
This message describes changes between the current Alto-compatible Dolphin
microcode release (version 46) and the previous release (version 33).
This microcode is sometimes referred to as "AMesa" below. As usual the
various files involved in this release are version coordinated--all have
version number 46 on the three Ivy directories where I put them. For this
reason you should note the version to avoid possible confusion later.
Files related to this release are as follows:

<D0>InitialAlto.Eb!46 install on your disk with Othello
<D0>Alto.Eb!46 for Ethernet boot servers
<D0Source>AMesaSources.Dm!46 sources
<D0Docs>MPCodes.Press!46 interpretation of AMesa maintenance

panel codes
<D0Docs>MurrayMPCodes.Press interpretation of Initial and other

maintenance panel codes
<D0Docs>AMesaRelease.Press!46 copy of this message

Version 46 fixes all operational bugs known to me, so report any problems that
you have with it. If version 46 doesn’t work for some reason, version 28/29 is
stored on [Ivy]<D0>NewInitialAltoCSL.Eb!28 and on <D0>LFKB>NewInitialAltoLF.Eb!29
(NOTE: version 33 fixed several problems in version 28/29 but also introduced
two bugs, so it seemed on the whole less useful that version 28/29; hence drop
back to version 28/29 if 46 doesn’t work).

Changes are as follows:

1) Some changes have been made in maintenance panel codes. At startup a
microprogram called Initial runs first; it has maintenance panel codes
documented in MurrayMPCodes.Press. The MP code 104 is displayed for about
0.4 seconds when Initial is finished and AMesa has commenced; after that
MPCodes are interpreted as discussed in [Ivy]<D0Docs>MPCodes.Press!46.

2) The initialization problem which caused the display horizontal control
to be screwed up just after you powered on your Dolphin is believed fixed.

3) A problem in version 33 or later Ethernet control microcode which
caused occasional MP code 120 to 122 failures is fixed. A problem in
version 33 or later disk control microcode is believed fixed.

4) The above microcode release will run on any of the three display/keyboard
configurations--you do not need separate microcode versions for LF and
CSL keyboards as you did before.

5) Storage is now preserved after a maintenance panel code crash, so it is
possible to attach to a D0 with Midas and look at storage after a crash
(I doubt that this will be useful except during extraordinary circumstances).

6) Microcode for color display, jasmine scanner, halftoning, and Mesa
floating point opcodes is now part of the automatic loadup; those who have
been using MicrocodeOverlay.Bcd with version 28 or 33 should delete it.
Microcode developers note that the automatic loadup overwrites the area of
microstore formerly reserved for the Midas Kernel. If this interferes with
someone’s debugging, call me.

7) WCBL (76b), ICBL (77b), and Misc opcodes with alpha byte in the range
60b through 77b now trap through SD 151, 152, and 156, respectively; these
are for Cedar.

8) Mesa JRAM opcode (367b) now treats the microcode to which it jumps as a
subroutine, which can optionally "Return" to continue with the next opcode;
formerly it was necessary to exit at P7TailLoc, sometimes inconvenient.
Also, you can now use JRAM to start an arbitrary microcode task--simply
push a 16d-bit number on the stack in which bits 0..3 are the task and
bits 4..15 are the starting microstore address; when the task thus started
blocks, the emulator will continue at the next opcode (The LRJ opcode also
allows arbitrary tasks to be started this way).

9) Two bugs in RXLPL and WXLPL and one page fault bug in RDBL Mesa opcodes
are fixed courtesy of SDD (Frandeen or Johnsson, I think).

10) BitBlt handling of gray mode has been modified so that it is compatible
with the Alto. Previous microcode would occasionally fail to align gray
patterns in adjoining rectangular areas.

2

11) Some improvements in the display microcode result in about 1% performance
improvement for all emulators and improve the worst case timing enough
that display glitching with LF monitors should occur less often.

12) The refresh timer has been slowed from a 64 microsecond period to 256
microseconds; this has been done to reduce timer task overhead from about
4% of all cycles down to 1% of all cycles (i.e., emulators will run about 3%
faster with the display off or about 4% faster with full screen display).
Although the internal clock will tick more slowly, long-term "drift" with
respect to Alto compatible clock update will be lessened, so the clock will
run at about the same speed as on the Alto rather than about 0.4% faster.
I know of no programs which rely upon the granularity of the 64 microsecond
tick used previously, so this change should not affect any software.

Unfortunately, the period over which all bits in storage are refreshed is
slowed from 2 msec to 8 msec. 16K ic’s used for storage specify that at
the maximum operating temperature (80 degrees C. at the surface of the ic)
a period of 2 msec is required for refresh. I have been advised that the
refresh period is exponential in absolute temperature such that the required
period halves about every 5 degree rise in temperature, so quadrupling the
period will lessen maximum operating temperature of a marginal part about
10 degrees C. However, the spec is believed to be so conservative that
very few parts require refresh at the maximum rate, and a 3% to 4% speed
improvement seems worth the possible replacement of a few storage ic’s.

If anyone runs into problems with this change or has reliable hardware
information, please let me know details. Note that it is desirable for
storage diagnostics to use an equal or slower refresh period to detect
possible problems in this area.

Thanks to Hal Murray for help in checking out this microcode.

