
DOLPHIN

MICROASSEMBLER

9 October 1981

by

Edward Fiala

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California, 94304

Filed on: [Indigo]<D0Docs>D0Microassembler.Press

Sources on: [Indigo]<D0Source>D0Microassembler.Dm

This manual describes the Dolphin microassembly language, based upon the 16 May 1979 release of the
Dolphin Hardware Manual, and hardware changes up to the release date of this manual.

This manual is the property of Xerox Corporation and is to be used solely for evaluative purposes. No part
thereof may be reproduced, stored in a retrieval system, transmitted, disseminated, or disclosed to others in
any form or by any means without prior written permission from Xerox.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 2

TABLE OF CONTENTS

 l. Preliminaries . 3
 2. Assembly Procedures . 4
 3. Error Messages . 7
 4. Debugging Microprograms . 8
 5. Cross Reference Listings . 9
 6. Comments . 9
 7. Conditional Assembly . 10
 8. Simplified Parsing Rules . 11
 9. Statements Controlling Assembly . 12
10. Forward References . 13
11. Integers . 14
12. Repeat Statements . 14
13. Parameters . 15
14. Constants . 15
15. SetTask Statements . 16
16. Assembling Data for RM . 18
17. Assembling Data Items In the Instruction Memory 19
18. General Comments on Instruction Statements 20
19. RM and STK Phrases . 22
20. Cycler-Masker Phrases . 23
21. A Phrases . 24
22. B Phrases . 25
23. ALU Clauses . 26
24. Memory Reference Instructions . 27
25. RM Interlocking . 28
26. Standalone Functions . 30
27. Branching . 30
28. NextData and NextInst . 32
29. Placement Declarations . 34
30. Tasking Considerations . 35
31. Microcode Overlays . 36
32. Recent Hardware and Assembler Changes 36

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 3

1. Preliminaries

The machine now called the Dolphin was at one time called the D0, so these two names are used
somewhat interchangeably within this manual.

The Dolphin microprogramming language is implemented as a set of definitions on top of the
machine-independent assembler Micro; Micro is an Alto program, so assemblies are carried out
either on an Alto or on a Dolphin emulating an Alto. The assembly language is based upon the
machine description in the 16 May 1979 release of D0 Hardware Manual and hardware changes
that have occurred up to the release date of this manual.

Files referred to in this manual are as follows:

Documentation When Using the Assembler

[Indigo]<D0Docs> [Indigo]<D0Source>
D0Manual.Press D0Lang.Mc
D0MidasManual.Press [Maxc2]<Alto>
D0Gotchas.Press Micro.Run

[Maxc2]<AltoDocs> MicroD.Run
Micro.Press

The assembly language is defined by D0Lang.Mc. I have tried to make D0Lang.Mc and this
documentation complete, so you should not need to refer to the Micro manual or study D0Lang for
further details, except where noted here.

Micro flushes Bravo trailers, so you can use Bravo formatting if you want to. However, the cross
reference program, MCross, which is expected to produce primary microprogram documentation,
does not handle Bravo trailers. Also, line numbers in Micro error messages may be more difficult
to correlate with source statements because of the line breaks inserted by Bravo’s hardcopy
command. I advise against Bravo formatting for these reasons.

I recommend use of Gacha8 (i.e., a relatively small fixed-pitch font) for printing program listings,
and use of Gacha10.Al for editing source files with Bravo. The smaller font is desirable because
some statements will be long, and a smaller font will allow you to get these on one text line. Bravo
tab stops should be set at precisely 8 character intervals for identical tabulation in Bravo and
MCross.

The two relevant lines in USER.CM for BRAVO are:

FONT:0 GACHA 8 GACHA 10
TABS: Standard tab width = 1795

You will probably want to delete the other Font lines for Bravo in User.Cm.

I also recommend that you read the hardware manual through once or twice before programming;
you will be referring regularly to the figures and tables in the hardware manual until you become
extremely familiar with the machine.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 4

Note: All arithmetic in this manual and in Dolphin microassembler source files is in octal.

2. Assembly Procedures

A microassembly is accomplished as follows:

Micro/L D0Lang Source1 Source2 ... SourceN

This causes the source files "D0Lang.Mc," "Source1.Mc," ..., "SourceN.Mc" to be assembled. The
global switch "/L" causes an expanded assembly listing to be produced on "SourceN.LS"; if "/L"
is omitted, no listing is made. The assembler also outputs "SourceN.Dib" (intermediate binary and
addresses), "SourceN.Er" (error messages, which are also printed on the display), and "SourceN.St"
(the Micro symbol table after assembling SourceN.Mc).

In other words, Micro assembles a sequence of source files with default extension ".Mc" and
outputs four files whose extensions are ".Dib", ".Er", ".Ls", and ".St". The default name for these
is the name of the last source file to be assembled. Direct output to particular files as follows:

Micro Sys/L/B D0Lang Source1 ... SourceN

causes the four output files to be "Sys.Ls", "Sys.St", "Sys.Dib", and "Sys.Er." These four files are
used as follows: The ".Ls" file is the assembly listing which you will usually not want to create--the
MicroD listing file mentioned below is generally of greater value. The ".St" file is a dump of the
symbol table at the end of assembly; it can be used in subsequent assemblies to recreate the
assembly environment, as discussed below. The ".Dib" file (Dolphin intermediate binary) is the file
that will be processed by MicroD later. The ".Er" file contains error messages and other assembly
information.

A summary of local and global Micro switches is as follows:

Global: /L Produce an expanded listing of the output
/N Suppress .Mb file output
/U Convert text in all source files to upper case
/O Omit .St file

Local: /R Recover from symbol table file
/L Put expanded listing on named file
/B Put binary output on named file with extension .Dib. Default symbol table (.St) and error

listing (.Er) to named file.
/E Put error listing on named file
/S Put symbol table on named file
/U Convert text in named file to upper case

Assemblies are slow--it should take about 7 minutes to assemble a 400010-instruction program.

INSERT[file] statements, described later, can be put in source files so you don’t have to type as
many source files on the command line. However, this will slow assembly because each INSERT
makes a separate call on the directory lookup code (about 1 second), but all names on the command
line are looked up at once. A better shortcut is to define command files to carry out your
assemblies.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 5

After obtaining an error-free assembly from Micro, you must postprocess the .Dib file with MicroD
to transform it appropriately for loading by Midas. This is accomplished as follows:

MicroD Sys

MicroD displays a progress message while churning away, and requires about 60 seconds to process
a 400010-instruction file (longer when large listings are produced). The local "/O" switch directs the
output to the named file rather than to the last-named input file (default extension .Mb), so:

MicroD NewSys/O Sys

puts the output of MicroD for the input file Sys.Dib onto NewSys.Mb.

In this example, there is only one input file for MicroD (Sys.Dib)--it is also possible to assemble
source files independently using the symbol table (.St) file produced by Micro to establish a basis
point for further assemblies, thereby reducing assembly time. For example, you can build a
GlobalDefs.St file as follows:

Micro/U D0Lang GlobalDefs

Then do all further assemblies as follows:

Micro/O/U GlobalDefs/R Sys/B Source1 ... SourceN
MicroD GlobalDefs Sys

Preassembling D0Lang and GlobalDefs in this way might save 10 seconds of assembly time.

MicroD can relocate code in IM (but not in any other memories). On very large programs, such as
the system microcode, it is possible to proceed as follows:

Micro/U D0Lang GlobalDefs
Micro/O/U GlobalDefs/R Source1
Micro/O/U GlobalDefs/R Source2
 ...
Micro/O/U GlobalDefs/R SourceN
MicroD Sys/O GlobalDefs Source1 Source2 ... SourceN

where Source1 ... SourceN may assemble IM locations but must not assemble any RM locations
referenced externally--internally referenced RM locations may be defined in Sourcex, but this has to
be done in a way that avoids assignments that conflict with other sources. In other words, forward
and external references are permitted only in instruction branch clauses, so everything else must be
predefined in GlobalDefs.St or at the beginning of a source file.

One advantage of this method is that Source1 ... SourceN can be independently maintained without
having to reassemble the entire system for every change; another advantage is that it avoids symbol
table overflow--the current system microcode is near to overflowing at present. However, many
changes to GlobalDefs will necessitate reassembling everything, and when everything is reassembled
the total assembly time will be about 9 minutes rather than 7 minutes.

Note that you do not need to do anything special in your source files to declare labels which are
exported (defined here, used elsewhere) or imported (used here, defined elsewhere). Micro assumes
that any undefined branch symbol is meant to be imported (but gives you the list just so you can
check), and MicroD assumes that all labels are exported. MicroD also discards all but the last

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 6

definition of a name (e.g., the symbol "." is defined in every file as the address of the last
microinstruction).

MicroD produces up to seven output files, depending upon the local and global flags specified on
the command line. The name for these files is determined as discussed earlier, followed by the
extensions given below (i.e., Sys.Mb, Sys.Dls, ... , SysOccupied.Mc):

.Mb Binary output--data for memories and address symbols for use when debugging
with Midas; this file is produced unless the global /P switch appears on the
command line.

.Dls Listing file always produced--it contains the Executive command line and all
strings printed on the display while MicroD is running (i.e., progress information
and error messages); this is followed by a table showing the number of free
locations on each page of IM, and by a list of data and address symbols in each
memory (which can be modified by various global and local switches discussed
below).

