Plane3dImpl.mesa
Copyright © 1984 by Xerox Corporation. All rights reserved.
Bloomenthal, February 19, 1986 10:34:50 am PST
DIRECTORY Plane3d, Rope, Vector3d;
Plane3dImpl: CEDAR PROGRAM
IMPORTS Vector3d
EXPORTS Plane3d
~ BEGIN
Triple: TYPE ~ Vector3d.Triple;
Quad:  TYPE ~ Vector3d.Quad;
Line:  TYPE ~ Vector3d.Line;
Circle: TYPE ~ Plane3d.Circle;
Error:  PUBLIC ERROR[code: ATOM, reason: Rope.ROPE] ~ CODE;
Plane Operations
Normalize: PUBLIC PROC [plane: Quad] RETURNS [Quad] ~ {
mag: REAL ← Vector3d.Mag[[plane.x, plane.y, plane.z]];
IF mag = 0.0 THEN ERROR Error[$NullVec, "null plane normal"];
RETURN[IF mag = 1.0
THEN plane
ELSE [plane.x/mag, plane.y/mag, plane.z/mag, plane.w/mag]];
};
FromPts: PUBLIC PROC [p1, p2, p3: Triple] RETURNS [Quad] ~ {
normal: Triple ← Vector3d.Cross[Vector3d.Sub[p2, p1], Vector3d.Sub[p3, p1]];
IF Vector3d.Null[normal] THEN ERROR Error[$NullVec, "points colinear"];
RETURN[[normal.x, normal.y, normal.z,
-(p1.x*(p2.y*p3.z-p3.y*p2.z)-p1.y*(p2.x*p3.z-p3.x*p2.z)+p1.z*(p2.x*p3.y-p3.x*p2.y))]];
};
FromPtNrm: PUBLIC PROC [point, normal: Triple] RETURNS [Quad] ~ {
plane: Quad;
[[plane.x, plane.y, plane.z]] ← Vector3d.Normalize[normal];
plane.w ← -plane.x*point.x - plane.y*point.y - plane.z*point.z;
RETURN[plane];
};
IntWithLine: PUBLIC PROC [plane: Quad, line: Line] RETURNS [Triple] ~ {
alpha: REAL;
pdDot: REAL ← Vector3d.Dot[[plane.x, plane.y, plane.z], line.axis];
IF pdDot = 0.0 THEN ERROR Error[$ZeroDiv, "no intersection"];
alpha ← (-plane.w - Vector3d.Dot[[plane.x, plane.y, plane.z], line.base])/pdDot;
RETURN[Vector3d.Ray[line, alpha]];
};
TriArea: PUBLIC PROC [p0, p1, p2: Triple] RETURNS [REAL] ~ {
RETURN[0.5*Vector3d.Mag[Vector3d.Cross[Vector3d.Sub[p1, p0], Vector3d.Sub[p2, p0]]]];
};
CircleFromPts: PUBLIC PROC [p1, p2, p3: Triple] RETURNS [Circle] ~ {
dot, t: REAL;
m1, m2, dm, center: Triple;
plane: Quad ← FromPts[p1, p2, p3];
v1: Triple ← Vector3d.Cross[Vector3d.Sub[p2, p1], [plane.x, plane.y, plane.z]];
v2: Triple ← Vector3d.Cross[Vector3d.Sub[p3, p2], [plane.x, plane.y, plane.z]];
v1 ← Vector3d.Normalize[v1];
v2 ← Vector3d.Normalize[v2];
IF (dot ← Vector3d.Dot[v1, v2]) = 0.0 THEN ERROR Error[$ZeroDiv, "points colinear"];
m1 ← Vector3d.Mul[Vector3d.Add[p1, p2], 0.5];
m2 ← Vector3d.Mul[Vector3d.Add[p2, p3], 0.5];
dm ← Vector3d.Sub[m2, m1];
t ← (dot*Vector3d.Dot[v1, dm]-Vector3d.Dot[v2, dm])/(1.0-dot*dot);
center ← Vector3d.Ray[[m1, v2], t];
RETURN[[center, Vector3d.Distance[center, p1]]];
};
IntOf3: PUBLIC PROC [p1, p2, p3: Quad] RETURNS [Triple] ~ {
Intersection is the determinant of a matrix formed from the three planes.
w: REAL ← p1.y*(p2.x*p3.z-p3.x*p2.z)-p1.x*(p2.y*p3.z-p3.y*p2.z)-p1.z*(p2.x*p3.y-p3.x*p2.y);
IF w = 0.0 THEN ERROR Error[$ZeroDiv, "no intersection"];
RETURN[[
(p1.y*(p2.z*p3.w-p3.z*p2.w)-p1.z*(p2.y*p3.w-p3.y*p2.w)+p1.w*(p2.y*p3.z-p3.y*p2.z))/w,
-(p1.x*(p2.z*p3.w-p3.z*p2.w)-p1.z*(p2.x*p3.w-p3.x*p2.w)+p1.w*(p2.x*p3.z-p3.x*p2.z))/w,
(p1.x*(p2.y*p3.w-p3.y*p2.w)-p1.y*(p2.x*p3.w-p3.x*p2.w)+p1.w*(p2.x*p3.y-p3.x*p2.y))/w]];
};
IntOf2: PUBLIC PROC [plane1, plane2: Quad] RETURNS [base, axis: Triple] ~ {
axis ← Vector3d.Cross[[plane1.x, plane1.y, plane1.z], [plane2.x, plane2.y, plane2.z]];
IF Vector3d.Null[axis] THEN ERROR Error[$NullVec, "no intersection"];
base ← IntOf3[plane1, plane2, [axis.x, axis.y, axis.z, 0.0]];
};
Center: PUBLIC PROC [plane: Quad] RETURNS [Triple] ~ {
RETURN[Vector3d.Mul[[plane.x, plane.y, plane.z], -plane.w]];
};
DistanceToPt: PUBLIC PROC [point: Triple, plane: Quad] RETURNS [REAL] ~ {
mag: REAL ← Vector3d.Mag[[plane.x, plane.y, plane.z]];
IF mag = 0.0 THEN ERROR Error[$NullVec, "null plane normal"];
RETURN[(point.x*plane.x + point.y*plane.y + point.z*plane.z + plane.w)/mag];
};
END.