MatchImplA.mesa
Contents: Routines for extracting looks and matching looks.
Copyright Ó 1988, 1990 by Xerox Corporation. All rights reserved.
Last edited by: David Kurlander - September 6, 1987 7:29:54 pm PDT
Bier, April 8, 1991 10:29 pm PDT
Pier, August 19, 1988 5:10:55 pm PDT
DIRECTORY
Basics, AtomButtons, GGBasicTypes, GGCaret, GGCoreOps, GGFont, GGInterfaceTypes, GGModelTypes, GGOutline, GGParent, GGScene, GGSegmentTypes, GGSelect, GGSequence, GGSlice, GGSliceOps, GGTraj, GGWindow, GList, ImagerTransformation, Match, MatchTurtle, MatchViewer, RealFns, Rope;
MatchImplA: CEDAR PROGRAM
IMPORTS AtomButtons, GGCaret, GGCoreOps, GGOutline, GGParent, GGScene, GGSelect, GGSequence, GGSlice, GGSliceOps, GGTraj, GGWindow, GList, ImagerTransformation, Match, MatchTurtle, MatchViewer, RealFns, Rope
EXPORTS Match = BEGIN
BoundBox: TYPE = GGModelTypes.BoundBox;
Caret: TYPE = GGInterfaceTypes.Caret;
ChoiceData: TYPE = MatchViewer.ChoiceData;
DashInfo: TYPE = Match.DashInfo;
DashInfoObj: TYPE = Match.DashInfoObj;
GGData: TYPE = GGInterfaceTypes.GGData;
ItemID: TYPE = Match.ItemID;
ItemMatch: TYPE = Match.ItemMatch;
ItemMatchObj: TYPE = Match.ItemMatchObj;
LooksInfo: TYPE = Match.LooksInfo;
LooksInfoObj: TYPE = Match.LooksInfoObj;
MatchData: TYPE = MatchViewer.MatchData;
MatchDescriptor: TYPE = Match.MatchDescriptor;
MatchDObj: TYPE = Match.MatchDObj;
PositionDescriptor: TYPE = MatchTurtle.PositionDescriptor;
Point: TYPE = GGBasicTypes.Point;
SearchInfo: TYPE = Match.SearchInfo;
SearchInfoObj: TYPE = Match.SearchInfoObj;
SearchState: TYPE = Match.SearchState;
Segment: TYPE = GGSegmentTypes.Segment;
SegmentGenerator: TYPE = GGModelTypes.SegmentGenerator;
Sequence: TYPE = GGModelTypes.Sequence;
Scene: TYPE = GGModelTypes.Scene;
Slice: TYPE = GGModelTypes.Slice;
SliceDescriptor: TYPE = GGModelTypes.SliceDescriptor;
SliceDescriptorGenerator: TYPE = GGModelTypes.SliceDescriptorGenerator;
SliceDescriptorObj: TYPE = GGModelTypes.SliceDescriptorObj;
SliceGenerator: TYPE = GGModelTypes.SliceGenerator;
SliceParts: TYPE = REF ANY;
Traj: TYPE = GGModelTypes.Traj;
TrajData: TYPE = GGModelTypes.TrajData;
TurtleHeader: TYPE = MatchTurtle.TurtleHeader;
TurtleInfo: TYPE = MatchTurtle.TurtleInfo;
Top-level search routines
Search: PUBLIC PROC [toSearch: GGData, event: LIST OF REF ANY, refresh: BOOLTRUE] RETURNS [found: BOOLFALSE] = {
matchData: MatchData ← MatchViewer.GetMatchData[];
searchState: SearchState ← Match.GetSearchState[];
SELECT matchData.searchOp FROM
disjunction => {
SearchDisjInit[toSearch, event]; -- initialize searchInfos et al
[searchState.ahead, found] ← SearchDisjNext[searchState.ahead, event.rest.first, refresh];
};
conjunction => {
Match.InitializeSearch[toSearch, event];
[searchState.ahead, searchState.behind, found] ← Match.SearchConjNext[searchState.ahead, searchState.behind, event.rest.first, refresh];
};
ENDCASE => {
MatchViewer.ErrorFeedback["This SearchOp is not implemented."];
RETURN[FALSE];
};
};
Utilities for building and querying SearchInfos