.Regs Register allocation listing produced if the global /R switch is specified; it lists in
numerical order RM locations and address symbols associated with each.

.CSMap Control store map produced when the global /M switch is specified; when MicroD
input consists of a number of modules (i.e., of .Dib files), the .CSMap file will
show for each page in the control store (i.e., each page in IMX) the number of
words in each module allocated on that page and the number of free locations in
the page.

.CSChart A file showing which .Dib file contained the instruction at each real address, sorted
by real address; this is produced only when the global /E switch is specified and is
intended for hardware debugging with a logic analyzer.

.absDLS A file giving the correlation between real and imaginary IM addresses, sorted by
real address; this is produced only when the global /H switch is specified and is
intended for hardware debugging with a logic analyzer.

Occupied.Mc A file which can be assembled to reserve all locations occupied by the current
image. It contains IMReserve declarations for every location into which MicroD
has placed an instruction. The intent is that this file be used when building
overlays to run on top of the current image.

A summary of the local and global MicroD switches is as follows:

Global: /A List only absolutely-placed IM locations
/C Concise listing--list everything except octal contents of IM
/D Debug--print a large amount of debugging information
/E Produce a .CSChart file (of Every location)
/H Produce a .absDLS file (useful for Hardware debugging)
/I Ignore OnPage
/K Kludge enable--suppress LoadPage consistency checking
/M Produce a .CSMap file
/N No listing--IM contents and other memories are not listed
/O Produce the Occupied.Mc output file containing IMReserve statements for all locations filled

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 7

by MicroD
/P Print only--supresses all MicroD actions and just lists all .Dib files
/R Produce a .Regs file
/S List symbols for all memories (except Version, RVRel, Disp, IMLock, and IMMask, which

are consumed by MicroD). /N prevents /S from listing IM symbols
/T Trace--print a trace of calls on the storage allocator
/X External--allow references to unbound symbols in the .Mb file

Local: /A List only absolutely-place IM locations--overrides global setting
/C Concise listing--overrides global setting
/L List everything--overrides global setting
/N Not IM listing level overrides global setting
/O Output file
/V Version number
/Z Specifies scratch file to use instead of Swatee

Global switches are usually specified on the command line as "MicroD/nmo Sys/O ..." but MicroD
accepts "MicroD Sys/O ... ~/nmo" as an alternative. This alternate form is useful with command
files because it allows varying switches to be specified at the end of the command line. In other
words, if one has prepared a command file Foo.Cm containing "MicroD/n Sys/O ... ," the "~"
feature allows variant switches via "@Foo ~/nmo" to the Alto Executive.

Only one of the /A, /C, or /N global switches, which control additional material printed in the .Dls
file, can be meaningful--when none of these switches is specified a verbose (/L) listing will be
produced. The /A, /C, /L, and /N local switches overrule the global switches for a particular file.
The ordering of these is as follows: /L is most verbose; /A prints less IM information than /L; /C
prints all other memories but not IM; and /N prints neither IM nor other memory information.

MicroD outputs a ".Mb" file, consisting of blocks of data that can be loaded into various Dolphin
memories and of addresses associated with particular locations in memories. The memories are as
follows:

IM 44-bit x 10000-word instruction memory
(also contains 60 bits/word of placement and other information)

RM 20-bit x 400-word register bank memory

In addition, three other memories called VERSION, IMLOCK, and IMMASK are produced by
Micro and consumed by MicroD, but these are invisible to the programmer.

There are at present very limited provisions for microcode overlays, as discussed in a later section.

3. Error Messages

During assembly, error messages and assembly progress messages are output to both the display and
the error file.

Micro error messages are in one of two forms, like the following:

... source statement ...
218...error message

-or-

... source statement ...

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 8

TAG+39...error message

The first example indicates an error on the 218th line of the source file. This form is used for
errors that precede the first label in the file. The second form is used afterwards, indicating an
error on the 39th line after the label "TAG".

Note that the line count measures <cr>’s in the source, so if you are using Bravo formatting in the
source files, you may have trouble distinguishing <cr>’s from line breaks inserted by Bravo’s
hardcopy command.

The "TITLE" statement in each source outputs a message of the form:

1...title..IM.address.=.341

This message indicates that the assembler has started working on that source file.
"IM.address.=.341" indicates that the first IM location assembled in this source file is the 341st in
the program. When a number of source files are assembled into a single .Dib file, this message
may be helpful in correlating source statements with error messages from the postprocessor,
MicroD.

The most common assembly errors result from references to undefined symbols and from setting a
single instruction field multiple times (e.g., attempting to use the F1 field twice in one instruction).
I do not believe that you will have any trouble figuring out what these messages mean, so no
comments are offered here.

After Micro has finished an assembly, it returns to the Executive leaving a message like "Time: 22
seconds; 0 errors, 0 warnings, 20007 words free" in the system window. Only when the error or
warning counts are non-zero do you have to look in the .Er file for detailed information about
errors.

MicroD errors are discussed in the appendix.

4. Debugging Microprograms

Microprograms may be debugged directly on the hardware using facilities provided by Midas. To
debug programs you will need to load Midas and its auxiliary files as discussed in the Dolphin
Midas Manual.

Midas facilities consist of actions to boot the Dolphin; load microprograms; set, clear, and examine
breakpoints; start, step, or halt the machine, and examine and modify storage. Addresses defined
during assembly may be examined on the display. Midas contains a command file facility that
allows you to carry out various procedures such as setting up the display and iterating through a
sequence of diagnostic microprograms.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 9

5. Cross Reference Listings

The cross-reference program for Dolphin microprograms is a Tenex subsystem called MCross. It is
easier to maintain large programs when cross-reference listings are available, so you may wish to
store your sources on a Tenex directory and make your listings using MCross.

Obviously, you can only use MCross if you have a timesharing account on Maxc. If not, you will
have to do without cross-reference listings until MCross is implemented on Alto (no one is working
on that now).

A typical dialog with MCross is given below. The program is more-or-less self-documenting and
will give you a list of its commands if you type "?".

@MCROSS
Output File: LPT:GACHA8.EP
Machine: 0 (selects Dolphin syntax)
Action: U (convert to upper case)
Action: N (read def’s, no printout)
File: D0LANG<esc>
Action: CL (read def’s, produce cross ref)
File: Source1<esc>
Action: CL
File: Source2<esc>
Action: P (print operation usage statistics)
Action: G (print global cross reference)
Action: E
@

6. Comments

Micro ignores all non-printing characters and Bravo trailers. This means that you can freely use
spaces, tabs, and carriage returns to format your file for readability without in any way affecting the
meaning of the statements.

Comments are handled as follows:

"*" begins a comment terminated by carriage return.

"%" begins a comment terminated by the next "%". This is used for multi-line comments.

";" terminates a statement. Note that if you omit the ";" terminating a statement, and, for
example, put a "*" to begin a comment, the same statement will be continued on the next
line.

Micro’s COMCHAR feature provides one method of producing multi-statement conditional
assemblies (This method is now obsolete, replaced by the conditional assembly features discussed in
the next section). COMCHAR is used as follows. Suppose you want to have conditional assemblies
based on whether the microcode is being assembled for a Pilot or Alto-compatible configuration.
To do this define "=" as the comment character for Pilot (i.e., COMCHAR[=];) and "#" as the
comment character for Alto-compatible. Then in the source files:

*= Alto-compatible configuration only
 ...statements for Alto-compatible configuration...

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 10

*= end of Alto-compatible statements
*# Pilot configuration only
 ...statements for Pilot configuration...
*# end of Pilot statements

In other words, "*" followed by the comment character is approximately equivalent to "%" and is
terminated by the carriage return following its next occurrence.

7. Conditional Assembly

D0Lang defines IF, UNLESS, ELSEIF, ELSE, and ENDIF macros for doing multi-statement
conditional assemblies; IF’s may be nested up to four levels deep. The syntax for these is as
follows:

:IF[Display];
 ... statements assembled if Display is non-zero...
:ELSEIF[OldDisplay];
 ... statements assembled if Display is zero and OldDisplay non-zero...
:ELSE;
 ... statements assembled if both Display and OldDisplay are zero...
:ENDIF;

Alternatively, UNLESS can be used instead of IF, as follows:

:UNLESS[Display];
 ... statements assembled if Display is zero...
:ENDIF;

Note that each of the conditional names must be preceded by ":"; the implementation of these is
discussed in the Micro manual. Any number of ELSEIF’s may be used after an IF, followed by an
optional ELSE and a mandatory ENDIF. The arguments to IF and ELSEIF must be integers.

Warning: The :IF, :UNLESS, :ELSEIF, :ELSE, and :ENDIF must be the first characters in a
statement. In the following example:

FlshCore:
:IF[MappedStorage];

... statements ...
:ELSE;

... statements ...
:ENDIF;

":IF" is illegal because, due to the "FlshCore" label, ":IF" are not the first characters of a
statement.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 11

8. Simplified Parsing Rules

After comments, false conditionals, and non-printing characters are stripped out, the rest of the text
forms statements.

Statements are terminated by ";". You can have as many statements as you want on a text line,
and you can spread statements over as many text lines as you want. Statements may be indefinitely
long.

