QPTestImpl.mesa
Copyright Ó 1990 by Xerox Corporation. All rights reserved.
Ken Shoemake, March 25, 1990 0:31 am PST
DIRECTORY
Commander, Convert, EditedStream, IO, QPSolve, RealFns, Rope
;
QPTestImpl: CEDAR PROGRAM
IMPORTS Commander, Convert, EditedStream, IO, QPSolve, RealFns
EXPORTS
~ BEGIN
OPEN QPSolve;
Procedures
QPTestCmd: Commander.CommandProc ~ {
ENABLE {
Convert.Error, EditedStream.Rubout => GOTO Done;
};
DO
gapWidth: REAL ← 1.0;
skipWidth: REAL ← 7.0;
firstColWidth: REAL;
secondColWidth: REAL;
spanningWidth: REAL;
VarList: TYPE ~ LIST OF INT;
EqnList: TYPE ~ LIST OF VarList;
eqnlist: EqnList ← LIST[
LIST[1, 2, -7], LIST[3, 4, -8], LIST[5, 6, -9], LIST[10, 11, -12], LIST[2, 3, 4, 5, -13],
LIST[1, 2, 3, 4, 5, 6, -12], LIST[1, -2], LIST[3, -4], LIST[5, -6], LIST[10, -11] ];
penalty: REAL ← 1.0e6;
n: NAT ~ 14;
m: NAT ~ 10;
nFR: NAT ← n;
eqs: Matrix ← NewMatrix[m, n];
lin: RVector ← NEW[RVectorRep[n]];
bounds: RVector ← NEW[RVectorRep[n]];
vars: RVector ← NEW[RVectorRep[n]];
iVar: IVector ← NEW[IVectorRep[n]];
cost: REAL ← 0.0;
eqk: INT;
FindVar: PROC [k: NAT] RETURNS [NAT]
~ {FOR i: NAT IN [0..n) DO IF iVar[i]=k THEN RETURN[i] ENDLOOP; RETURN[n]};
FixVar: PROC [kV: NAT]
~ {
k: NAT ← FindVar[kV];
FOR i: NAT IN (k..nFR) DO iVar[i-1] ← iVar[i] ENDLOOP;
nFR ← nFR - 1; iVar[nFR] ← kV; vars[kV] ← bounds[kV];
};
IO.PutF[cmd.out, "Type two column widths and spanning width. Quit with [DEL]\n"];
firstColWidth ← IO.GetReal[cmd.in];
secondColWidth ← IO.GetReal[cmd.in];
spanningWidth ← IO.GetReal[cmd.in];
eqs.m ← m; eqs[0].n ← lin.n ← bounds.n ← vars.n ← iVar.n ← n;
FOR i: NAT IN [0..n) DO iVar[i] ← i ENDLOOP;
FOR i: NAT IN [0..n) DO lin[i] ← 0.0 ENDLOOP; lin[0] ← penalty;
FOR i: NAT IN [0..n) DO FOR j: NAT IN [0..m) DO eqs[j][i] ← 0.0 ENDLOOP ENDLOOP;
<< Here all the constraint equations are set up. >>
eqk ← 0;
FOR elist: EqnList ← eqnlist, elist.rest WHILE elist # NIL DO
FOR vlist: VarList ← elist.first, vlist.rest WHILE vlist # NIL DO
eqs[eqk][ABS[vlist.first]] ← IF vlist.first < 0 THEN -1.0 ELSE 1.0;
ENDLOOP;
eqk ← eqk+1;
ENDLOOP;
FOR i: NAT IN [0..n) DO bounds[i] ← 0.0 ENDLOOP;
bounds[8] ← gapWidth;
bounds[13] ← skipWidth;
bounds[7] ← firstColWidth;
bounds[9] ← secondColWidth;
bounds[12] ← spanningWidth;
FOR i: NAT IN [1..n) DO vars[i] ← bounds[i]+1.0 ENDLOOP;
FixVar[9]; FixVar[12]; FixVar[7];
