IntFn: TYPE ~ IntFns.IntFn; Permutation: TYPE ~ IntFns.Permutation; RefTable: TYPE = RefTab.Ref; CreateRefTable: PROC RETURNS [rt: RefTable] = INLINE {rt _ RefTab.Create[]}; IntTable: TYPE = IntHashTable.Table; CreateIntTable: PROC RETURNS [it: IntTable] = INLINE {it _ IntHashTable.Create[]}; GraphID: TYPE = {A, B, Unspecified}; RealGraphID: TYPE = GraphID[A .. B]; OtherGraph: ARRAY RealGraphID OF RealGraphID = [A: B, B: A]; graphIDToRope: GraphDescriptions; GraphDescriptions: TYPE ~ ARRAY GraphID OF ROPE; RealGraphDescriptions: TYPE ~ ARRAY RealGraphID OF ROPE; Color: TYPE = INT; noColor: Color = LAST[Color]; someColor: Color = 87654321H; FilterColor: PROC [color: Color] RETURNS [filtered: Color] = INLINE { filtered _ IF color # noColor THEN color ELSE someColor}; Design: TYPE = REF DesignPrivate; DesignPrivate: TYPE = RECORD [ cellTypes: VarSet--of CellType--, other: Assertions _ NIL, allKnown: BOOL _ FALSE]; nameReln: ATOM; --relative to narrowest enclosing scope Describe: PROC [subject: REF ANY, relativeTo: REF ANY _ NIL, nameGen: NameGenerator _ NIL] RETURNS [ROPE]; SteppyDescribe: PROC [subject: REF ANY, relativeTo: REF ANY _ NIL, nameGen: NameGenerator _ NIL] RETURNS [SteppyName]; NameGenerator: TYPE = REF NameGeneratorPrivate; NameGeneratorPrivate: TYPE = RECORD [ GenerateName: PROC [data, subject: REF ANY] RETURNS [ROPE], data: REF ANY _ NIL ]; EnumerateCellTypes: PROC [design: Design, Consume: PROC [CellType]]; CellClass: TYPE = REF CellClassPrivate; CellClassPrivate: TYPE = RECORD [ DefinePrivates: PROC [CellType] ]; CellType: TYPE = REF CellTypePrivate; CellTypePrivate: TYPE = RECORD [ class: CellClass, designs: VarSet--of Design--, publicKnown, privateKnown: BOOL _ FALSE, wasntNormalized: BOOL _ FALSE, <> port: Port _ NIL, asUnorganized: Unorganized _ NIL, asArray: Array _ NIL, firstInstance, lastInstance: CellInstance _ NIL, firstArray, lastArray: CellType _ NIL, useCount: INT _ 0 --#instances + #arrays--, otherPublic, otherPrivate: Assertions _ NIL, color: Color _ noColor]; EnumeratePorts: PROC [cellType: CellType, Consume: PROC [Port]]; ScanPorts: PROC [cellType: CellType, Consume: PROC [Port] RETURNS [subs, sibs: BOOL _ TRUE]]; EnumerateInstances: PROC [cellType: CellType, Consume: PROC [CellInstance], mirror: BOOL]; EnumerateArrays: PROC [cellType: CellType, Consume: PROC [CellType]]; partsByNameKey: ATOM; <> PortList: TYPE = LIST OF Port; Port: TYPE = REF PortPrivate; PortPrivate: TYPE = RECORD [ next, prev: Port, firstChild, lastChild: Port, parent: REF ANY--UNION [Port, CellType]--, wire: Wire _ NIL, names: ListData, other: Assertions _ NIL, color: Color _ noColor]; PortCCT: PROC [port: Port] RETURNS [containingCT: CellType]; FirstChildPort: PROC [port: Port] RETURNS [child: Port] = INLINE {child _ port.firstChild}; NextChildPort: PROC [child: Port] RETURNS [sibling: Port] = INLINE {sibling _ child.next}; EnumeratePort: PROC [port: Port, Consume: PROC [Port] RETURNS [doKids, moreSibs: BOOL _ TRUE]] RETURNS [didKids, moreSibs: BOOL]; PortIndex: PROC [parent, child: Port] RETURNS [index: INT]; SubPort: PROC [parent: Port, index: INT] RETURNS [child: Port]; PortNames: PROC [port: Port] RETURNS [Set] ~ INLINE {RETURN [[listClass, port.names]]}; SteppyNameList: TYPE ~ LIST OF SteppyName; SteppyName: TYPE ~ LIST OF NameStep --most significant first--; NameStep: TYPE ~ REF ANY --actually UNION [ROPE, REF INT]--; nameStepSpace, steppyNameSpace: Colls.Space; SteppyNameEqual: PROC [n1, n2: SteppyName, clip1, clip2: SteppyName _ NIL] RETURNS [BOOL]; portToInternalWire: READONLY UWFunction--port of an Unorganized CellType Unorganized: TYPE = REF UnorganizedPrivate; UnorganizedPrivate: TYPE = RECORD [ internalWire: Wire _ NIL, containedInstances: VarSet--of CellInstance--, mirror: CellInstance _ NIL --the outside world, as seen from the inside <> <> <> ]; Vertex: TYPE = REF VertexPrivate; VertexPrivate: TYPE = RECORD [ containingCT: CellType, QNext: Vertex _ notInQ, colorNext, equiv: Vertex _ NIL, firstEdge, lastEdge: Edge _ NIL, <> <> names: ListData, other: Assertions _ NIL, oldColor, curColor: Color _ noColor, graph: GraphID _ Unspecified, unique, suspect: BOOL _ FALSE, variant: SELECT class: VertexClass FROM cell => [ type: CellType _ NIL, nextInstance, prevInstance: CellInstance _ NIL ], intermediate => [ port: Port ], wire => [ containingWire: Wire _ NIL, next, prev: Wire _ NIL, --Siblings firstChild, lastChild: Wire _ NIL ], ENDCASE]; VertexClass: TYPE = {cell, intermediate, wire}; CellInstance: TYPE = REF cell VertexPrivate; Intermediary: TYPE = REF intermediate VertexPrivate; Wire: TYPE = REF wire VertexPrivate; VertexNames: PROC [v: Vertex] RETURNS [Set] ~ INLINE {RETURN [[listClass, v.names]]}; WireIndex: PROC [parent, child: Wire] RETURNS [index: INT]; SubWire: PROC [parent: Wire, index: INT] RETURNS [child: Wire]; EnumeratePortAndWire: PROC [port: Port, wire: Wire, Consume: PROC [Port, Wire]]; EnumerateWire: PROC [wire: Wire, Consume: PROC [Wire] RETURNS [doKids, moreSibs: BOOL _ TRUE]] RETURNS [didKids, moreSibs: BOOL]; FirstChildWire: PROC [parent: Wire] RETURNS [child: Wire] = INLINE {child _ parent.firstChild}; NextChildWire: PROC [child: Wire] RETURNS [sibling: Wire] = INLINE {sibling _ child.next}; Edge: TYPE = REF EdgePrivate; EdgePrivate: TYPE = RECORD [ sides: ARRAY GraphDirection OF RECORD [v: Vertex, next, prev: Edge], port: Port --what the wireward vertex is connected to ]; GraphDirection: TYPE = {cellward, wireward}; OppositeDirection: ARRAY GraphDirection OF GraphDirection = [cellward: wireward, wireward: cellward]; notInQ: Vertex --don't look:-- = NIL --you looked!