IsEmptySearchInfo: PUBLIC PROC [searchInfo: SearchInfo] RETURNS [BOOLFALSE] = {
IF searchInfo = NIL OR searchInfo.empty = TRUE THEN RETURN[TRUE];
IF GGSliceOps.GetType[searchInfo.slice] = $Outline AND searchInfo.kids = NIL THEN RETURN[TRUE];
};
CreateSearchInfo: PUBLIC PROC [slice: Slice, direction: REF ANY] RETURNS [searchInfo: SearchInfo] = {
Creates a new, complete SearchInfo for the specified slice
matchData: MatchData ← MatchViewer.GetMatchData[];
searchInfo ← NEW[SearchInfoObj ← [slice: slice, reverse: direction = $SearchAbove]];
SELECT GGSliceOps.GetType[slice] FROM
$Outline => {
searchInfo.kids ← GGOutline.TrajectoriesOfOutline[slice];
IF searchInfo.reverse THEN searchInfo.kids ← NARROW[GList.Reverse[searchInfo.kids], LIST OF Traj];
IF matchData.matchLevel = anywhere THEN CacheSegsOfFirstTraj[searchInfo];
};
$Box => IF matchData.matchLevel = anywhere THEN CacheSegsOfFirstTraj[searchInfo];
ENDCASE;
};
CopySearchInfo: PROC [info: SearchInfo] RETURNS [newInfo: SearchInfo] = {
Only non-destructive list ops are permitted on SearchInfo fields, so just copy the fields.
newInfo ← NEW[SearchInfoObj ← info^];
};
MakeEmpty: PROC [info: SearchInfo] RETURNS [newInfo: SearchInfo] = {
newInfo ← CopySearchInfo[info];
newInfo.empty ← TRUE;
};
CacheSegsOfFirstTraj: PUBLIC PROC [info: SearchInfo] = {
Stores in info.segs all of the segments of the first trajectory of the shape that info represents.
info.segs ← NIL;
SELECT GGSliceOps.GetType[info.slice] FROM
$Outline => {
traj: Slice;
trajData: TrajData;
IF info.kids = NIL THEN RETURN; -- nothing to fill in
traj ← info.kids.first;
trajData ← NARROW[traj.data];
FOR i: INT IN [0..GGTraj.HiSegment[traj]] DO
info.segs ← CONS[GGTraj.FetchSegment[traj, i], info.segs];
ENDLOOP;
IF NOT info.reverse THEN info.segs ← NARROW[GList.DReverse[info.segs]];
Fill in closedTraj field (is this ever used? -- Bier)
IF
trajData.role # open OR
ManhattanDistance[
GGTraj.FetchJointPos[traj, 0],
GGTraj.FetchJointPos[traj, GGTraj.HiJoint[traj]]] < 1.0
THEN info.closedTraj ← TRUE
ELSE info.closedTraj ← FALSE;
};
$Box => {
FOR i: INT IN [0..4) DO
info.segs ← CONS[GGSlice.BoxFetchSegment[info.slice, i], info.segs];
ENDLOOP;
IF NOT info.reverse THEN info.segs ← NARROW[GList.DReverse[info.segs], LIST OF Segment];
info.closedTraj ← TRUE;
};
ENDCASE => ERROR;
};
Extracting Looks Information
GetFromLooks: PUBLIC PROC RETURNS [looksList: LIST OF REF ANYNIL] = {
AddLooksToList: PROC [slice: Slice] RETURNS [done: BOOLFALSE] = {
looksList ← CONS[GetLooksOfSlice[slice, matchData.from], looksList];
};
matchData: MatchData ← MatchViewer.GetMatchData[];
fromData: GGData ← MatchViewer.GetFromData[];
[] ← GGScene.WalkSlices[fromData.scene, first, AddLooksToList];
};
GetToLooks: PUBLIC PROC RETURNS [looksList: LIST OF REF ANYNIL] = {
AddLooksToList: PROC [slice: Slice] RETURNS [done: BOOLFALSE] = {
looksList ← CONS[GetLooksOfSlice[slice, matchData.to], looksList];
};
matchData: MatchData ← MatchViewer.GetMatchData[];