However, the size of Micro’s statement buffer limits statements to 50010 characters at any one time.
If this is exceeded at any time during the assembly of a statement, an error message is output.
Since horrendous macro expansions occur during instruction assembly, it is possible that instruction
statements may overflow. If this occurs, the size of the statement buffer can be expanded (Tell
me.).

The special characters in statements are:

"[" and "]" for enclosing builtin, macro, field, memory, and address argument lists;

"(" and ")" for causing nested evaluation;

"_" as the final character of the token to its left;

":" to put the address to its left into the symbol table with value equal to the current
location and current memory, and as the first character of a statement to be evaluated
even in the false arm of a conditional;

"," separates clauses or arguments;

";" separates statements;

"#" #1, #2, etc., are the formal parameters inside macro definitions;

"01234567" are number components (all arithmetic in octal).

All other printing characters are ordinary symbol constituents, so it is perfectly ok to have symbols
containing "+", "-", "&", etc. which would be syntactically significant in other languages. Also,
don’t forget that blanks, carriage returns, and tabs are syntactically meaningless (flushed by the
prescan), so "T+Q" = "T + Q", each of which is a single symbol.

The debugger Midas requires all address symbols to be upper case; since both Micro and MCross
have switches that convert all source file characters to upper case, you can follow your own
capitalization conventions but must convert to upper case at assembly time using the /U switch.
Experience suggests that consistent capitalization conventions are desirable, although there is not
much agreement on exactly what conventions should be used. In this manual I follow capitalization
conventions which you may consider as a non-binding proposal. My convention is as follows:

The first letter of each word is capitalized.

When a symbol consists of several words run together, the first letter of each subword is
capitalized (e.g., "NextData," "StkP").

When a symbol is formed by running together the first letters from several words, then
these are all capitalized (e.g., "MNBR,").

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 12

Micro builtins, memory names, and important assembly directives that should stand out in
the source, such as TITLE, END, IF, etc. are all capitals.

Midas also limits address symbols to 13 characters in length; if you assemble longer addresses, you
will still be able to load and run your program with Midas, but you won’t be able to examine
symbols longer than 13 characters.

Also, avoid using any of the characters "=," "#," "+," "-," and "!" in address symbols; these are
syntactically significant to Midas and may cause trouble when debugging. Finally, avoid defining
symbols that end with the character "@"; the internal symbols in D0Lang.Mc by convention end
with "@," so you might have name conflicts with reserved words if you also define symbols ending
with "@."

Statements are divided into clauses separated by commas, which are evaluated right-to-left. An
indefinite number of clauses may appear in a statement.

Examples of clauses are:

NAME,

NAME[ARG1,ARG2,...,ARGN],

FOO_FOO1_FOO2_P+Q+1, P+Q+1 is referred to as a "source" while FOO_, FOO1_, and
FOO2_ are "destinations" or "sinks".

P_STEMP,

NAME[N1[N2[ARG]],ARG2]_FOO[X],

Further discussion about clause evaluation is postponed until later.

9. Statements Controlling Assembly

Each source file should begin with a TITLE statement as follows:

:TITLE[Source1];

The TITLE statement:

a. prints a message in the .Er file and on the display which will help you correlate
subsequent error messages with source statements which caused them;

b. does a SetTask[0] (discussed later) and resets a number of assembly switches.

At the end of a file you may optionally insert an END statement:

:END[Source1];

The END statement prints a message like the title statement’s and checks for unterminated
conditionals, but it does not affect the output of the assembler.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 13

Note that the ":" preceding TITLE and END is optional; inserting the ":" will cause statement
evaluation even in the false arm of a conditional, so an appropriate message can be printed to help
detect :IF’s unmatched by :ENDIF’s. The "Source1" argument to :END is also optional.

You may at any place in the program include an INSERT statement:

INSERT[SourceX];

This is equivalent to the text of the file SourceX.MC.

The message printed on the .Er file by TITLE is most helpful in correlating subsequent error
messages if any INSERT statements occur either before the TITLE statement or at the end of the
file (before the END statement). INSERT works ok anywhere, but it might be harder to figure out
which statement suffered an error if you deviate from this recommendation.

In the event you request a listing by putting "/L" in the Micro command line, the exact stuff
printed is determined by declarations that can be put anywhere in your program.

D0Lang selects verbose listing output. However, you will generally not want to print this listing.
The MicroD listing is normally more useful during debugging. If you want to modify the default
listing control in D0Lang for any reason, you can do this using the LIST statement, as follows:

LIST[memory,mode];

where the "memory" may be any of the ones given earlier and the mode the OR of the following:

20 (TAG) nnnnnn nnnnnn (octal value printout in 16-bit units)
10 alphabetically-ordered list of address symbols
 4 numerically-ordered list of address symbols
 2 (TAG) FF_3, JCN_4, etc (list of field stores)
 1 (TAG) nnnn nnnn nnnn (octal value printout)

Note: The listing output will be incorrect in fields affected by forward references (i.e., references to
as yet undefined addresses); such fields will be incorrectly listed as containing their default values.

Micro has a recently added TRACEMODE builtin which you may prefer to use instead of an
assembly listing for the purposes of debugging complicated macros. TRACEMODE allows symbol
table insertions and macro expansions to be printed in the .Er file. See the Micro manual for
details about TRACEMODE.

10. Forward References

Micro and D0Lang have an extremely limited ability to handle forward references. The only legal
forward references are to instruction labels from branch clauses. Anything else must be defined
before it is referenced.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 14

11. Integers

Micro provides builtin operations for manipulating 20-bit assembly-time integers. These have
nothing to do with code generation or storage for any memories. Integers are used to implement
assembly switches and to control Repeat statements. The operations are given in the table below
and there is some additional discussion in the Micro Manual:

Set[NAME,OCT] Defines NAME as an integer with value OCT. Changes the value of NAME if
already defined.

Select[i,C0,...,Cn] i is an integer 0 to n. Evaluates C0 if i = 0, C1 if i = 1, etc.

Add[O1,...,O8] Sum of up to 8 integers O1 ... O8.

Sub[O1, ... ,O8] O1-O2-...-O8

IFE[O1,O2,C1,C2] Evaluates clause C1 if O1 equals O2, else C2.

IFG[O1,O2,C1,C2] Evaluates C1 if O1 greater than O2, else C2.

Not[O1] Ones complement of O1.

Or[O1,O2,...,O8] Inclusive ’OR’ of up to 8 integers.

Xor[O1,O2,...,O8] Exclusive ’OR’ of up to 8 integers.

And[O1,O2,...,O8] ’AND’ of up to 8 integers.

LShift[O1,N] O1 lshift N

RShift[O1,N] O1 rshift N

OCT in the Set[NAME,OCT] clause, may be any expression which evaluates to an integer, e.g.:

Set[NAME, Add[Not[X], And[Y,Z,3], W]]

where W, X, Y, and Z are integers.

If you want to do arithmetic on an address, then it must be converted to an integer using the IP
operator, e.g.:

IP[FOO] takes the integer part of the address FOO
Add[3,IP[FOO]] is legal
Add[3,FOO] is illegal

Some restrictions on doing arithmetic on IM addresses are discussed later.

12. Repeat Statements

The assortment of macros and junk in the D0Lang file successfully conceals Micro’s complicated
macro, neutral, memory, field, and address stuff for ordinary use of the assembler.

However, using the Repeat builtin may require you to understand underlying machinery--in a
diagnostic you might want to assemble a large block of instructions differing only a little bit from
each other, and you want to avoid typing the same instruction over and over.

Instruction statements are assembled relative to a location counter called ".". Originally set to 0 ,
"." is incremented by one every time an instruction is assembled. To do a Repeat, you must
directly reference "." as follows:

Repeat[20, . [(instruction statement)]];

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 15

This would assemble the instruction 20 times. If you want to be bumping some field in the
instruction each time, you would proceed as follows:

Set[X,0];
Repeat[20, . [(Set[X,Add[X,1]], instruction statement)]];

where the instruction statement would use X someplace.

For a complicated Repeat, you may have to know details in D0Lang. For this you will have to
delve into it and figure out how things work.

13. Parameters

Parameters are special assembly-time data objects that you may define as building blocks from
which constants, RM, or IM data may be constructed. Three macros define parameters:

MP[NAME,OCT]; makes a parameter of NAME with value OCT

SP[NAME,P1,...,P8]; makes NAME a parameter equal to the sum of P1,...,P8, which are parameters or
integers.

NSP[NAME,P1,...,P8]; makes NAME a parameter equal to the ones complement of the sum of P1,...,P8,
which are parameters or integers.

The parameter "NAME" is defined by the integer "NAME!" (The "!" is a symbol constituent
added so that a constant, small constant, or RM address can have an identical NAME.), so it ok to
use the NAME again as an address or constant. However, you cannot use it for more than one of
these.

14. Constants

The hardware allows a constant to be generated on B that is the 10-bit FF field of the instruction in
either the left or right half of the 20-bit data path with 0 in the other 10-bit byte.

"Literal" constants such as "322C" or "32400C" may be inserted in instructions without previous
definition.

Negative constants such as "-400C", "-32400C", etc. are also legal.