vars[0] ← 0.0;
FOR j: NAT IN [0..m) DO
FOR i: NAT IN [1..n) DO eqs[j][0] ← eqs[j][0] + eqs[j][i]*vars[i] ENDLOOP;
vars[0] ← vars[0] + eqs[j][0] * eqs[j][0];
ENDLOOP;
vars[0] ← RealFns.SqRt[vars[0]];
FOR j: NAT IN [0..m) DO eqs[j][0] ← -eqs[j][0] / vars[0] ENDLOOP;
IO.PutF[cmd.out, "\n^ = "];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, " %2d %s", IO.int[iVar[i]], IO.rope[IF i = nFR-1 THEN "/" ELSE " "]];
ENDLOOP;
IO.PutF[cmd.out, "\ns = "];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, " %4.1f", IO.real[bounds[i]]];
ENDLOOP;
IO.PutF[cmd.out, "\nx = "];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, " %4.1f", IO.real[vars[i]]];
ENDLOOP;
IO.PutF[cmd.out, "\nA ="];
FOR j: NAT IN [0..m) DO
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, " %4.1f", IO.real[eqs[j][i]]];
ENDLOOP;
IO.PutF[cmd.out, "\n "];
ENDLOOP;
IO.PutF[cmd.out, "\nTesting...\n"];
nFR ← QPSolve[lin, eqs, bounds, vars, iVar, nFR];
FOR i: NAT IN [0..n) DO cost ← cost + vars[i]*(vars[i] + lin[i]) ENDLOOP;
IO.PutF[cmd.out, "Solution(?): %9.4f\n", IO.real[cost]];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, "x[%2d] = %9.4f\n", IO.int[i], IO.real[vars[i]]];
ENDLOOP;
ENDLOOP;
EXITS
Done => NULL;
};
Start Code
Commander.Register["QPTest", QPTestCmd, "Test QPSolve routine."];
END..
Action: PROC ~ {
VarList: TYPE ~ LIST OF INT;
EqnList: TYPE ~ LIST OF VarList;
eqnlist: EqnList ← LIST[
LIST[1, 2, -7], LIST[3, 4, -8], LIST[5, 6, -9], LIST[10, 11, 12], LIST[2, 3, 4, 5, -13],
LIST[1, 2, 3, 4, 5, 6, -12], LIST[1, -2], LIST[3, -4], LIST[5, -6], LIST[10, -11] ];
penalty: REAL ← 1.0e10;
n: NAT ~ 14;
m: NAT ~ 10;
eqs: Matrix ← NewMatrix[m, n];
lin: RVector ← NEW[RVectorRep[n]];
bounds: RVector ← NEW[RVectorRep[n]];
init: RVector ← NEW[RVectorRep[n]];
iVar: IVector ← NEW[IVectorRep[n]];
soln: RVector;
cost: REAL ← 0.0;
eqk: INT;
gapWidth: REAL ← 1.0;
skipWidth: REAL ← 7.0;
firstColWidth: REAL ← 5.0;
secondColWidth: REAL ← 5.0;
headingWidth: REAL ← 12.0;
IO.PutF[cmd.out, "Type widths for two columns and spanning head. Quit with [DEL]\n"];
firstColWidth ← IO.GetReal[cmd.in];
secondColWidth ← IO.GetReal[cmd.in];
headingWidth ← IO.GetReal[cmd.in];
eqs.m ← m; eqs[0].n ← lin.n ← bounds.n ← init.n ← iVar.n ← n;
FOR i: NAT IN [0..n) DO lin[i] ← 0.0 ENDLOOP; lin[0] ← penalty;
