-- file Pass4Xb.mesa -- last written by Satterthwaite, February 24, 1983 3:32 pm DIRECTORY Alloc: TYPE USING [Notifier], ComData: TYPE USING [interface, switches, typeCARDINAL, typeINTEGER, typeSTRING], LiteralOps: TYPE USING [MasterString, FindLocalString, StringIndex, StringReference], Log: TYPE USING [ErrorTree, WarningTree], P4: TYPE USING [ Attr, voidAttr, Prop, emptyProp, fullProp, voidProp, Repr, none, signed, unsigned, both, long, other, RegCount, maxRegs, checked, currentLevel, AddrOp, All, Assignment, BiasForType, BindCase, BindType, BoolValue, Call, CanonicalType, CaseDriver, CheckRange, CommonAttr, CommonProp, CommonRep, ComparableType,ConstantInterval, Construct, DeclItem, Dollar, EmptyInterval, Extract, FoldExpr, Index, Interval, IntToReal, LiteralRep, LongToShort, MakeTreeLiteral, MarkString, MiscXfer, Narrow, New, Nil, NormalizeRange, PadRecord, Reloc, RepForType, Rhs, RowConstruct, SeqIndex, ShortToLong, StructuredLiteral, Substx, TreeLiteral, TreeLiteralValue, TypeExp, TypeOp, Union, WordsForType, ZeroP], Pass4: TYPE USING [implicitAttr, implicitBias, implicitType, tFALSE, tTRUE], Symbols: TYPE USING [Base, ISEIndex, CSEIndex, lG, typeANY, seType], SymbolOps: TYPE USING [ Cardinality, ConstantId, FindExtension, NormalType, RCType, TypeForm, UnderType, WordsForType, XferMode], SymLiteralOps: TYPE USING [AtomRef, TextRef], Tree: TYPE USING [Base, Index, Link, Map, NodeName, Null, treeType], TreeOps: TYPE USING [ FreeNode, GetHash, GetNode, IdentityMap, ListLength, MarkShared, OpName, PopTree, PushNode, PushTree, SetAttr, SetInfo, Shared, UpdateList]; Pass4Xb: PROGRAM IMPORTS Log, LiteralOps, P4, SymbolOps, SymLiteralOps, TreeOps, dataPtr: ComData, passPtr: Pass4 EXPORTS P4 = { OPEN SymbolOps, P4, TreeOps; -- pervasive definitions from Symbols ISEIndex: TYPE = Symbols.ISEIndex; CSEIndex: TYPE = Symbols.CSEIndex; tb: Tree.Base; -- tree base address (local copy) seb: Symbols.Base; -- se table base address (local copy) zone: UNCOUNTED ZONE ← NIL; ExpBNotify: PUBLIC Alloc.Notifier = { -- called by allocator whenever table area is repacked tb ← base[Tree.treeType]; seb ← base[Symbols.seType]}; -- intermediate result bookkeeping ValueDescriptor: TYPE = RECORD[ bias: INTEGER, -- bias in representation (scalars only) nRegs: RegCount, -- estimate of register requirement attr: Attr]; -- synthesized attributes VStack: TYPE = RECORD [SEQUENCE length: NAT OF ValueDescriptor]; vStack: LONG POINTER TO VStack ← NIL; vI: INTEGER; -- index into vStack VPush: PUBLIC PROC [bias: INTEGER, attr: Attr, nRegs: RegCount] = { vI ← vI + 1; WHILE vI >= vStack.length DO newLength: NAT = vStack.length + 16; newStack: LONG POINTER TO VStack = zone.NEW[VStack[newLength]]; FOR i: INTEGER IN [0 .. vI) DO newStack[i] ← vStack[i] ENDLOOP; zone.FREE[@vStack]; vStack ← newStack; ENDLOOP; vStack[vI] ← [bias:bias, attr:attr, nRegs:nRegs]}; VPop: PUBLIC PROC = {IF vI < 0 THEN ERROR; vI ← vI-1}; VBias: PUBLIC PROC RETURNS [INTEGER] = {RETURN [vStack[vI].bias]}; VAttr: PUBLIC PROC RETURNS [Attr] = {RETURN [vStack[vI].attr]}; VProp: PUBLIC PROC RETURNS [Prop] = {RETURN [vStack[vI].attr.prop]}; VRep: PUBLIC PROC RETURNS [Repr] = {RETURN [vStack[vI].attr.rep]}; VRegs: PUBLIC PROC RETURNS [RegCount] = {RETURN [vStack[vI].nRegs]}; ExpInit: PUBLIC PROC [scratchZone: UNCOUNTED ZONE] = { zone ← scratchZone; vStack ← zone.NEW[VStack[32]]; vI ← -1}; ExpReset: PUBLIC PROC = { IF vStack # NIL THEN zone.FREE[@vStack]; zone ← NIL}; OperandType: PUBLIC PROC [t: Tree.Link] RETURNS [CSEIndex] = { RETURN [WITH t SELECT FROM symbol => UnderType[seb[index].idType], literal => IF index.litTag = string THEN dataPtr.typeSTRING ELSE dataPtr.typeINTEGER, subtree => IF t = Tree.Null THEN passPtr.implicitType ELSE tb[index].info, ENDCASE => Symbols.typeANY]}; ForceType: PUBLIC PROC [t: Tree.Link, type: CSEIndex] RETURNS [Tree.Link] = { PushTree[t]; IF (OpName[t] # mwconst AND OpName[t] # cast) OR Shared[t] THEN PushNode[cast, 1]; SetInfo[type]; RETURN [PopTree[]]}; ChopType: PROC [t: Tree.Link, type: CSEIndex] RETURNS [Tree.Link] = { PushTree[t]; PushNode[chop, 1]; SetInfo[type]; RETURN [PopTree[]]}; -- literals MakeStructuredLiteral: PUBLIC PROC [val: WORD, type: CSEIndex] RETURNS [t: Tree.Link] = { t ← MakeTreeLiteral[val]; SELECT TypeForm[type] FROM basic, enumerated, subrange, mode => NULL; ENDCASE => t ← ForceType[t, type]; RETURN}; LiteralAttr: PUBLIC PROC [rep: Repr] RETURNS [Attr] = { RETURN [[prop: fullProp, rep: rep]]}; -- attribute accounting BinaryAttr: PROC RETURNS [Attr] = { RETURN [CommonAttr[vStack[vI-1].attr, vStack[vI].attr]]}; MergeAttr: PROC [old: Attr] RETURNS [Attr] = { RETURN [CommonAttr[old, vStack[vI].attr]]}; -- register accounting RegsForType: PUBLIC PROC [type: CSEIndex] RETURNS [RegCount] = { n: LONG CARDINAL = IF seb[type].mark4 THEN SymbolOps.WordsForType[type] ELSE 0; RETURN [IF n = 2 THEN 2 ELSE 1]}; ComputeRegs: PROC [node: Tree.Index] RETURNS [RegCount] = { n1: RegCount = vStack[vI-1].nRegs; n2: RegCount = vStack[vI].nRegs; k: RegCount = RegsForType[tb[node].info]; RETURN [MIN[MAX[n1, n2+k], maxRegs]]}; ComputeIndexRegs: PUBLIC PROC [node: Tree.Index] RETURNS [RegCount] = { n1: RegCount = vStack[vI-1].nRegs; n2: RegCount = vStack[vI].nRegs; k: RegCount = RegsForType[OperandType[tb[node].son[1]]]; RETURN [MIN[MAX[RegsForType[tb[node].info], n1, n2+k], maxRegs]]}; AdjustRegs: PROC [node: Tree.Index, commuteOp: Tree.NodeName] RETURNS [RegCount] = { n1: RegCount = vStack[vI-1].nRegs; n2: RegCount = vStack[vI].nRegs; k: RegCount = RegsForType[tb[node].info]; n: CARDINAL; IF n1 >= n2 THEN n ← n2 + k ELSE { v: ValueDescriptor; t: Tree.Link ← tb[node].son[1]; tb[node].son[1] ← tb[node].son[2]; tb[node].son[2] ← t; tb[node].name ← commuteOp; v ← vStack[vI]; vStack[vI] ← vStack[vI-1]; vStack[vI-1] ← v; n ← n1 + k}; RETURN [MIN[MAX[n1, n2, n], maxRegs]]}; -- constant folding Fold: PROC [node: Tree.Index, rep: Repr] RETURNS [Tree.Link] = { fullRep: Repr = IF tb[node].attr2 THEN long + rep ELSE rep; RETURN [FoldExpr[node, fullRep]]}; FoldedAttr: PROC [val: Tree.Link, rep: Repr] RETURNS [Attr] = { RETURN [LiteralAttr[LiteralRep[val, rep]]]}; -- operators UMinus: PROC [node: Tree.Index] RETURNS [val: Tree.Link] = { rep: Repr; tb[node].son[1] ← Exp[tb[node].son[1], signed]; rep ← vStack[vI].attr.rep; SELECT rep FROM both => rep ← signed; none => {Log.WarningTree[mixedRepresentation, val]; rep ← signed}; ENDCASE => NULL; IF ~StructuredLiteral[tb[node].son[1]] THEN { tb[node].attr3 ← TRUE; val ← [subtree[index: node]]} ELSE val ← Fold[node, rep]; IF rep = unsigned THEN rep ← signed; vStack[vI].attr.rep ← rep; vStack[vI].bias ← -VBias[]; RETURN}; Abs: PROC [node: Tree.Index] RETURNS [val: Tree.Link] = { rep: Repr; tb[node].son[1] ← RValue[tb[node].son[1], 0, signed]; val ← [subtree[index: node]]; rep ← vStack[vI].attr.rep; SELECT rep FROM unsigned, both => { Log.WarningTree[unsignedCompare, val]; val ← tb[node].son[1]; tb[node].son[1] ← Tree.Null; FreeNode[node]}; none => {Log.ErrorTree[mixedRepresentation, val]; rep ← both}; ENDCASE => { tb[node].attr3 ← TRUE; IF StructuredLiteral[tb[node].son[1]] THEN val ← Fold[node, rep]; IF rep # other THEN rep ← both}; vStack[vI].attr.rep ← rep; RETURN}; EnumOp: PROC [node: Tree.Index, target: Repr] RETURNS [Tree.Link] = { t: Tree.Link; type: CSEIndex = tb[node].info; nType: CSEIndex = NormalType[type]; long: BOOL = (TypeForm[type] = long); d: INTEGER ← 0; DO d ← IF tb[node].name = pred THEN d-1 ELSE d+1; t ← tb[node].son[1]; tb[node].son[1] ← Tree.Null; FreeNode[node]; SELECT OpName[t] FROM pred, succ => NULL; ENDCASE => EXIT; node ← GetNode[t]; ENDLOOP; PushTree[t]; PushTree[MakeTreeLiteral[ABS[d]]]; IF long THEN {PushNode[lengthen, 1]; SetInfo[type]}; PushNode[IF d < 0 THEN minus ELSE plus, 2]; SetInfo[type]; SetAttr[1, FALSE]; SetAttr[2, long]; RETURN [IF TypeForm[nType] = enumerated THEN CheckRange[ RValue[PopTree[], BiasForType[nType], target], Cardinality[nType], nType] ELSE AddOp[GetNode[PopTree[]], target]]}; ArithRep: PROC [rep, target: Repr] RETURNS [Repr] = { RETURN [SELECT rep FROM both, none => SELECT target FROM both, none, other => signed, ENDCASE => target, ENDCASE => rep]}; BiasedFold: PROC [node: Tree.Index, rep: Repr] RETURNS [Tree.Link] = { fullRep: Repr = IF tb[node].attr2 THEN long + rep ELSE rep; tb[node].son[1] ← AdjustBias[tb[node].son[1], -vStack[vI-1].bias]; tb[node].son[2] ← AdjustBias[tb[node].son[2], -vStack[vI].bias]; RETURN [FoldExpr[node, fullRep]]}; AddOp: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; op: Tree.NodeName = tb[node].name; type: CSEIndex = tb[node].info; bias, shift: INTEGER; attr: Attr; nRegs: RegCount; son[1] ← Exp[son[1], target]; son[2] ← Exp[son[2], target]; val ← [subtree[index: node]]; attr ← BinaryAttr[]; SELECT attr.rep FROM both => attr.rep ← ArithRep[attr.rep, target]; none => IF target = none THEN {Log.WarningTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← IF target = both THEN signed ELSE target; ENDCASE => NULL; IF StructuredLiteral[son[1]] AND StructuredLiteral[son[2]] AND ~attr1 THEN { val ← BiasedFold[node, attr.rep]; attr ← FoldedAttr[val, attr.rep]; bias ← 0; nRegs ← RegsForType[type]} ELSE { nRegs ← IF op=plus THEN AdjustRegs[node, plus] ELSE ComputeRegs[node]; bias ← vStack[vI-1].bias; shift ← vStack[vI].bias; attr3 ← attr.rep # unsigned; SELECT TRUE FROM TreeLiteral[son[2]] => { val ← son[1]; shift ← shift + TreeLiteralValue[son[2]]; son[1] ← Tree.Null; FreeNode[node]}; (op = plus AND TreeLiteral[son[1]]) => { val ← son[2]; shift ← shift + TreeLiteralValue[son[1]]; son[2] ← Tree.Null; FreeNode[node]}; ENDCASE; bias ← bias + (IF op=plus THEN shift ELSE -shift)}; VPop[]; VPop[]; VPush[bias, attr, nRegs]; IF type # dataPtr.typeINTEGER AND OperandType[val] # type THEN val ← ForceType[val, type]; RETURN}; Mult: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; attr: Attr; const1, const2: BOOL; v1, v2: WORD; bias: INTEGER; nRegs: RegCount; t: Tree.Link; son[1] ← Exp[son[1], target]; son[2] ← Exp[son[2], target]; val ← [subtree[index: node]]; attr ← BinaryAttr[]; SELECT attr.rep FROM both => attr.rep ← ArithRep[attr.rep, target]; none => IF target = none THEN {Log.WarningTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← IF target = both THEN signed ELSE target; ENDCASE => NULL; IF StructuredLiteral[son[1]] AND StructuredLiteral[son[2]] AND ~attr1 THEN { nRegs ← RegsForType[info]; val ← BiasedFold[node, attr.rep]; attr ← FoldedAttr[val, attr.rep]; bias ← 0} ELSE { nRegs ← AdjustRegs[node, times]; const1 ← TreeLiteral[son[1]]; const2 ← TreeLiteral[son[2]]; IF const1 OR ~const2 THEN son[1] ← AdjustBias[son[1], -vStack[vI-1].bias]; IF ~const1 OR const2 THEN son[2] ← AdjustBias[son[2], -vStack[vI].bias]; IF const1 THEN v1 ← TreeLiteralValue[son[1]]; IF const2 THEN v2 ← TreeLiteralValue[son[2]]; attr3 ← attr.rep # unsigned; bias ← SELECT TRUE FROM const1 => v1*vStack[vI].bias, const2 => vStack[vI-1].bias*v2, ENDCASE => 0; IF StructuredLiteral[son[1]] -- AND ~const2 -- THEN { t ← son[2]; son[2] ← son[1]; son[1] ← t}; IF const1 OR const2 THEN SELECT (IF const1 THEN v1 ELSE v2) FROM 0 => {val ← son[2]; son[2] ← Tree.Null; FreeNode[node]; attr.rep ← both}; 1 => { val ← son[1]; son[1] ← Tree.Null; FreeNode[node]; attr ← vStack[IF const1 THEN vI ELSE vI-1].attr}; -1 => { PushTree[son[1]]; son[1] ← Tree.Null; FreeNode[node]; PushNode[uminus, 1]; SetInfo[dataPtr.typeINTEGER]; SetAttr[1, FALSE]; SetAttr[2, FALSE]; SetAttr[3, TRUE]; val ← PopTree[]}; ENDCASE}; VPop[]; VPop[]; VPush[bias, attr, nRegs]; RETURN}; DivMod: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; attr: Attr; nRegs: RegCount; son[1] ← RValue[son[1], 0, target]; son[2] ← RValue[son[2], 0, target]; val ← [subtree[index: node]]; attr ← BinaryAttr[]; SELECT attr.rep FROM both => NULL; -- preserved by div and mod none => IF target = none THEN {Log.ErrorTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← target; ENDCASE => NULL; IF StructuredLiteral[son[1]] AND StructuredLiteral[son[2]] AND ~attr1 THEN { nRegs ← RegsForType[info]; val ← Fold[node, attr.rep]; attr ← FoldedAttr[val, attr.rep]} ELSE { nRegs ← ComputeRegs[node]; attr3 ← CommonRep[attr.rep, unsigned] = none; IF name = div AND TreeLiteral[son[2]] THEN SELECT TreeLiteralValue[son[2]] FROM = 1 => {val ← son[1]; son[1] ← Tree.Null; FreeNode[node]}; >=2 => IF attr.rep = unsigned THEN attr.rep ← both; ENDCASE}; VPop[]; VPop[]; VPush[0, attr, nRegs]; RETURN}; RelOp: PROC [node: Tree.Index] RETURNS [val: Tree.Link] = { OPEN tb[node]; attr: Attr; rep1, rep2: Repr; nRegs: RegCount; d1, d2: INTEGER; uc: BOOL; ZeroWarning: ARRAY Tree.NodeName [relE..relLE] OF [0..2] = [0, 0, 2, 2, 1, 1]; CommutedOp: ARRAY Tree.NodeName [relE..relLE] OF Tree.NodeName = [ relE, relN, relG, relLE, relL, relGE]; son[1] ← Exp[son[1], none]; rep1 ← VRep[]; d1 ← VBias[]; son[2] ← Exp[son[2], none]; rep2 ← VRep[]; d2 ← VBias[]; IF ~ComparableSons[node] THEN Log.ErrorTree[sizeClash, son[2]]; val ← [subtree[index: node]]; attr ← BinaryAttr[]; IF attr.rep = none THEN SELECT name FROM relE, relN => Log.WarningTree[mixedRepresentation, val]; ENDCASE => Log.ErrorTree[mixedRepresentation, val]; SELECT name FROM relE, relN => uc ← FALSE; ENDCASE => { IF rep1 = unsigned OR rep2 = unsigned THEN { son[1] ← AdjustBias[son[1], -d1]; d1 ← 0; son[2] ← AdjustBias[son[2], -d2]; d2 ← 0}; uc ← CommonRep[attr.rep, unsigned] # none}; IF d1 # d2 THEN IF (~uc AND TreeLiteral[son[2]]) OR (uc AND d2 > d1) THEN son[2] ← AdjustBias[son[2], d1-d2] ELSE son[1] ← AdjustBias[son[1], d2-d1]; IF CommonRep[attr.rep, signed+other] = none THEN { SELECT ZeroWarning[name] FROM 1 => IF TreeLiteral[son[1]] AND TreeLiteralValue[son[1]] = 0 THEN GO TO warn; 2 => IF TreeLiteral[son[2]] AND TreeLiteralValue[son[2]] = 0 THEN GO TO warn; ENDCASE; EXITS warn => Log.WarningTree[unsignedCompare, val]}; IF StructuredLiteral[son[1]] AND StructuredLiteral[son[2]] AND ~attr1 THEN { val ← Fold[node, attr.rep]; nRegs ← 1} ELSE {nRegs ← AdjustRegs[node, CommutedOp[name]]; attr3 ← attr.rep # unsigned}; VPop[]; VPop[]; attr.rep ← both; VPush[0, attr, nRegs]; RETURN}; ComparableSons: PROC [node: Tree.Index] RETURNS [BOOL] = { OPEN tb[node]; -- compatibility version type1: CSEIndex = OperandType[son[1]]; n1: CARDINAL = P4.WordsForType[type1]; type2: CSEIndex = OperandType[son[2]]; n2: CARDINAL = P4.WordsForType[type2]; IF n1 = 0 OR n2 = 0 THEN RETURN [FALSE]; SELECT TRUE FROM (n1 = n2) => NULL; (TypeForm[type1] = record AND TypeForm[type2] = record) => IF n1 < n2 THEN -- account for lost discrimination son[2] ← ChopType[son[2], type1] ELSE son[1] ← ChopType[son[1], type2]; ENDCASE => RETURN [FALSE]; RETURN [ComparableType[type1] OR ComparableType[type2]]}; In: PROC [node: Tree.Index] RETURNS [val: Tree.Link] = { OPEN tb[node]; bias: INTEGER; attr: Attr; nRegs: RegCount; void, const: BOOL; subNode: Tree.Index; son[1] ← Exp[son[1], none]; bias ← VBias[]; attr ← VAttr[]; -- IF attr.rep = unsigned THEN {son[1] ← AdjustBias[son[1], -bias]; bias ← 0}; void ← FALSE; val ← [subtree[index: node]]; son[2] ← NormalizeRange[son[2]]; subNode ← GetNode[son[2]]; IF (const ← Interval[subNode, bias, none].const) AND ~tb[node].attr2 THEN [] ← ConstantInterval[subNode ! EmptyInterval => {void ← TRUE; RESUME}]; attr ← MergeAttr[attr]; IF attr.rep = none THEN Log.ErrorTree[mixedRepresentation, val]; tb[subNode].attr3 ← attr3 ← (attr.rep # unsigned); SELECT TRUE FROM void AND son[1] # Tree.Null => { FreeNode[node]; val ← passPtr.tFALSE; nRegs ← 1}; const AND StructuredLiteral[son[1]] AND ~attr1 => { val ← Fold[node, attr.rep]; nRegs ← 1}; ENDCASE => nRegs ← ComputeRegs[node]; VPop[]; VPop[]; VPush[0, attr, nRegs]; RETURN}; BoolOp: PROC [node: Tree.Index] RETURNS [val: Tree.Link] = { OPEN tb[node]; b: Tree.Link = IF (name = and) THEN passPtr.tTRUE ELSE passPtr.tFALSE; n1, n2, nRegs: RegCount; attr: Attr; son[1] ← BoolValue[son[1]]; n1 ← VRegs[]; son[2] ← BoolValue[son[2]]; n2 ← VRegs[]; IF TreeLiteral[son[1]] THEN { IF son[1] = b THEN { val ← son[2]; son[2] ← Tree.Null; attr ← vStack[vI-1].attr; nRegs ← n2} ELSE { val ← IF (name = and) THEN passPtr.tFALSE ELSE passPtr.tTRUE; attr ← LiteralAttr[both]; nRegs ← 1}; FreeNode[node]} ELSE { attr ← BinaryAttr[]; IF son[2] # b THEN {val ← [subtree[index: node]]; nRegs ← MAX[n1, n2]} ELSE {val ← son[1]; son[1] ← Tree.Null; nRegs ← n1; FreeNode[node]}}; VPop[]; VPop[]; attr.rep ← both; VPush[0, attr, nRegs]; RETURN}; CheckAlt: PROC [t: Tree.Link, target: CSEIndex] RETURNS [Tree.Link] = { type: CSEIndex = OperandType[t]; IF P4.WordsForType[type] # P4.WordsForType[target] THEN IF TypeForm[type] = record AND TypeForm[target] = record THEN t ← PadRecord[t, target] ELSE Log.ErrorTree[sizeClash, t]; RETURN [t]}; IfExp: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; select: Tree.Link; prop: Prop; attr: Attr; nRegs: RegCount; bias: INTEGER = BiasForType[info]; son[1] ← BoolValue[son[1]]; prop ← VProp[]; nRegs ← VRegs[]; VPop[]; IF TreeLiteral[son[1]] THEN { IF son[1] # passPtr.tFALSE THEN {select ← son[2]; son[2] ← Tree.Null} ELSE {select ← son[3]; son[3] ← Tree.Null}; FreeNode[node]; val ← Exp[select, target]} ELSE { son[2] ← CheckAlt[RValue[son[2], bias, target], info]; attr ← VAttr[]; nRegs ← MAX[VRegs[], nRegs]; VPop[]; son[3] ← CheckAlt[RValue[son[3], bias, target], info]; val ← [subtree[index: node]]; attr ← MergeAttr[attr]; IF attr.rep = none THEN IF target = none THEN {Log.WarningTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← target; vStack[vI].attr ← attr; val ← [subtree[index: node]]}; vStack[vI].attr.prop ← CommonProp[VProp[], prop]; vStack[vI].nRegs ← MAX[VRegs[], nRegs]; RETURN}; CaseExp: PROC [node: Tree.Index, target: Repr, caseBias: INTEGER] RETURNS [val: Tree.Link] = { op: Tree.NodeName = tb[node].name; type: CSEIndex = tb[node].info; bias: INTEGER = BiasForType[type]; attr: Attr ← [prop: voidProp, rep: both+other]; const: BOOL ← TRUE; Selection: Tree.Map = { attr.prop ← CommonProp[attr.prop, passPtr.implicitAttr.prop]; v ← CheckAlt[RValue[t, bias, target], type]; attr ← MergeAttr[attr]; VPop[]; const ← const AND StructuredLiteral[v]; RETURN}; val ← CaseDriver[node, Selection, caseBias]; IF OpName[val] = op THEN {PushTree[val]; SetAttr[1, const]; val ← PopTree[]}; IF attr.rep = none THEN IF target = none THEN {Log.WarningTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← target; VPush[bias, attr, maxRegs]; RETURN}; BindCaseExp: PROC [node: Tree.Index, target: Repr] RETURNS [Tree.Link] = { BoundExp: PROC [t: Tree.Link, labelBias: INTEGER] RETURNS [Tree.Link] = { RETURN [CaseExp[GetNode[t], target, labelBias]]}; RETURN [BindCase[node, casex, BoundExp]]}; BindTypeExp: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { type: CSEIndex = tb[node].info; bias: INTEGER = BiasForType[type]; attr: Attr ← [prop: voidProp, rep: both+other]; const: BOOL ← TRUE; Selection: Tree.Map = { attr.prop ← CommonProp[attr.prop, passPtr.implicitAttr.prop]; v ← CheckAlt[RValue[t, bias, target], type]; attr ← MergeAttr[attr]; VPop[]; const ← const AND StructuredLiteral[v]; RETURN}; val ← BindType[node, Selection]; IF attr.rep = none THEN IF target = none THEN {Log.WarningTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← target; VPush[bias, attr, maxRegs]; RETURN}; MinMax: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; const: BOOL ← TRUE; zeroTest: BOOL ← FALSE; attr: Attr ← [prop: voidProp, rep: both+other]; nRegs: RegCount ← 0; k: RegCount = RegsForType[info]; Item: Tree.Map = { v ← RValue[t, 0, target]; IF ~StructuredLiteral[v] THEN const ← FALSE ELSE IF TreeLiteral[v] AND TreeLiteralValue[v] = 0 THEN zeroTest ← TRUE; attr ← MergeAttr[attr]; nRegs ← MIN[MAX[nRegs, VRegs[]+k], maxRegs]; VPop[]; RETURN}; IF ListLength[son[1]] = 1 THEN { val ← Exp[son[1], target]; son[1] ← Tree.Null; FreeNode[node]} ELSE { son[1] ← UpdateList[son[1], Item]; val ← [subtree[index: node]]; IF zeroTest AND CommonRep[attr.rep, unsigned] # none THEN Log.WarningTree[unsignedCompare, val]; SELECT attr.rep FROM both => attr.rep ← IF target = none THEN both ELSE target; none => IF target = none THEN {Log.ErrorTree[mixedRepresentation, val]; attr.rep ← both} ELSE attr.rep ← target; ENDCASE => NULL; IF const AND ~attr1 THEN { val ← Fold[node, attr.rep]; attr ← FoldedAttr[val, attr.rep]; nRegs ← k} ELSE attr3 ← attr.rep # unsigned; VPush[0, attr, nRegs]}; RETURN}; Lengthen: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; attr: Attr; nRegs: RegCount; addr: BOOL; son[1] ← RValue[son[1], 0, IF target=both THEN unsigned ELSE target]; addr ← SELECT TypeForm[CanonicalType[OperandType[son[1]]]] FROM ref, arraydesc => TRUE, ENDCASE => FALSE; IF (attr ← VAttr[]).rep = none THEN { Log.ErrorTree[mixedRepresentation, son[1]]; attr.rep ← both}; attr3 ← CommonRep[attr.rep, unsigned] = none; nRegs ← MAX[VRegs[], RegsForType[info]]; IF TreeLiteral[son[1]] AND (~addr OR TreeLiteralValue[son[1]] = 0--NIL--) THEN { val ← ShortToLong[node, attr.rep]; attr.rep ← LiteralRep[val, attr.rep]} ELSE IF ZeroP[son[1]] THEN { val ← PadRecord[son[1], info]; son[1] ← Tree.Null; FreeNode[node]; attr.rep ← LiteralRep[val, attr.rep]} ELSE {attr1 ← addr; val ← [subtree[index: node]]}; VPop[]; IF attr.rep = unsigned AND ~addr THEN attr.rep ← both; VPush[0, attr, nRegs]; RETURN}; Shorten: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; attr: Attr; nRegs: RegCount; son[1] ← RValue[son[1], 0, IF target=both THEN unsigned ELSE target]; nRegs ← VRegs[]; attr ← VAttr[]; VPop[]; IF CommonRep[target, unsigned] # none THEN attr.rep ← unsigned; attr1 ← checked OR dataPtr.switches['b]; IF CommonRep[attr.rep, unsigned] = none THEN attr3 ← TRUE ELSE {attr3 ← FALSE; info ← dataPtr.typeCARDINAL}; IF ~StructuredLiteral[son[1]] THEN val ← [subtree[index: node]] ELSE {val ← LongToShort[node, attr.rep]; attr.rep ← LiteralRep[val, attr.rep]}; VPush[0, attr, nRegs]; RETURN}; OptTypeExp: PROC [t: Tree.Link] = {IF t # Tree.Null THEN TypeExp[t]}; Loophole: PROC [node: Tree.Index, target: Repr] RETURNS [val: Tree.Link] = { OPEN tb[node]; type: CSEIndex = info; rep: Repr = IF tb[node].son[2] # Tree.Null OR target = none THEN RepForType[type] ELSE target; son[1] ← Exp[son[1], rep]; OptTypeExp[son[2]]; IF P4.WordsForType[OperandType[son[1]]] # P4.WordsForType[type] THEN Log.ErrorTree[sizeClash, son[1]]; IF RCType[type] # none THEN val ← [subtree[index: node]] ELSE { val ← ForceType[son[1], type]; son[1] ← Tree.Null; FreeNode[node]}; vStack[vI].attr.rep ← rep; RETURN}; UnaryCast: PROC [node: Tree.Index] RETURNS [val: Tree.Link] = { OPEN tb[node]; IF StructuredLiteral[son[1]] THEN { val ← ForceType[son[1], info]; son[1] ← Tree.Null; FreeNode[node]} ELSE val ← [subtree[index: node]]; RETURN}; AdjustBias: PUBLIC PROC [t: Tree.Link, delta: INTEGER] RETURNS [Tree.Link] = { op: Tree.NodeName; type: CSEIndex; IF delta = 0 THEN RETURN [t]; IF t = Tree.Null THEN passPtr.implicitBias ← passPtr.implicitBias + delta; type ← OperandType[t]; IF TreeLiteral[t] THEN RETURN [MakeStructuredLiteral[TreeLiteralValue[t]-delta, type]]; IF delta > 0 THEN op ← minus ELSE {op ← plus; delta ← -delta}; PushTree[t]; PushTree[MakeTreeLiteral[delta]]; PushNode[op, 2]; SetInfo[type]; SetAttr[1, FALSE]; SetAttr[2, FALSE]; RETURN [PopTree[]]}; RValue: PUBLIC PROC [exp: Tree.Link, bias: INTEGER, target: Repr] RETURNS [val: Tree.Link] = { d: INTEGER; val ← Exp[exp, target]; d ← bias - vStack[vI].bias; IF d # 0 THEN {val ← AdjustBias[val, d]; vStack[vI].bias ← bias}; RETURN}; Exp: PUBLIC PROC [exp: Tree.Link, target: Repr] RETURNS [val: Tree.Link] = { attr: Attr; WITH expr: exp SELECT FROM symbol => { sei: ISEIndex = expr.index; type: CSEIndex; IF ~seb[sei].mark4 THEN DeclItem[Tree.Link[subtree[index: seb[sei].idValue]]]; type ← UnderType[seb[sei].idType]; attr ← [prop: fullProp, rep: RepForType[type]]; attr.prop.immutable ← seb[sei].immutable; IF ~seb[sei].constant THEN {attr.prop.noFreeVar ← FALSE; val ← expr} ELSE SELECT XferMode[type] FROM proc, signal, error, program => IF ConstantId[sei] AND ~seb[sei].extended THEN val ← MakeStructuredLiteral[seb[sei].idValue, type] ELSE {attr.prop.noFreeVar ← FALSE; val ← expr}; ENDCASE => IF seb[sei].extended THEN { val ← IdentityMap[FindExtension[sei].tree]; WITH val SELECT FROM subtree => tb[index].info ← type; ENDCASE; val ← Exp[val, target]; attr ← VAttr[]; VPop[]} ELSE { val ← MakeStructuredLiteral[seb[sei].idValue, type]; attr ← FoldedAttr[val, attr.rep]}; VPush[BiasForType[type], attr, RegsForType[type]]}; literal => { WITH expr.index SELECT FROM word => attr ← FoldedAttr[expr, unsigned]; string => { LiteralOps.StringReference[sti]; MarkString[local: sti # LiteralOps.MasterString[sti]]; attr ← LiteralAttr[unsigned]}; ENDCASE => attr ← voidAttr; VPush[0, attr, 1]; val ← expr}; subtree => IF expr = Tree.Null THEN { val ← Tree.Null; VPush[passPtr.implicitBias, passPtr.implicitAttr, maxRegs]} ELSE { node: Tree.Index = expr.index; SELECT tb[node].name FROM dot => { OPEN tb[node]; prop: Prop; nRegs: RegCount; son[1] ← RValue[son[1], 0, unsigned]; prop ← VProp[]; prop.noSelect ← FALSE; nRegs ← MAX[RegsForType[info], VRegs[]]; VPop[]; son[2] ← Exp[son[2], target]; vStack[vI].nRegs ← nRegs; vStack[vI].attr.prop ← CommonProp[vStack[vI].attr.prop, prop]; attr1 ← ~attr3 AND (checked OR dataPtr.switches['n]); val ← expr}; dollar => val ← Dollar[node]; cdot => { val ← Exp[tb[node].son[2], target]; tb[node].son[2] ← Tree.Null; FreeNode[node]}; uparrow => { OPEN tb[node]; attr: Attr; nRegs: RegCount; son[1] ← RValue[son[1], 0, unsigned]; attr ← [prop: VProp[], rep: RepForType[info]]; attr.prop.noSelect ← attr.prop.immutable ← FALSE; nRegs ← MAX[RegsForType[info], VRegs[]]; VPop[]; VPush[BiasForType[info], attr, nRegs]; attr1 ← ~attr3 AND (checked OR dataPtr.switches['n]); val ← expr}; callx, portcallx, signalx, errorx, startx, joinx => val ← Call[node]; substx => val ← Substx[node]; index, dindex => val ← Index[node]; seqindex => val ← SeqIndex[node]; reloc => val ← Reloc[node]; construct => val ← Construct[node]; union => val ← Union[node]; rowcons => val ← RowConstruct[node]; all => val ← All[node]; uminus => val ← UMinus[node]; abs => val ← Abs[node]; pred, succ => val ← EnumOp[node, target]; plus, minus => val ← AddOp[node, target]; times => val ← Mult[node, target]; div, mod => val ← DivMod[node, target]; relE, relN, relL, relGE, relG, relLE => val ← RelOp[node]; in, notin => val ← In[node]; not => { tb[node].son[1] ← BoolValue[tb[node].son[1]]; IF ~TreeLiteral[tb[node].son[1]] THEN val ← expr ELSE { val ← IF tb[node].son[1] # passPtr.tFALSE THEN passPtr.tFALSE ELSE passPtr.tTRUE; FreeNode[node]; vStack[vI].nRegs ← 1}}; or, and => val ← BoolOp[node]; ifx => val ← IfExp[node, target]; casex => val ← CaseExp[node, target, 0]; bindx => val ← IF tb[node].attr3 THEN BindTypeExp[node, target] ELSE BindCaseExp[node, target]; assignx => val ← Assignment[node]; extractx => val ← Extract[node]; min, max => val ← MinMax[node, target]; mwconst => { VPush[0, FoldedAttr[expr, RepForType[tb[node].info]], RegsForType[tb[node].info]]; val ← expr}; clit => {val ← tb[node].son[1]; FreeNode[node]; VPush[0, LiteralAttr[both], 1]}; llit => { IF currentLevel > Symbols.lG THEN WITH e: tb[node].son[1] SELECT FROM literal => WITH e.index SELECT FROM string => sti ← LiteralOps.FindLocalString[sti]; ENDCASE; ENDCASE; val ← Exp[tb[node].son[1], none]; vStack[vI].attr.prop.noFreeVar ← FALSE; tb[node].son[1] ← Tree.Null; FreeNode[node]}; textlit => { nRegs: RegCount = RegsForType[tb[node].info]; IF dataPtr.interface THEN val ← expr ELSE { val ← SymLiteralOps.TextRef[ LiteralOps.StringIndex[NARROW[tb[node].son[1], Tree.Link.literal].index]]; FreeNode[node]}; VPush[0, LiteralAttr[unsigned], nRegs]}; atom => { IF dataPtr.interface THEN val ← expr ELSE { val ← SymLiteralOps.AtomRef[GetHash[tb[node].son[1]]]; FreeNode[node]}; VPush[0, LiteralAttr[unsigned], 2]}; new => val ← New[node]; nil => val ← Nil[node]; create, fork => val ← MiscXfer[node]; syserrorx => { VPush[0, [prop: emptyProp, rep: RepForType[tb[node].info]], maxRegs]; val ← expr}; lengthen => val ← Lengthen[node, target]; shorten => val ← Shorten[node, target]; float => { tb[node].son[1] ← RValue[tb[node].son[1], 0, signed]; IF StructuredLiteral[tb[node].son[1]] AND vStack[vI].attr.rep # unsigned THEN val ← IntToReal[node] ELSE {val ← expr; vStack[vI].nRegs ← maxRegs}; vStack[vI].attr.rep ← other}; safen, proccheck => { tb[node].son[1] ← Exp[tb[node].son[1], target]; val ← expr}; loophole => val ← Loophole[node, target]; cast => { OPEN tb[node]; rep: Repr = RepForType[info]; son[1] ← Exp[son[1], rep]; vStack[vI].attr.rep ← rep; IF P4.WordsForType[OperandType[son[1]]] # P4.WordsForType[info] THEN name ← chop; val ← expr}; ord => { tb[node].son[1] ← Exp[tb[node].son[1], target]; val ← UnaryCast[node]}; val => { OPEN tb[node]; rep: Repr = RepForType[info]; subType: CSEIndex = OperandType[son[1]]; son[1] ← CheckRange[ RValue[son[1], BiasForType[info], rep], Cardinality[info], subType]; IF P4.WordsForType[subType] # P4.WordsForType[info] THEN Log.ErrorTree[sizeClash, son[1]]; vStack[vI].attr.rep ← rep; val ← UnaryCast[node]}; check => { OptTypeExp[tb[node].son[2]]; val ← Rhs[tb[node].son[1], tb[node].info]; vStack[vI].attr.rep ← RepForType[tb[node].info]; tb[node].son[1] ← Tree.Null; FreeNode[node]}; narrow => val ← Narrow[node]; istype => { OPEN tb[node]; attr: Attr; son[1] ← RValue[son[1], 0, RepForType[OperandType[son[1]]]]; attr ← [prop: VProp[], rep: both]; VPop[]; TypeExp[son[2]]; IF attr2 OR attr3 THEN {val ← expr; VPush[0, attr, maxRegs]} ELSE {FreeNode[node]; val ← passPtr.tTRUE; VPush[0, attr, 1]}}; openx => { OPEN tb[node]; type: CSEIndex = OperandType[son[1]]; prop: Prop ← voidProp; IF attr1 THEN {prop.noFreeVar ← prop.immutable ← FALSE; val ← son[1]} ELSE { son[1] ← RValue[son[1], 0, none]; prop ← VProp[]; VPop[]; IF Shared[son[1]] THEN -- must generate an unshared node son[1] ← ForceType[son[1], type]; MarkShared[son[1], TRUE]; attr1 ← TRUE; val ← expr}; VPush[0, [prop: prop, rep: other], RegsForType[type]]}; stringinit => { attr: Attr; MarkString[]; tb[node].son[2] ← P4.Rhs[tb[node].son[2], dataPtr.typeCARDINAL]; attr ← [prop: VProp[], rep: unsigned]; VPop[]; attr.prop.noFreeVar ← FALSE; VPush[0, attr, maxRegs]; val ← expr}; size, first, last, typecode => val ← TypeOp[node]; apply => {VPush[0, voidAttr, 0]; val ← expr}; ENDCASE => val ← AddrOp[node]}; ENDCASE => ERROR; RETURN}; NeutralExp: PUBLIC PROC [exp: Tree.Link] RETURNS [val: Tree.Link] = { val ← RValue[exp, 0, none]; VPop[]; RETURN}; }.