Left-half-word and right-half-word constants may be constructed from integers by applying,
respectively, the HiA and LoA operators to a 20-bit integer. An optional second argument to HiA
should be an integer in the range 0 to 17; if provided, this argument is or’ed with bits 0:3 of the
first to produce the task number and high four address bits for APCTask&APC _. An example
using HiA and LoA is as follows:

RTemp _ HiA[DispStartLoc,DispTask]; *Bits 0:7 (DispTask in 0:3)
RTemp _ (RTemp) or (LoA[DispStartLoc]); *Bits 10:17

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 16

Alternatively, constants may be constructed from parameters or integers using the following macros:

MC[NAME,P1,...,P8]; defines NAME as a constant whose value is the sum of P1...P8 (integers or
parameters).

NMC[NAME,P1,...,P8]; defines NAME as the ones complement of the sum.

Warning: The two macros above also define NAME as a parameter. You must not redefine a
parameter with the same name as a constant because the binding of the constant is to the name of
its associated parameter (i.e., to "NAME!"), not to its value. In other words, if you redefine a
parameter with the same name as a constant, you will redefine the constant also.

Because the definition of a constant also defines a parameter of the same name, it is possible to
cascade a number of constant definitions to create various useful values. Here is an example of
how several constant definitions can be cascaded:

MC[B0,100000];
MC[B1,40000];
MC[B2,20000];
MC[B01,B0,B1];
MC[B02,B01,B2];

Occasionally, you may wish to create a constant whose value is an arithmetic expression or an
expression including an address in RM. Here are several examples of ways to do this:

IP[RAddr]C A constant whose value is an RM address

Add[3,LShift[X,4]]C A constant whose value is a function of the integer X

15. SetTask Statements

The hardware OR’s various bits of the task number into fields of the instruction to determine which
RM addresses are referenced. You must tell the assembler what task is going to execute each
section of microcode, so that it can perform the proper error checks and set up instruction fields
appropriately.

This is done with a clause of the form:

SetTask[n]; *n = the task number (0 to 17)

If you want to refer to task numbers symbolically, you can define integers with values equal to the
task numbers. For example:

Set[DispTask,3];

Then use SetTask[DispTask] to refer to the task.

SetTask controls not only the assembly of instructions, but also the allocation of RM addresses to
100-word sections of RM, as discussed in the next section.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 17

Note: The TITLE statement at the beginning of a file does a SetTask[0].

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 18

16. Assembling Data for RM

RM addresses are allocated by RV statements in one of the following ways:

RV[name, disp, P1, P2, ... , P7];

RV[name, , P1, P2, ... , P7];

RV[name, disp];

RV[name];

RV[name, , value];

RV2[name0, name1, disp0];

RV4[name0, name1, name2, name3, disp0];

The first argument of RV is the "name" of the RM address to which you will subsequently refer in
instructions.

The second argument "disp" is a displacement between 0 and 77. This specifies the low six bits of
the RM address. The top two bits are determined by the top two bits of the task number, declared
by the last SetTask statement. If "disp" is omitted, the RM address is allocated at the last location
plus 1.

The remaining 7 arguments are parameters or integers summed to determine the value loaded into
that location. If all of these are omitted, then the location will be uninitialized.

RV2 and RV4 macros allow definition, respectively, of two consecutive or four consecutive RM
locations. The first two (four) arguments are the names of the consecutive registers, and the final
argument is the displacement of the first named register (0 to 77); no provision is made for
assembling values into registers defined this way. It is convenient to define registers with RV2/4
rather than one-at-a-time, when they are constrained to be consecutive by some usage. For
example, target registers for PFetch2/4 should be defined by RV2/4.

Avoid assigning useless initial values to variables because this will prevent the "Compare" function
in Midas (which compares the microstore image against what you loaded) from reporting fictitious
errors. In a system microprogram (as opposed to a diagnostic), any occurrence of a variable with an
initial value is probably a programming error since it requires reloading the microcode to restore the
initial value. Hence, you probably should initialize such registers with your program.

Also, boot microcode does not allow any memories except IM to be initialized from the boot EPROM, and
current software for loading microcode overlays is also limited to IM. For these reasons the usual practice is
to put code for initializing RM into a "throwaway" page which can be overwritten by something else after it
is executed.

The hardware imposes a number of strange constraints upon RM placement. For example,
addresses used as base registers must (usually) be even, addresses for PFetch4/PStore4 must
(usually) be origined 0 mod 4, and addresses for PFetch2/PStore2 must (usually) be at even
locations (exception: stack double-words). Also, RM is partitioned so that only locations 0 to 77 are
accessible to tasks 0 to 3, 100 to 177 to tasks 4 to 7, 200 to 277 to tasks 10 to 13, and 300 to 377 to
tasks 14 to 17. Tasks 1 to 3 in each group of 4 are further limited because the task number is
OR’ed into high address bits in various ways. These constraints will be a source of many program
bugs.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 19

You must be careful to assign a "disp" that satisfies all the uses of each RM address. If you screw
up, the assembler will indicate an error when you illegally reference the RM location in an
instruction.

Note: Suppose that you want tasks 10, 11, 12, and 13 to share a section of microcode but use
independent RM locations. Then you do a SetTask[10] before that section of the program, and you
allocate a block of RM locations in the range 100-117 and refer to these locations in the program;
you also allocate parallel blocks of RM locations in the ranges 120-137, 140-157, and 160-177 for
use by tasks 11, 12, and 13, respectively. In this way, the program will do what you want. If the
four tasks have some other RM locations that are shared, allocate these in the range 160-177, so that
they will be accessible to all four tasks.

Sometimes you may want to use several different names to refer to the same RM location. To do
this, define the first name with RV, as above; you can then define synonyms in several ways, one of
which is as follows:

RM[FOO1, IP[FOO]];

This defines the address FOO1 at the same location as the (previously-defined) address FOO.

17. Assembling Data Items In the Instruction Memory

If you do not want to clutter RM with infrequently referenced constants or variables, and if you are
willing to cope with the hardware kludges for reading/writing the instruction memory as data, then
you can store data items in IM.

To assemble a table of data in the instruction memory:

Set[T1Loc,100];
IMData[(TABLE1: LH[P1, ... , P8] RH[P1, ... , P8], At[T1Loc])];
IMData[(LH[P1, ... , P8] RH[P1, ... , P8], At[T1Loc,1])];
...

where TABLE1 is an IM address symbol equal to the location of the first instruction in the table,
P1, ..., P8 are parameters or integers. LH stores the sum of up to 8 parameters in the left-half of
the IM word and RH, in the right-half; these macros do not allow you to specify the remaining
four bits of the 44-bit instruction--the assembler will ensure that the data has valid parity by storing
a 0 or 1 in the low-order bit of the RX@ field (which is one of the four bits you cannot specify).
"At" is discused in the "Placement" section later.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 20

18. General Comments on Instruction Statements

The general forms of an instruction statement are as follows:

TAG: branch clause, T_rmaddr_(A phrase) and (B phrase), function, placement;
TAG: branch clause, T_A phrase, B phrase, function, placement;
TAG: branch clause, A phrase, RMAddr_B phrase, function, placement;

-or-
TAG: branch clause, PFetch1[rbase, rdest, f2], placement;
TAG: branch clause, PFetch1[rbase, rdest], f2, placement;

where the first three examples are "regular" instructions and the last two, "memory reference"
instructions.

Rule: TAG is an optional IM address symbol or label; it must appear first in the instruction
statement.

TAG may be referenced from branch clauses in other instructions, as discussed in the "Branching"
section, and it will appear in the output file for use in debugging.

Rule: Clause order is totally arbitrary; it doesn’t matter which ones appear first in the statement.
However, you might wish to follow a consistent ordering convention for program readability.

Placement clauses, A phrases, B phrases, ALU clauses, and memory reference clauses are discussed
in separate sections and only outlined here.

The ALU operation in the first example is a function of both H1 and H2; it involves only H1 in
the second, and only H2 in the third. In this manual, the H1 and H2 data paths are referred to as
"A" and "B," respectively, and the output of the ALU, loaded into H3P, is referred to as "LU."

Rule: In an ALU operation involving both A and B, the A phrase must appear to the left of the B
phrase.

Rule: An F1 or F2 function that either sources or sinks A will appear in the A phrase; one that
either sources or sinks B will appear in the B phrase; one that involves neither A nor B will appear
as a separate clause in the instruction.

Data-routing clauses have one or more "_"’s in them and require parentheses in some places to
cause evaluation in the correct order. One of these clauses is evaluated from right-to-left, or from
"sources" to "sinks."

If there is only one source and one sink in the clause, no problem: simply write "sink_source",
e.g.:

T_RMAddr, The assembler figures out how to route data from the RM address
RMAddr onto A, through the ALU, and into T.

RMAddr_34C, Again the assembler figures out how to construct the constant 34, route it
onto B, through the ALU, and into the RM address RMAddr.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 21

When you have A or B phrases embedded in ALU expressions, then you have to use parentheses,
e.g.:

T_(StkP_RMAddr)+1, The assembler routes RMAddr onto A, loads StkP from A with an F2
function, selects the A+1 ALU operation, and sets the LT bit in the
instruction so that T will be loaded from the ALU.