FOR i: NAT IN [0..n) DO FOR j: NAT IN [0..m) DO eqs[j][i] ← 0.0 ENDLOOP ENDLOOP;
<< Here all the constraint equations are set up. >>
eqk ← 0;
FOR elist: EqnList ← eqnlist, elist.rest WHILE elist # NIL DO
FOR vlist: VarList ← elist.first, vlist.rest WHILE vlist # NIL DO
eqs[eqk][ABS[vlist.first]] ← IF vlist.first < 0 THEN -1.0 ELSE 1.0;
ENDLOOP;
eqk ← eqk+1;
ENDLOOP;
FOR i: NAT IN [0..n) DO bounds[i] ← 0.0 ENDLOOP;
FOR i: NAT IN [1..n) DO init[i] ← bounds[i]+1.0 ENDLOOP;
init[8] ← bounds[8] ← gapWidth;
init[13] ← bounds[13] ← skipWidth;
init[7] ← bounds[7] ← firstColWidth;
init[9] ← bounds[9] ← secondColWidth;
init[12] ← bounds[12] ← headingWidth;
init[0] ← 0.0;
init[8] ← MAX[gapWidth,
    skipWidth-(firstColWidth+secondColWidth)/2,
    headingWidth-(firstColWidth+secondColWidth)];
init[12] ← MAX[headingWidth, init[8]+(firstColWidth+secondColWidth)];
init[1] ← init[2] ← firstColWidth/2;
init[5] ← init[6] ← secondColWidth/2;
init[3] ← init[4] ← init[8]/2;
init[10] ← init[11] ← init[12]/2;
init[13] ← init[2]+init[8]+init[5];
FOR j: NAT IN [0..m) DO
FOR i: NAT IN [1..n) DO eqs[j][0] ← eqs[j][0] + eqs[j][i]*init[i] ENDLOOP;
init[0] ← init[0] + eqs[j][0] * eqs[j][0];
ENDLOOP;
init[0] ← RealFns.SqRt[init[0]];
FOR j: NAT IN [0..m) DO eqs[j][0] ← -eqs[j][0] / init[0] ENDLOOP;
FOR i: NAT IN [0..n) DO iVar[i] ← i ENDLOOP;
iVar[13] ← 7; iVar[7] ← 13; iVar[12] ← 9; iVar[11] ← 12; iVar[9] ← 11;
IO.PutF[cmd.out, "Testing...\n"];
soln ← QPSolve[lin, eqs, bounds, init, iVar, n-2];
FOR i: NAT IN [0..n) DO cost ← cost + soln[iVar[i]]*(soln[iVar[i]] + lin[i]) ENDLOOP;
IO.PutF[cmd.out, "Solution(?): %9.4f\n", IO.real[cost]];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, "x[%2d] = %9.4f\n", IO.int[iVar[i]], IO.real[soln[iVar[i]]]];
ENDLOOP;
};
Action: PROC ~ {
n: NAT ~ 4;
m: NAT ~ 1;
eqs: Matrix ← NewMatrix[m, n];
lin: RVector ← NEW[RVectorRep[n]];
bounds: RVector ← NEW[RVectorRep[n]];
init: RVector ← NEW[RVectorRep[n]];
iVar: IVector ← NEW[IVectorRep[n]];
soln: RVector;
eqs.m ← m; eqs[0].n ← lin.n ← bounds.n ← init.n ← iVar.n ← n;
FOR i: NAT IN [0..n) DO lin[i] ← 0.0 ENDLOOP;
FOR i: NAT IN [0..n) DO FOR j: NAT IN [0..m) DO eqs[j][i] ← 0.0 ENDLOOP ENDLOOP;
eqs[0][1] ← 1.0; eqs[0][2] ← -1.0;
FOR i: NAT IN [0..n) DO bounds[i] ← i ENDLOOP;
bounds[anInt] ← aReal;
FOR i: NAT IN [0..n) DO init[i] ← bounds[i]+1.0 ENDLOOP;