--; endOfQ: Vertex; SideFor: PROC [e: Edge, v: Vertex] RETURNS [side: GraphDirection] ~ INLINE {RETURN [SELECT v FROM e.sides[cellward].v => cellward, e.sides[wireward].v => wireward, ENDCASE => ERROR]}; EnumerateImmediateEdges: PROC [v: Vertex, Consume: PROC [Port, Vertex, Edge], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE], order: Order _ any]; <> EnumerateImmediateConnections: PROC [v: Vertex, Consume: PROC [Port, Vertex], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE], order: Order _ any]; EnumerateTransitiveConnections: PROC [v: Vertex, Consume: PROC [Port, Vertex]]; EnumerateTopEdges: PROC [ci: CellInstance, Consume: PROC [Port, Wire, Edge]]; EnumerateTopConnections: PROC [ci: CellInstance, Consume: PROC [Port, Wire]]; EnumerateNeighboringVertices: PROC [v: Vertex, Consume: PROC [Vertex], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE]]; FindImmediateConnection: PROC [cellward: Vertex, port: Port, hint: Order _ any] RETURNS [w: Vertex]; FindImmediateEdge: PROC [cellward: Vertex, port: Port, hint: Order _ any] RETURNS [w: Vertex, e: Edge]; FindTransitiveConnection: PROC [cellward: Vertex, port: Port] RETURNS [w: Wire]; FindTopEdge: PROC [ci: CellInstance, port: Port] RETURNS [v: Vertex, e: Edge]; ImParent: PROC [im: Intermediary] RETURNS [v: Vertex]; EnumeratePortsForWire: PROC [w: Wire, Consume: PROC [Port--of container of w--]]; EnumerateParts: PROC [ct: CellType, Consume: PROC [Vertex], mirrorToo: BOOL]; Order: TYPE = {forward, backward, any}; Array: TYPE = REF ArrayPrivate; ArrayPrivate: TYPE = RECORD [ eltType: CellType _ NIL, nextArray, prevArray: CellType _ NIL, size: Size2 _ ALL[1], jointsPeriod: Nat2 _ ALL[1], groupingParmses: GroupingParmses, groupingses: RefSeq--groupings index toRole: ARRAY Dim OF ARRAY End OF RefTable--dim roles: ARRAY Dim OF VarRefSeq--dim <> nextRP: ARRAY Dim OF NATURAL _ ALL[0], <> joints: ARRAY Dim--in which we are joining-- OF RefSeq--composite phase <> toWire: RefTable--group wires: VarSet--of ArrayWire--, portWire: RefTable--ap <> wirePats: VarSet--of ArrayWirePattern--, wirePatCxns: VarSet--of ArrayWirePatternConnection--, portUses: Function--elt Port exports: Function--array Port ]; Dim--ension--: TYPE = {Foo, Bar}; OtherDim: ARRAY Dim OF Dim = [Foo: Bar, Bar: Foo]; Size2: TYPE = ARRAY Dim OF NATURAL; Range: TYPE = RECORD [min, maxPlusOne: INT]; Range2: TYPE = ARRAY Dim OF Range; Int2: TYPE = ARRAY Dim OF INT; Nat2: TYPE = ARRAY Dim OF NATURAL; Bool2: TYPE ~ ARRAY Dim OF BOOL; ArrayIndex: TYPE = ARRAY Dim OF INT; nullAI: ArrayIndex ~ ALL[INT.FIRST]; PackedArrayIndex: TYPE [SIZE[INT]]; ComposeGI: PROC [a: Array, gi2: Nat2] RETURNS [gi: NATURAL] ~ INLINE {gi _ a.groupingParmses[Bar].sum * gi2[Foo] + gi2[Bar]}; GetBorders: PROC [a: Array] RETURNS [borders: ARRAY Dim OF ARRAY End OF NATURAL] ~ INLINE {RETURN [[ [a.groupingParmses[Foo].middle.min, a.size[Foo]-a.groupingParmses[Foo].middle.maxPlusOne], [a.groupingParmses[Bar].middle.min, a.size[Bar]-a.groupingParmses[Bar].middle.maxPlusOne]]]}; GroupingParmses: TYPE = ARRAY Dim OF GroupingParms; GroupingParms: TYPE = RECORD [ middle: Range--or array indices or joint instance indices--, firstHigh, sum: NATURAL, ]; <> <> <<>> < middle.min>> <> <> <> <<>> <> <> <> SidedPortDataList: TYPE = LIST OF SidedPortData; SidedPortData: TYPE = REF SidedPortDataPrivate; SidedPortDataPrivate: TYPE = RECORD [ port: Port, side: End, index: NATURAL, links: Links _ NIL ]; SidedPortList: TYPE = LIST OF SidedPort; SidedPort: TYPE = RECORD [side: End, port: Port]; Links: TYPE = REF LinksPrivate; LinksPrivate: TYPE = RECORD [ linkSize: NATURAL, negLinkSize, negLgLinksPerWord: INTEGER, lgLinksPerWord: Sublg, words: SEQUENCE length: NATURAL OF WORD ]; <> <> < >> <<`>> <> <> Sublg: TYPE = NATURAL [0 .. Basics.logBitsPerWord]; Completion: TYPE = REF CompletionPrivate; CompletionPrivate: TYPE = RECORD [ nIncomplete: NATURAL _ 0, complete: PACKED SEQUENCE length: NATURAL OF BOOL ]; <> ArrayWire: TYPE = REF ArrayWirePrivate; ArrayWirePrivate: TYPE = RECORD [ members: VarFunction--Group ports: VarSet--of array Port-- ]; ArrayWireElt: TYPE = RECORD [g: Group, ai: ArrayIndex];>> ArrayWirePattern: TYPE ~ REF ArrayWirePatternPrivate; ArrayWirePatternPrivate: TYPE ~ RECORD [ memLocs: Function--elt Port part: ArrayPart, partIndex: PartIndex --IndexOfPart[part]--, partClass: [0 .. 2] --ClassOfPart[part]--, gi2Min, ngi2: Nat2 _ ALL[0], ngi: NATURAL _ 0, regDim: Dim _ Foo, --when partClass=1, part[regDim]=mid; else unconstrained order: [0 .. 2] --actually [0 .. partClass]-- _ 0, periods: ARRAY [0 .. 2)--actually [0 .. order)-- OF Int2 _ ALL[[0, 0]], < periods[0][Foo]>0 OR periods[0][Foo]=0 & periods[0][Bar]>0.>> <>> <0,>> <0, periods[1][Bar]=0.>> cxns: ARRAY PartIndex OF ArrayWirePatternConnection _ ALL[NIL], ports: Function--array Port ]; ArrayPart: TYPE ~ PACKED ARRAY Dim OF Part1; Part1: TYPE ~ {low, mid, high}; PartIndex: TYPE ~ [0 .. 9); Shift: TYPE ~ Int2; KingMove: TYPE ~ Int2--where both components are in [-1 .. 1]--; ArrayWirePatternConnection: TYPE ~ REF ArrayWirePatternConnectionPrivate; ArrayWirePatternConnectionPrivate: TYPE ~ RECORD [ pats: ARRAY BOOL OF ArrayWirePattern, <> <> s0r: Range2 <> ]; ClassOfPart: PROC [part: ArrayPart] RETURNS [class: [0 .. 2] _ 0] --||{d | part[d]=mid}|| ~ INLINE { IF part[Foo]=mid THEN class _ class+1; IF part[Bar]=mid THEN class _ class+1}; IndexOfPart: PROC [part: ArrayPart] RETURNS [PartIndex] ~ INLINE {RETURN [part[Foo].ORD*3 + part[Bar].ORD]}; CompareArrayParts: PROC [part1, part2: ArrayPart] RETURNS [Basics.Comparison]; <> ComparePartIndices: PROC [pi1, pi2: PartIndex] RETURNS [Basics.Comparison]; <> ComposeRGI: PROC [awp: ArrayWirePattern, rgi2: Nat2] RETURNS [NATURAL] ~ INLINE {RETURN [awp.ngi2[Bar]*rgi2[Foo]+rgi2[Bar]]}; GIFromRGI: PROC [awp: ArrayWirePattern, rgi2: Nat2] RETURNS [Nat2] ~ INLINE {RETURN Nat2Add[awp.gi2Min, rgi2]}; RelativizeGI: PROC [awp: ArrayWirePattern, gi2: Nat2] RETURNS [rgi2: Nat2, rgi: NATURAL] ~ INLINE { rgi2 _ Nat2Sub[gi2, awp.gi2Min]; rgi _ awp.ngi2[Bar]*rgi2[Foo]+rgi2[Bar]}; End: TYPE = {low, high}; OtherEnd: ARRAY End OF End = [low: high, high: low]; ListData: TYPE ~ REF ANY; listClass: Colls.CollectionClass; CreateSteppyNames: PROC [names: LORA--actually LIST OF SteppyName-- _ NIL] RETURNS [ListData]; Seq: TYPE ~ IntFns.Sequence; CreateSeq: PROC [len: NATURAL _ 0, oneToOne, dense, domainFixed, invable: BOOL _ FALSE] RETURNS [Seq] ~ INLINE {RETURN [IntFns.CreateSimple[bounds: [0, len-1], val: Colls.noValue, oneToOne: oneToOne, dense: dense, domainFixed: domainFixed, invable: invable]]}; RefSeq: TYPE = REF RefSequence; RefSequence: TYPE = RECORD [ elts: SEQUENCE length: NATURAL OF REF ANY]; CreateRefSeq: PROC [len: NATURAL] RETURNS [rs: RefSeq] = INLINE {rs _ NEW [RefSequence[len]]}; VarRefSeq: TYPE = REF VarRefSequence; VarRefSequence: TYPE = RECORD [ length: NATURAL, refs: RefSeq]; CreateVarRefSeq: PROC [size: NATURAL _ 12] RETURNS [vrs: VarRefSeq] = INLINE {vrs _ NEW [VarRefSequence _ [0, CreateRefSeq[size]]]}; VarRefSeqAppend: PROC [vrs: VarRefSeq, value: REF ANY]; Int2Seq: TYPE ~ REF Int2Sequence; Int2Sequence: TYPE ~ RECORD [elts: SEQUENCE length: NATURAL OF Int2]; CreateInt2Seq: PROC [len: NATURAL, init: Int2] RETURNS [Int2Seq]; BoolSeq: TYPE = REF BoolSequence; BoolSequence: TYPE = RECORD [elts: PACKED SEQUENCE length: NATURAL OF BOOL]; CreateBoolSeq: PROC [len: NATURAL, b0: BOOL _ FALSE] RETURNS [bs: BoolSeq] = INLINE {bs _ NEW [BoolSequence[len]]; FOR i: NATURAL IN [0 .. len) DO bs[i] _ b0 ENDLOOP}; NewInt: PROC [i: INT] RETURNS [REF INT]; <> FloorDiv: PROC [num, den: INT] RETURNS [quot: INT]; CeilDiv: PROC [num, den: INT] RETURNS [quot: INT]; ConsInt2: PROC [d1: Dim, x1, x2: INT] RETURNS [x: Int2] = INLINE {x[d1] _ x1; x[OtherDim[d1]] _ x2}; Int2Neg: PROC [a: Int2] RETURNS [Int2] ~ INLINE {RETURN [[Foo: -a[Foo], Bar: -a[Bar]]]}; Int2Add: PROC [a, b: Int2] RETURNS [Int2] = INLINE {RETURN [[Foo: a[Foo]+b[Foo], Bar: a[Bar]+b[Bar]]]}; Int2Sub: PROC [a, b: Int2] RETURNS [Int2] = INLINE {RETURN [[Foo: a[Foo]-b[Foo], Bar: a[Bar]-b[Bar]]]}; Int2SubN: PROC [a, b: Int2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]-b[Foo], Bar: a[Bar]-b[Bar]]]}; Int2InRange: PROC [i: Int2, r: Range2] RETURNS [in: BOOL] = INLINE {in _ i[Foo] IN [r[Foo].min .. r[Foo].maxPlusOne) AND i[Bar] IN [r[Bar].min .. r[Bar].maxPlusOne)}; Int2Tweak: PROC [i: Int2, d: Dim, = INLINE {j _ i; j[d] _ j[d] + Int2Scale: PROC [a: Int2, b: INT] RETURNS [Int2] = INLINE {RETURN [[Foo: a[Foo]*b, Bar: a[Bar]*b]]}; Int2Dot: PROC [a, b: Int2] RETURNS [INT] ~ INLINE {RETURN [a[Foo]*b[Foo]+a[Bar]*b[Bar]]}; Int2Cross: PROC [a, b: Int2] RETURNS [INT] ~ INLINE {RETURN [a[Foo]*b[Bar]-a[Bar]*b[Foo]]}; ConsNat2: PROC [d1: Dim, x1, x2: NATURAL] RETURNS [x: Nat2] = INLINE {x[d1] _ x1; x[OtherDim[d1]] _ x2}; WidenNat2: PROC [x: Nat2] RETURNS [Int2] ~ INLINE {RETURN [[Foo: x[Foo], Bar: x[Bar]]]}; NarrowInt2: PROC [x: Int2] RETURNS [Nat2] ~ INLINE {RETURN [[Foo: x[Foo], Bar: x[Bar]]]}; Nat2Add: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]+b[Foo], Bar: a[Bar]+b[Bar]]]}; Nat2Sub: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]-b[Foo], Bar: a[Bar]-b[Bar]]]}; Nat2Mul: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]*b[Foo], Bar: a[Bar]*b[Bar]]]}; Nat2Div: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]/b[Foo], Bar: a[Bar]/b[Bar]]]}; Nat2Tweak: PROC [i: Nat2, d: Dim, = INLINE {j _ i; j[d] _ j[d] + Nat2Area: PROC [x: Nat2] RETURNS [NATURAL] = INLINE {RETURN [x[Foo] * x[Bar]]}; RangeOff: PROC [r: Range, = INLINE {RETURN[[min: r.min+ RangeOffClip: PROC [r: Range, = INLINE {RETURN[[min: MAX[r.min+ ShaveRange2Top1: PROC [r: Range2, d: Dim] RETURNS [sr: Range2] = INLINE {sr _ r; sr[d].min _ MIN[sr[d].min, sr[d].maxPlusOne _ sr[d].maxPlusOne - 1]}; ConsRange2: PROC [d1: Dim, x1, x2: Range] RETURNS [x: Range2] = INLINE {x[d1] _ x1; x[OtherDim[d1]] _ x2}; Range2Empty: PROC [r: Range2] RETURNS [BOOL] = INLINE {RETURN [r[Foo].maxPlusOne<=r[Foo].min OR r[Bar].maxPlusOne<=r[Bar].min]}; Range2IsSingleton: PROC [r: Range2] RETURNS [BOOL] = INLINE {RETURN [r[Foo].maxPlusOne=r[Foo].min+1 AND r[Bar].maxPlusOne=r[Bar].min+1]}; Range2Min: PROC [r2: Range2] RETURNS [Int2] = INLINE {RETURN[[Foo: r2[Foo].min, Bar: r2[Bar].min]]}; Range2MinN: PROC [r2: Range2] RETURNS [Nat2] = INLINE {RETURN[[Foo: r2[Foo].min, Bar: r2[Bar].min]]}; Range2Off: PROC [r: Range2, = INLINE {RETURN[[Foo: RangeOff[r[Foo], Range2OffClip: PROC [r: Range2, = INLINE {RETURN[[Foo: RangeOffClip[r[Foo], Range2Included: PROC [sub, in: Range2] RETURNS [BOOL] ~ INLINE {RETURN [RangeIncluded[sub[Foo], in[Foo]] AND RangeIncluded[sub[Bar], in[Bar]]]}; RangeIncluded: PROC [sub, in: Range] RETURNS [BOOL] ~ INLINE {RETURN [sub.min>=in.min AND sub.maxPlusOne<=in.maxPlusOne]}; Range2Intersection: PROC [a, b: Range2] RETURNS [Range2] = INLINE {RETURN [[ Foo: [ min: MAX[a[Foo].min, b[Foo].min], maxPlusOne: MIN[a[Foo].maxPlusOne, b[Foo].maxPlusOne]], Bar: [ min: MAX[a[Bar].min, b[Bar].min], maxPlusOne: MIN[a[Bar].maxPlusOne, b[Bar].maxPlusOne]]]]}; RangeArea: PROC [r: Range2] RETURNS [area: NATURAL] = INLINE {area _ RangeLength[r[Foo]] * RangeLength[r[Bar]]}; RangeShape: PROC [r: Range2] RETURNS [shape: Nat2] = INLINE {shape _ [RangeLength[r[Foo]], RangeLength[r[Bar]]]}; SizeRange: PROC [size: Nat2] RETURNS [r: Range2] = INLINE {r _ [[0, size[Foo]], [0, size[Bar]]]}; RangeLength: PROC [r: Range] RETURNS [length: NATURAL] = INLINE {length _ r.maxPlusOne - r.min}; Range2sIntersect: PROC [r1, r2: Range2] RETURNS [BOOL] = INLINE {RETURN [RangesIntersect[r1[Foo], r2[Foo]] AND RangesIntersect[r1[Bar], r2[Bar]]]}; RangesIntersect: PROC [r1, r2: Range] RETURNS [BOOL] = INLINE {RETURN [ (r1.min IN [r2.min .. r2.maxPlusOne) AND r1.maxPlusOne > r1.min) OR (r2.min IN [r1.min .. r1.maxPlusOne) AND r2.maxPlusOne > r2.min)]}; Range1Mul: PROC [r: Range, Range2Mul: PROC [r: Range2, Range1Div: PROC [r: Range, Range2Div: PROC [r: Range2, BeRope: PROC [r: ROPE] RETURNS [r2: ROPE] = INLINE {r2 _ r}--stupid goddam anachronism--; END.