T_(LoadTimer[RMAddr])+(SALUF_T)
The assembler routes RMAddr onto A, selects the LoadTimer function in
F1, routes T onto B, selects the SALUF_ function in F2, selects the
"A+B" ALU operation, and sets the LT bit to load T from the ALU
output.

In assembling the first clause above, the assembler proceeds in the following way:

a. RMAddr is looked up first and recognized as an RM address. Error checks ensure
that RMAddr can legitimately be referenced by the current task. If so, the proper
value is assembled for the RSel, RMod, RX, and MemIns fields of the instruction.
The assembler’s macros leave a neutral symbol "RB" at the end of this evaluation to
check for routing errors later.

b. "StkP_" is looked up next; this macro expands to store the correct code in the F2
field of the instruction and leaves a neutral symbol "A_" to check for routing errors.

c. "A_RB" is looked up; because routing RB onto A is legal, this "connection macro" is
defined and expands to leave the neutral "A." (If the routing had been illegal, then
Micro would have printed an error message like "A_RB undefined.")

d. "A+1" is looked up; this macro expands to store the correct code in the ALUF
instruction field and leaves behind the neutral symbol "LU" to check for routing
errors.

e. Then "T_" is looked up; it is a macro that expands to store a 1 into the LT field of
the instruction, leaving the neutral "LU_."

f. Finally, "LU_LU" is looked up; it is a "connection" macro that does nothing and
leaves behind the neutral "LU"; since there is no more text in the clause this final
neutral is thrown away.

Note: The "()" in the first example above are not optional. If you omit them, the assembler would
look up "RMAddr+1", which would be undefined.

One general idea in the above is that at each stage the source is routed only as far as necessary to
load it into the destination.

Note: T_StkP_RMAddr, is legal
T_StkP_(RMAddr), is legal
T_(StkP_RMAddr), is legal
StkP_T_RMAddr, is illegal

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 22

The last clause above is illegal because, by the time the assembler recognizes StkP_, it has already
routed the source data past A and through the ALU, and there is no path from the ALU to StkP.
The assembler is not clever enough to remember that the data originally started on A.

Here are some more "()" examples:

T_(RMAddr)+T, is legal--"()" are required around RM addresses in combination with
other stuff.

T_RMAddr, is legal--"()" optional around an RM address all by itself

T_(RMAddr)+(T), is legal--"()" optional around "T."

T_((RMAddr)+T), is legal--extra "()" around an entire source always OK

(T_(RMAddr)+T), is legal

T_T+(RMAddr), is illegal--you cannot reverse the A and B phrases.

RMAddr_(RMAddr)+(2C) is legal--"()" required around constants in combination with other stuff.

The last two examples at the beginning of this section show the form of "memory reference"
instructions. In the first example, the F2 field is used instead of T to specify the displacement for
the reference; in the second example, T is used as the displacement so F2 is available to specify
some function. Memory reference clauses are discussed later.

19. RM and STK Phrases

The hardware complicates RM references by providing only six bits of RM address in the
instruction. The remaining two address bits come from the task number. The programmer must
declare the task number with SetTask before any references.

RM addresses can source A and can be used in ALU phrases. In this case, the RM address has to
be enclosed in "()."

RM addresses can be used as sinks for ALU operations and ALU sources (which the assembler
routes through the ALU). For these simply write the register name followed by "_".

Some examples of clauses involving RM are as follows:

RMAddr_(RMAddr)+T Use in an ALU expression and as a sink.

RMAddr_T The assembler automatically routes T through the ALU and into
RMAddr.

PCF[RMAddr]_PCF[RMAddr] You really mean RMAddr_PCF[RMAddr], but due to the vagaries of
the assembler you write it this way.

T_(PCF[RMAddr])+T Use with cycler-masker operation PCF.

T_PCF[RMAddr]+T "()" not mandatory with these.

T_RMAddr "()" optional when RMAddr not combined with other text.

DB_RMAddr Use with an A sink.

T_(SB_RMAddr)+T Use with an A sink inside an ALU operation.

The assembler will detect all illegal RM references. In other words, if the RM word is
unaddressable by the currently selected task, or if it is required to be even or quadaligned, the
assembler will check for this and indicate any error.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 23

References to the stack always read the word pointed to by StkP, then adjust the stack pointer in
the ways discussed in the "A Phrases" section; if the stack is written, the modified address is used
for the write. The various Stack terms may be used interchangeably with RM addresses where they
are legal. Also note the following:

Stack&+1_(Stack&+1)+T is legal.

Stack&+1_(Stack)+T is illegal.

The last example is illegal because you must use the same StkP modifier in both read and write
parts of the instruction.

Occasionally you may wish to create a constant whose value is an RM address. To do this you can
use the following kludge:

B_IP[RMAddr]C

This puts a constant whose value is the address of RMAddr onto B.

20. Cycler-Masker Phrases

The semantic cycler-masker operations, operating on RM data, are as follows:

LSh[RA, n] Left shift the RM address RA n positions (n = 1 to 17).

RSh[RA, n] Right shift RA n positions (n = 1 to 17).

LdF[RA, pos, size] Right-justify or load an arbitrary field from RA; POS is the left bit of the field and
SIZE is the number of bits in the field.

RCy[RA, n] Right cycle RA n positions (n = 1 to 17).

LCy[RA, n] Left cycle RA n positions (n = 1 to 17).

Dispatch[RA, pos, size] Loads APC with any field of size less than 4 bits from RA; the following instruction
must contain a Disp control clause to carry out the dispatch to the location at
Page[0:3],,JA[0:3],,APC[14:17].

RHMask[RA] = RA & 377.

LHMask[RA] = RA & 177400.

Zero = 0.

FixVA[RA] = RSh[RA,1] & 40100.

Formn[RA] = RA & n (n = 0 to 10).

Form-n[RA] = RA & -n (n = 2 to 10).

Nib0Rsh8[RA] = RSh[RA,10] & 360, which is the first 4-bit nibble in RA right-shifted 10.

For these operations, the assembler fabricates values for F1, F2, and BSel to cause the appropriate
shift and mask. RA may be any normal RM address or one of the special ones that have RMod=1
and don’t use F1 or F2 in their specification.

In addition to the cycler-masker phrases discussed here, the various forms of the NextData and
NextInst functions discussed later use the cycler-masker to extract either the left or right byte from
the selected RM word.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 24

21. A Phrases

All of the A sources use the RMod and RSel instruction fields; some also use the F1 and F2 fields
in conjunction with these. An A source can be any of the following:

A Dummy source for clause splitting. It indicates that the source for some sink is ALUA
(You should never need to use this because normally the ALUA sink and source are written
together separated by "_" or the ALUA source is embedded in the ALU phrase.).

RAddr An RM address.

Stack RM addressed by StkP

Stack&-n RM addressed by StkP; StkP_StkP-n (n = 1, 2, or 3) after the read (and before the write,
if any).

Stack&+n RM addressed by StkP; StkP_StkP+n (n = 1, 2, or 3) after the read (and before the write,
if any).

PCF[RAddr] RAddr must be quadaligned--i.e., its low two address bits must be 0.

SB[RAddr] RAdr must be quadaligned.

DB[RAddr] RAdr must be quadaligned.

NextInst[RAddr] Instruction dispatch; incorporates both the NextInst F1 function and the PCF[RAddr] cycler
masker operation, so RAddr must be quadaligned. See the "NextData and NextInst"
section.

CNextInst[RAddr] Like NextInst; see the "NextData and NextInst" section.

NextData[RAddr] Incorporates both the NextData F1 function and the PCF[RAddr] cycler masker operation,
so RAddr must be quadaligned; see the "NextData and NextInst" section.

CNextData[RAddr] Like NextData; see the "NextData and NextInst" section.

BBFA[RAddr] Also a dispatch (no special restrictions on RAddr); uses F1 and F2.

BBFB[RAddr] Uses F1.

WFA[RAddr] Uses F1.

WFB[RAddr] Uses F1.

RF[RAddr] Uses F1.

BBFX[RAddr] Uses F1.

The A sources below use RMod and RSel to specify external R-bus sources and use the cycler-masker to extract
individual registers from multi-field sources.

GetRSpec[n] Used to place a multi-field word on A. n is a 7-bit value whose leading bit is placed in
RMOD and next 6 bits in RSEL. You should normally prefer to use one of the explicit
macros given below instead of GetRSpec[n].

SStkP&NStkP = GetRSpec[103]

 SStkP Saved StkP; uses F1 and F2.

 NStkP StkP (ones comlemented); uses F1 and F2.

ALUResult&NSALUF

 ALUResult Uses F1 and F2.

 NSALUF Uses F1 and F2.

MemSyndrome

MemError

Cycle&PCXF = GetRSpec[127]

 CycleControl Uses F1 and F2 (= DBXReg..MWXReg)

 DBXReg Uses F1 and F2.

 MWXReg Uses F1 and F2.

 PCXReg Uses F1 and F2

 PCFReg Uses F1 and F2.

Printer Uses F2.

Timer = GetRSpec[133]

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 25

DBSB Uses F2.

RS232

MNBR Uses F2.

APCTask&APC = GetRSpec[143]

 APCTask Uses F1 and F2.

 APC Uses F1 and F2.

APC&APCTask = GetRSpec[143] (synonym)

CTask&NCIA

 CTask Uses F1 and F2.