init[1] ← init[2] ← MAX[init[1], init[2]];
FOR i: NAT IN [0..n) DO iVar[i] ← i ENDLOOP;
IO.PutF[cmd.out, "Testing...\n"];
soln ← QPSolve[lin, eqs, bounds, init, iVar, n];
IO.PutF[cmd.out, "Solution(?):\n"];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, "x[%d] = %16.13e\n", IO.int[iVar[i]], IO.real[soln[iVar[i]]]];
ENDLOOP;
};
DO
firstColWidth: REAL;
secondColWidth: REAL;
spanWidth: REAL;
VarList: TYPE ~ LIST OF INT;
EqnList: TYPE ~ LIST OF VarList;
eqnlist: EqnList ← LIST[LIST[1, 2, -3], LIST[1, -2]];
penalty: REAL ← 1.0e6;
n: NAT ~ 4;
m: NAT ~ 2;
eqs: Matrix ← NewMatrix[m, n];
lin: RVector ← NEW[RVectorRep[n]];
bounds: RVector ← NEW[RVectorRep[n]];
init: RVector ← NEW[RVectorRep[n]];
iVar: IVector ← NEW[IVectorRep[n]];
soln: RVector;
cost: REAL ← 0.0;
eqk: INT;
IO.PutF[cmd.out, "Type two column widths and span width. Quit with [DEL]\n"];
firstColWidth ← IO.GetReal[cmd.in];
secondColWidth ← IO.GetReal[cmd.in];
spanWidth ← IO.GetReal[cmd.in];
eqs.m ← m; eqs[0].n ← lin.n ← bounds.n ← init.n ← iVar.n ← n;
FOR i: NAT IN [0..n) DO lin[i] ← 0.0 ENDLOOP; lin[0] ← penalty;
FOR i: NAT IN [0..n) DO FOR j: NAT IN [0..m) DO eqs[j][i] ← 0.0 ENDLOOP ENDLOOP;
<< Here all the constraint equations are set up. >>
eqk ← 0;
FOR elist: EqnList ← eqnlist, elist.rest WHILE elist # NIL DO
FOR vlist: VarList ← elist.first, vlist.rest WHILE vlist # NIL DO
eqs[eqk][ABS[vlist.first]] ← IF vlist.first < 0 THEN -1.0 ELSE 1.0;
ENDLOOP;
eqk ← eqk+1;
ENDLOOP;
FOR i: NAT IN [0..n) DO bounds[i] ← 0.0 ENDLOOP;
bounds[1] ← firstColWidth;
bounds[2] ← secondColWidth;
FOR i: NAT IN [1..n) DO init[i] ← bounds[i]+1.0 ENDLOOP;
init[3] ← bounds[3] ← spanWidth;
init[0] ← 0.0;
FOR j: NAT IN [0..m) DO
FOR i: NAT IN [1..n) DO eqs[j][0] ← eqs[j][0] + eqs[j][i]*init[i] ENDLOOP;
init[0] ← init[0] + eqs[j][0] * eqs[j][0];
ENDLOOP;
init[0] ← RealFns.SqRt[init[0]];
FOR j: NAT IN [0..m) DO eqs[j][0] ← -eqs[j][0] / init[0] ENDLOOP;
FOR i: NAT IN [0..n) DO iVar[i] ← i ENDLOOP;
IO.PutF[cmd.out, "Testing...\n"];
soln ← QPSolve[lin, eqs, bounds, init, iVar, nFR];
FOR i: NAT IN [0..n) DO cost ← cost + soln[iVar[i]]*(soln[iVar[i]] + lin[iVar[i]]) ENDLOOP;
IO.PutF[cmd.out, "Solution(?): %9.4f\n", IO.real[cost]];
FOR i: NAT IN [0..n) DO
IO.PutF[cmd.out, "x[%2d] = %9.4f\n", IO.int[iVar[i]], IO.real[soln[iVar[i]]]];
ENDLOOP;
ENDLOOP;