 NCIA Uses F1 and F2 (= CIA ones complemented).

CSData

Page&Par&Boot = GetRSpec[157]

 Page Uses F1 and F2.

 Parity Uses F1 and F2.

 BootReason Uses F1 and F2.

Rule: Those of the above sources that accept a normal RM address as an argument, namely
PCF[RA], SB[RA], DB[RA], WFA[RA], BBFB[RA], WFB[RA], RF[RA], and BBFBX[RA], require
that this same form be used when writing RA in the same instruction; i.e.:

PCF[RMAddr]_(PCF[RMAddr])+T is legal
RMAddr_(PCF[RMaddr])+T is illegal

This unfortunate kludge is required because PCF[RMAddr] will set RMOD to 1, while RMAddr_
will set RMOD to 0, causing an assembly error.

Sinks for A are the ALU and a number of other registers selected by functions. A sinks can be any
of the following:

any ALU expression or ALU sink (T_, RAddr_, or LU_)

A_ No-op sink--simply routes the selected A source onto ALUA.

APCTask&APC_ Uses F1 and F2

Restore_ Uses F1 and F2

StkP_ Uses F2

CycleControl_ Uses F2

SB_ Uses F2

DB_ Uses F2

MNBR_ Uses F1 and F2

PCF_ Uses F1 and F2

Printer_ Uses F2

21. B Phrases

B sources can be any of the following:

B Dummy source for clause splitting

Constants Uses FF--see earlier constant section

T

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 26

B sinks can be any of the following:

B_ No-op destination--simply routes source onto B.

RS232_ Uses F1

SALUF_ Uses both F1 and F2.

CTD_ Uses both F1 and F2.

any ALU expression or ALU sink

23. ALU Clauses

In the ALU operations given below, the "A" and "B" components may be any A and B phrases,
respectively:

B
A
A and B
A or B
A xor B A#B
A and not B
A or not B
A xnor B A=B
A+1
A+B
A+B+1
A-1
A-B
A-B-1
A SALUFOP B

Rule: For all ALU operations except the "A" and "B" operations, the A phrase must always be
enclosed in "()"; the B phrase must be enclosed in parentheses unless it is T; "()" are optional
around T.

You must not, for example, write "A and not B" as "A and (not B)"; in other words, it is illegal to
put random "()" in the name of the ALU expression, even though that may clarify the meaning. If
you tried to do this, the assembler would fail to recognize "not B" and flag an error. The "()" are
only legal around the "A" and "B" parts of the ALU phrase.

The arithmetic operations, "A-1," "A+1," "A+B," "A+B+1," "A-B," and "A-B-1" may optionally
be accompanied by the standalone clause "UseCOutAsCIn," which causes the ALU carry-in to be
the carry-out of the last ALU operation for the same task. The value of the carry-out may be
frozen across instructions by means of the FreezeResult standalone function.

"UseCOutAsCIn" cannot be used with the "A" operation because the logical rather than the arithmetic form
of the "A" operation is used by the hardware.

Legal sinks for ALU phrases are:

RAddr_ Any RM address

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 27

Stack_ Stack sinks

Stack&+n_

Stack&-n_

T_

LU_ This null sink is necessary when the ALU operation must be "A" or "B"
for a subsequent branch condition or to interlock/not interlock an RM
reference, even though no real destination is being loaded with the ALU
output.

Here are some examples of ALU clauses:

T_(RAddr)+T "()" optional around T, mandatory around RAddr.

T_RAddr "()" optional around RAddr uncombined.

T_(RAddr) also ok.

RAddr_(RAddr) xor (377C) "()" mandatory.

RAddr_T_377C "()" optional when constant uncombined.

T_RAddr_(377C) also ok.

24. Memory Reference Instructions

Memory reference instructions have a different form from regular instructions, as discussed in the
hardware manual. Branch and placement clauses are identical to those in regular instructions, and
the F2 clause, if any, is identical to that in a regular instruction. The rest of the instruction is a
single clause in one of the following forms:

PFetch1[RBase, RAddr<, F2>] OddPFetch1[RBase, RAddr<, F2>]

PFetch2[RBase, RAddr<, F2>] OddPFetch2[RBase, RAddr<, F2>]

PFetch4[RBase, RAddr<, F2>] OddPFetch4[RBase, RAddr<, F2>]

PStore1[RBase, RAddr<, F2>] OddPStore1[RBase, RAddr<, F2>]

PStore2[RBase, RAddr<, F2>] OddPStore1[RBase, RAddr<, F2>]

PStore4[RBase, RAddr<, F2>] OddPStore1[RBase, RAddr<, F2>]

IOFetch4[RBase, Device<, F2>] OddIOFetch4[RBase, RAddr<, F2>]

IOFetch20[RBase, Device<, F2>] OddIOFetch20[RBase, RAddr<, F2>]

IOStore4[RBase, Device<, F2>] OddIOStore4[RBase, RAddr<, F2>]

IOStore20[RBase, Device<, F2>] OddIOStore20[RBase, RAddr<, F2>]

XMap[RBase, RAddr<, F2>] OddXMap[RBase, RAddr<, F2>]

Input[RAddr<, F2><,OtherRAddr>]

Output[RAddr<, F2><,OtherRAddr>]

ReadPipe[RAddr<,F2><,OtherRAddr>]

Refresh[RAddr]

IOStore16, OddIOStore16, IOFetch16, and OddIOFetch16 are synonyms for IOStore20,
OddIOStore20, IOFetch20, and OddIOFetch20, respectively.

In these clauses, "RBase" is an RM address subject to the same constraints as an RM reference in a
regular instruction; i.e., it must be in the group of 100 accessible to the current task and must not
be in the subrange 0-17 of that group unless the task selected by SetTask is 0 mod 4; in addition, it
must normally be an even address, as discussed in the hardware manual. When it must be even,
you write, for example, "PFetch1[...]"; in the rare case when it must be odd, you write
"OddPFetch1[...]." Also, the various forms of RM addressing that require RMod=1 cannot be
used when specifying a base register (i.e., Stack, Stack&+n, Stack&-n, PCF[..], SB[..], and DB[..]

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 28

won’t work); this is illegal because the DF2 bit in memory reference instructions coincides with
RMod in regular instructions.

When the optional F2 argument is omitted, the displacement relative to the base register is taken
from T, and you may use F2 for an unrelated function in a separate clause. If you supply the F2
argument, which must be an integer less than 20, that value is stored in the F2 field of the
instruction and used instead of T. See the hardware manual for details on how this works.

Note that memory instructions use the ALU to add the low-half base register to the displacement;
the result of this addition may be tested in the next instruction if desired. For example, it is
sometimes useful to branch on the ALU carry in the next instruction, so that the high part of the
base register can be updated when crossing a 64K memory boundary.

Input, Output, and ReadPipe references do not use a base register, but address computation is done
just as for other references. "OtherRAddr" (default 0 if omitted) specifies the base register, which
can be tested by an R<0 or R Odd branch condition in the same instruction, or used to somehow
setup an ALU result for a branch condition in the next instruction. In addition, if the base register
is the target of an immediately preceding PFetch, then the Input or Output will be held until that
reference has finished; specifying a different base register avoids this unnecessary hold--or you can
deliberately select the target of the preceding PFetch to interlock the reference.

The RAddr argument may be either "Stack" or an RM address accessible to the task. Since the
current task is OR’ed into the top 4 bits of the 8-bit SrcDest field that specifies RAddr, RAddr is
further constrained to satisfy the relation: (RAddr or (CTask lshift 4)) = RAddr. In addition,
RAddr must not be 0 (which is the value assembled for "Stack"); for PFetch2/PStore2 it must be
even and for PFetch4/PStore4 it must be quadaligned.

"Must be even" and "must be quadaligned" are a little too strong. If you violate this rule,
the assembler will print a warning message which you are free to ignore. In this case, the
hardware will transfer the double-word/quad-word into the two/four RM locations
beginning with the one you specify and wrapping around at 20-word boundaries (i.e., if
you specify RM 36 as the address for a PFetch4, the data will be delivered to 36, 37, 20
and 21). The reason for the warning is that RM interlocking will not occur correctly, as
discussed in the next section.

25. RM Interlocking

The hardware "interlocks" RM references to ensure that following a memory reference you neither
read an RM word before the memory controller has filled it from storage nor overwrite an RM
word before the memory controller has deposited it in storage; an instruction will be repeatedly
aborted and reexecuted until it is safe to proceed. However, the hardware interlock is not
foolproof, so there are some programming requirements of which you must be aware.

First, every instruction is reading some RM word (word 0 in the current 100-word region, if you
don’t explicitly mention an RM address), but the hardware interlocks reads only when the ALU
operation involves A somehow--no interlock occurs on an LU_T ALU operation, which does not
involve A. However, sometimes you will utilize an RM word without routing it into the ALU. For
example:

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 29

StkP_RAddr, RAddr_T; Load an A destination from RAddr, LU_T

RAddr, Skip[R Odd]; Use the R<0 or R Odd branch conditions

In these situations, if RAddr is involved in a preceding fetch-type memory reference (PFetch1/2/4,
ReadPipe, XMap, or Input) which is still in MC1/MC2, the hardware interlock will not occur and
the instruction will erroneously proceed without waiting for the memory controller to fill the word
from storage.

The assembler has some features to help avoid programming errors in this situation. First, the
default ALU operation in an instruction is LU_T, but when you write a clause which loads some A
destination from RM, the default is changed to LU_A which will invoke the read interlock. In
other words:

StkP_RAddr; = LU_StkP_RAddr, so the interlock will occur

A_RAddr; = LU_A_RAddr, so the interlock will occur

RAddr, Skip[R Odd]; didn’t say A_RAddr, so LU_T is still the default and interlock will
NOT occur--potential undetected programming error here.

StkP_RAddr, RAddr_T; LU_A default overruled by LU_T, so no interlock will occur, but the
assembler will issue a "No register interlock" warning to you in this case;
you can ignore the warning if you want to, but...

StkP_RAddr, RAddr_T, NoRegILockOK;
suppresses the "no register interlock" warning message; you should add
the "NoRegILockOK" clause to instructions which do not invoke the
register interlock if you are sure that not having the register interlock is
ok.

Another set of potential problems occurs when the two RM words involved in PFetch2/PStore2 are
not an even-odd pair or when the four RM words affected by a PFetch4/PStore4 are not
quadaligned (i.e., the first of the four words does not have two low zeroes in its address). For
example, suppose a PFetch2/PStore2 is made to the Stack; if the first of the two RM words is even,
all is well and the hardware interlock will abort references to either of the two words involved in
the reference; however, if the first of the two RM words is odd, then the hardware will NOT abort
references to the second word involved in the reference (It will instead erroneously abort references
to the RM word preceding the first word). Similar problems occur when the first RM word of a
PFetch4/PStore4 is not quadaligned.

To assembler will flag potential problems in these situations with a warning message "WARNING:
RAddr not even" on a PFetch2/PStore2 or "WARNING: RAddr not quadaligned" on a
PFetch4/PStore4 for which the RM address is not aligned. These warning will not occur on
PFetch2/PStore2 to the stack. If an unaligned reference is legitimate, then you must advise the
assembler by placing an "OddOK" or "NonQuadOK" clause to the right of the reference.

When you reference a stack word that is potentially the second word of an unaligned and
incomplete PFetch2, you have to be very careful to use the Stack&-n form of reference; when you
write any stack word that is potentially the second word of an unaligned and incomplete PStore2,
you must use the Stack&+n form of reference. Also note that when you interlock by using
Stack&-n or Stack&+n, you do not have to route the stack through the ALU to accomplish the
interlock. These are discussed in the hardware manual.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 30

26. Standalone Functions

The following summarizes standalone functions, each written as a separate clause in the instruction:

BreakPoint Causes the instruction to be breakpointed by Midas when debugging.

Nop Assembles a no-op instruction.

SpareFunction Uses F1 and F2 (undefined)

ResetErrors Uses F1 and F2

IncMPanel Uses F1 and F2

ClearMPanel Uses F1 and F2

GenSRClock Uses F1 and F2

ResetWDT Uses F1 and F2

Boot Uses F1 and F2

SetFault Uses F1 and F2

ResetFault Uses F1 and F2

UseCTask Uses F1 and F2

WriteCS0&2 Uses F1 and F2

WriteCS1 Uses F1 and F2

ReadCS Uses F1 and F2

D0Off Uses F1 and F2

RegShift Uses F2 (ordinarily not written explicitly becuase the sources that require
it are individually named, so you probably will never use this)

FreezeResult Uses F2

IOStrobe Uses F2

ResetMemErrs Uses F2

UseCOutAsCIn Uses F2

SkipData See the "NextData and NextInst" section.

CSkipData See the "NextData and NextInst" section.

LoadPage[n] Uses F1 and F2; 0 <= n <= 17, where n is an integer equal to the
page number; this is used when an ordinary branch clause is used in the
next instruction.

LoadPageExternal[n] Like LoadPage; this must be used when the branch clause in the next
instruction is a GotoExternal or CallExternal.

At[n1,n2] See the "Placement Declarations" section.

Opcode[n] See the "Placement Declarations" section.

27. Branching

This section discusses branch and dispatch clauses, which are assembled into the JC and JA fields of
the instruction. At assembly time, D0Lang produces the correct JC field and sometimes the correct
JA field or correct low bit of JA; however, most branch clauses indicate the required branch
linkages in extra fields assembled only for MicroD. MicroD then determines a satisfactory
placement for the instructions and fills out JA correctly.

The hardware defines GoTo, Call, Disp, Return, and conditional GoTo, each represented by codes
in the JC instruction field; conditional GoTo’s may specify any of eight branch conditions using
only JC and JA or 6 more branch conditions using F2. The least significant bit of JA is used to
modify the branch condition on a conditional GoTo and to modify the action of a Return.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 31

The assembly language encodes these possibilities in the following kinds of branch clauses:

DblGoTo[t1, t2, bc] Jumps to t1 if the branch condition bc is true, else to t2; MicroD will
place t2 at an even location and t1 at the adjacent odd location; the
targets must be on the same 400-word microstore page as the instruction
containing the DblGoto.

GoTo[t1<, bc>] Jumps to t1 if the optional bc is either omitted or true, else falls through
to the next instruction inline. t1 will be placed on the same page as the
current instruction. If bc is given, the next instrucion inline will be
placed at an even location and t1 at the adjacent odd location.

Skip[<bc>] = GoTo[.+2<,bc>]

Call[t1] Loads TPC[current task] with the address of the next instruction inline
and branches to t1; MicroD will place the next instruction inline at (. &
7760)+(.+1 & 17) and will place t1 on the same page.

CallX[t1] Loads TPC[current task with (. & 7760)+(.+1 & 17) and branches to t1.
The next instruction inline is not constrained to lie at any particular
location; MicroD will place t1 on the same page.

Disp[t1] Will dispatch to the the table origined at (t1 & 7760); the programmer
must manually place all instructions in the dispatch table with At clauses.
The dispatch will transfer control to (t1 & 7760) OR’ed with the low
four bits of APC. The instruction immediately preceding Disp must
normally be a Dispatch (but conceivably UseCTask or APCTask&APC_
might be used instead of Dispatch in some clever situations).

Return Returns to the address in APC (JA.7=0).

NIRet Returns to the address in APC (JA.7=1) which will contain
2001+(4*ByteCode); this form of return is used after NextInst.

Task Special kludge that does Call[.+1] in the current instruction and forces a
Return in the next instruction inline (which must not have any branch
clause); the second instruction inline will be placed at .+1.

GoToExternal[n] Puts a goto code in JC and stores the integer n in JA; no placement
constraints imposed and no error checking; usually used after
LoadPageExternal[m].

CallExternal[n] Puts a call code in JC and stores the integer n in JA; no placement
constraints imposed and no error checking; usually used after
LoadPageExternal[m].

DblGoToP[t1, t2, bc] = DblGoto with the on-page constraints removed; the preceding
instruction must contain an apropriate LoadPage; no error checking.

GoToP[t1, bc] = Goto with the on-page constraint removed.

CallP[t1] = Call with the on-page constraint removed.

DispP[t1] = Disp with the on-page constraint removed.

SkipP[t1] = Skip with the on-page constraint removed.

In the above forms, t1 and t2 may be instruction labels or one of the following special symbols:

.+3 current address + 3.

.+2 current address + 2.

.+1 current address + 1.

. the address of the current instruction.

.-1 current address - 1.

.-2 current address - 2.

.-3 current address - 3.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 32

Branch conditions may be any of the following:

Regular Complementary

ALU#0 ALU=0

Carry Carry’

ALU<0 ALU>=0

H2Bit8’ H2Bit8

R<0 R>=0

R Odd R Even

IOAtten’ IOAtten

MB MB’

IntPending IntPending’ Uses F2

Ovf’ Ovf Uses F2

BPCChk BPCChk’ Uses F2

QuadOvf QuadOvf’ Uses F2

TimeOut TimeOut’ Uses F2

The complementary form of the branch conditions is provided as a programming convenience. The
effect of using a complementary branch condition is to interchange the even-odd constraints on the
target pair.

28. NextData and NextInst

The assembler contains a number of macros and placement features to support the NextData and
NextInst hardware functions. These functions trap to absolute location 0 in the microstore when
the quadword buffer containing data from the opcode stream is exhausted; on a trap, the instruction
address in CIA will be saved in TPC iff the instruction containing NextData/NextInst has a Call
encoded in its JC field.

The system microcode deals with this situation as follows: First, the trap instruction at 0 contains a
"LoadPageExternal[0], GoToExternal[377]" where the GoTo sends control to location 377 on the page
containing the NextData/NextInst that trapped. Next, the instruction at 377 on that page will contain a
"PFetch4[PC,IBuf,4], GoToP[BufferRefill]" or whatever, where BufferRefill is on page 0. There are restrictions
on what can be done by the trap instruction at location 0 (see hardware manual).

For this reason it is usually necessary to encode a Call in JC to ensure that the trap subroutine will
restart at the correct place. However, this will usually be a "fake call" (equivalent to CallX) because
there is no intention to return from a subroutine to .+1 in the instruction stream. Consequently,
the assembler has a bit in its output data format (the OddCall bit) which tells MicroD that, even
though the current instruction contains a call, it is not necessary to place the next instruction inline
at .+1 in the microstore. Some of the macros discussed below set this bit to avoid imposing an
unnecessary placement constraint on the program.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 33

The macros defined for these two functions are as follows:

A_NextInst[RAddr] Instruction dispatch on the next opcode in the opcode stream;
PCF[RAddr] addressing selects the word in the quadword-buffer
beginning at RAddr containing the next byte; the NextInst F1 function
causes the cycler-masker to select the byte in that word according to the
low bit of PCF; forces a fake Call to be encoded in JC. No branch
clause is necessary if the successor is the next instruction inline, but if
any branch clause is specified, it must be a (fake) Call or CallX.

A_CNextInst[RAddr] Like NextInst, but the JC field is not constrained and any branch clause
may be used. However, unless either a buffer refill trap is impossible
(because the BPCChk branch condition is false or because PCF is known
to be odd) or the return address in TPC has already been setup to cope
with a trap, you will have to write an explicit Call into the instruction to
ensure that a buffer refill trap will return to reexecute this instruction;
this will be a real call.

A_NextData[RAddr] Like NextInst but uses the NextData function rather than the NextInst
function to obtain the next byte in the opcode stream.

A_CNextData[RAddr] Like CNextInst but uses the NextData function.

SkipData Uses the NextData function to skip the next byte in the opcode stream
without referencing it; forces a fake Call to be encoded in JC; does not
impose PCF addressing, so any RM address can be referenced (but
because the NextData function will use the cycler-masker to select either
the left or right byte of the selected RM address, your use of that RM
address is limited).

CSkipData Like SkipData, but does not impose any constraint on JC; any branch
clause may be used. If the branch clause is a Call, it will be "real" and
the successor will be the next instruction inline; if not a Call, you must
be sure that either a trap is impossible or the return address already in
TPC is an appropriate return from the trap subroutine.

Here are some examples using these macros:

LU _ NextInst[IBuf]; *Successor to NextInst is .+1
Push: Stack&+1 _ T, NIRet;

LU _ NextInst[IBuf], Call[Push]; *Successor to NextInst is at the label "Push"

T _ CNextData[IBuf], Call[FixPointer]; *Real call with NextData function
T _ (Stack&-1) + T, GoTo[Push];

Call[FixT]; *Call unnessary because return for possible trap
T _ CNextData[IBuf], Skip[IntPending]; *already setup

LU _ Cycle&PCXF, FreezeResult, Skip[R Even];
 CSkipData, DblGoTo[A,B,ALU<0]; *Trap impossible because PCF is odd
DblGoTo[A,B,ALU<0];

Note: It is not strictly necessary for NIRet to occur in the instruction immediately after the
NextInst/CNextInst. From the hardware manual, it appears that a subroutine which returned by
doing a NIRet could intervene. In other words, the NextInst could be followed by an arbitrary
code sequence; when NIRet occurred, the dispatch address for the next opcode would be put into
TPC; and the Return or NIRet after that would send control to the next opcode.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 34

29. Placement Declarations

Currently, you must specify the page on which each instruction is placed. This is done by a
declaration of the form:

OnPage[n];

where the integer n is the page number (0 to 17). Subsequently assembled instructions will be
placed on the specified page. The OnPage declaration may appear only as a separate statement.

Two other declarations may appear only as clauses in an instruction being assembled; these specify
the exact placement of the instruction and also do OnPage, so that subsequently assembled
instructions will be placed on the same page. These are:

At[n1] places the current instruction at location n1.

At[n1, n2] places the current instruction at location n1+n2.

Opcode[n] places the current instruction at 2001+(4*n), where n is the opcode (0 to 377)

DispTable[Length,Mask,Value] appearing in an instruction statement causes that instruction to begin
a group of Length consecutively-placed statements, where 1 <= Length <= 20. The first
instruction will be placed at a location such that And[location,Mask] = Value, where Mask defaults
to 17 and Value to 0. It is required that Length+Value be less than 21. Placement of the
instruction containing DispTable will be further constrained by whatever OnPage declaration is in
force.

Note that DispTable will not handle all dispatch tables; it requires that a table be no longer than 20
with no "holes" and that the instructions in the table appear as consecutive statements in the source
program. Whenever these conditions cannot be met, At clauses must be used for the instructions in
the table.

Opcode declarations are required for the entry instructions of opcodes; At declarations are required
for trap instructions, for instructions in dispatch tables that cannot use DispTable for some reason,
and in a few other situations, but MicroD will take care of normal placement constraints
automatically.

To assist in defining absolute locations for dispatch tables and manually placed instructions the
"LOCA" macro is defined:

Loca[Name,Page,Offset] defines Name as an integer equal to Page*400 + Offset, where Page and Offset are
integers.

In addition to the above placement declarations, there are two macros for "reserving" or
"unreserving" locations in IM. These macros, which direct MicroD to avoid placing instructions in
particular microstore locations, are as follows:

IMReserve[p,w,n] where p, w, and n are integers reserves n locations beginning at word w on page p.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 35

IMUnReserve[p,w,n] unreserves n locations beginning at word w on page p.

For diagnostics, the declaration statement "MidasInit;" may be issued to reserve the several
locations on page 0 and all of page 17 for use by the debugger Midas.

30. Tasking Considerations

Since task switching occurs only when an "unrestricted" return is executed, each task must be sure
to execute instructions containing returns often enough to satisfy the timing requirements of tasks
which are higher (or sometimes lower) in priority. Here "unrestricted" means that the instruction
preceding return did not do APCTask&APC_ or UseCTask, which disallow task switching.

When an unrestricted return is executed, the highest priority different task requesting service will
run, or the emulator if no other tasks are requesting. This has several implications:

First, when a high priority task such as the display driver executes a return when it has not yet
blocked, it will lose control to some other task (usually the emulator) until that task does a return.
This means that it should not do too many returns else the accumulated interference of lower
priority tasks will add up to so large a value that its timing requirements are not satisfied.

Secondly, each task must be sure to execute Returns frequently enough that higher priority tasks
receive adequate service.

We can illustrate this with an example. Suppose that the timing requirement of the display driver is
that upon issuing a wakeup request it be granted 88 cycles out of the next 288 cycles and that it
executes one intermediate return before its final return after blocking. Initial service will be delayed
until whatever task is running executes a return, and further delayed until all higher priority tasks
are satisfied. At the intermediate return, a lower (or higher task) will run first and then higher tasks
until they are satisfied. If page or write protect faults or single-error logging are possible, then
some allowance must be made for the fault task, which has a long burst of non-tasking computation
at the beginning of each fault. The total interference of all these other tasks must be less than 200
cycles.

The emulator task for the current AMesa system microcode attempts to satisfy this requirement by
tasking at least once every 46 cycles.

Another programming consideration is the exact placement of returns. It is frequently possible to
choose one of several places; one good place is immediately before an instruction that will be
aborted--e.g., before an instruction that will read an RM word for which a PFetch has just been
started or write an RM word for which a PStore has just been started. An undesirable placement is
where the current task could proceed because it is not issuing memory references but where another
task might experience an abort because MC1 is busy.

Dolphin MicroAssembler Edward R. Fiala 9 October 1981 36

31. Microcode Overlays

The barest minimum provisions are made for microcode overlays. When assembling basic system
microcode, the IMReserve macro discussed in the "Placement Declarations" section may be used to
disallow the use of any set of IM locations by MicroD. Also, any pages totally unused by the
system microcode or containing throwaway initialization code are available to overlays. Finally,
particular instructions in the system overwritten by particular instructions in an overlay must be
manually placed with "At" declarations in both the system microcode and the overlay.

An overlay must use IMReserve to prevent its use of any locations on pages that it shares with
system microcode. MicroD has a switch that will write a xxOccupied.Mc file containing IMReserve
statements.

Any instructions in the system branched to from an overlay must be manually placed with "At" and
vice versa. Then, instead of using LoadPage[n] and GoTo[n] or Call[n], you must use
LoadPageExternal[n] and GoToExternal[n] or CallExternal[n] in instructions that branch between the
system and an overlay.

32. Recent Hardware and Assembler Changes

1. SUB, EQUATE, ASMMODE, TRACEMODE, and WHILE Micro builtins and the "warning"
code for the ER builtin.

2. Some names have been assigned to R-bus sources that were formerly referred to by
GetRSpec[n] phrases (e.g., Cycle&PCXF, SStkP&NStkP, CTask&NCIA, Page&Par&Boot,
ALUResult&NSALUF).

3. Bugs in use of GoTo with read/write control store were fixed.

4. Some error messages for PFetch2/PStore2 and PFetch4/PStore4 were changed to warnings, and
the OddOK and NonQuadOK clauses to the right were added to overrule the warnings.

5. The specification of a second RM address with Input[..], Output[..], and ReadPipe[..].

6. OddBaseOK was removed and OddPFetch1, etc. were recently added.

7. SkipData, CSkipData, CNextInst, Loca, IMData, HiA, LoA, RV2, RV4, CallX, negative
constants, Formn, Form-n, and Nib0RSh8, and IF, UNLESS, ELSEIF, ELSE, ENDIF conditional
assembly stuff are recent assembler additions.

8. The IMMASK memory handled by MicroD and the DispTable macro which outputs placement
constraints for dispatch tables are new.

9. Additional MicroD output files.