toData: GGData ← MatchViewer.GetToData[];
[] ← GGScene.WalkSlices[toData.scene, first, AddLooksToList];
};
GetLooksOfSlice: PUBLIC PROC [slice: Slice, choice: ChoiceData, value: BOOLTRUE] RETURNS [REF ANY] = {
Returns the Looks of the slice that are specified in choice (if value = TRUE) or not specified (if value = FALSE)
targetParts: SliceParts ← GGSliceOps.NewParts[slice, NIL, slice].parts;
looks: LooksInfo ← NEW[LooksInfoObj];
IF GGSliceOps.GetType[slice] = $Outline OR GGSliceOps.GetType[slice] = $Box
THEN {
looksList: LIST OF LIST OF LooksInfo ← GetCompositeLooksOfSlice[slice, choice, value];
RETURN[looksList];
};
looks.owner.slice ← slice; -- this will suffice
IF AtomButtons.GetBinaryState[choice.class] = value THEN { -- Class
looks.classDef ← TRUE;
looks.class ← GGSliceOps.GetType[slice];
};
IF AtomButtons.GetBinaryState[choice.type] = value THEN { -- Type
looks.typeDef ← TRUE;
looks.type ← GGSliceOps.GetType[slice];
};
IF AtomButtons.GetBinaryState[choice.shape] = value THEN { -- Shape
looks.shapeDef ← TRUE;
looks.shape ← MatchTurtle.GetShapeOfSlice[slice];
};
IF AtomButtons.GetBinaryState[choice.color] = value THEN { -- Color
looks.colorDef ← TRUE;
looks.color ← GGSliceOps.GetStrokeColor[slice, targetParts].color;
};
IF AtomButtons.GetBinaryState[choice.fillColor] = value THEN { -- Fill Color
looks.fillColorDef ← TRUE;
looks.fillColor ← GGSliceOps.GetFillColor[slice, targetParts].color;
};
IF AtomButtons.GetBinaryState[choice.string] = value THEN { -- String
IF GGSliceOps.GetType[slice] = $Text THEN {
looks.stringDef ← TRUE;
looks.string ← GGSlice.GetText[slice];
}
ELSE looks.string ← NIL;
};
IF AtomButtons.GetBinaryState[choice.font] = value THEN { -- Font
looks.fontDef ← TRUE;
looks.font ← GGSlice.GetFontData[slice];
};
IF AtomButtons.GetBinaryState[choice.fontTform] = value THEN { -- Font & Transform
looks.fontTformDef ← TRUE;
looks.fontTform ← GGSlice.GetFontData[slice];
};
IF AtomButtons.GetBinaryState[choice.dash] = value THEN { -- Dashes
looks.dashesDef ← TRUE;
looks.dashes ← NEW[DashInfoObj];
[dashed: looks.dashes.dashed, pattern: looks.dashes.pattern, offset: looks.dashes.offset, length: looks.dashes.length] ← GGSliceOps.GetDashed[slice, targetParts];
};
IF AtomButtons.GetBinaryState[choice.joints] = value THEN { -- Joints
looks.jointsDef ← TRUE;
looks.joints ← GGSliceOps.GetStrokeJoint[slice, targetParts].strokeJoint;
};
IF AtomButtons.GetBinaryState[choice.ends] = value THEN { -- Ends
looks.endsDef ← TRUE;
looks.ends ← GGSliceOps.GetStrokeEnd[slice, targetParts].strokeEnd;
};
IF AtomButtons.GetBinaryState[choice.width] = value THEN { -- Width
looks.widthDef ← TRUE;
looks.width ← GGSliceOps.GetStrokeWidth[slice, targetParts].strokeWidth;
};
RETURN [looks];
};
GetCompositeLooksOfSlice: PROC [slice: Slice, choice: ChoiceData, value: BOOLTRUE] RETURNS [looksList: LIST OF LIST OF LooksInfo ← NIL] = {
DoConsLooks: PROC [traj: Slice] RETURNS [done: BOOLFALSE] = {
looksList ← CONS[GetLooksOfTraj[traj, choice, value], looksList];
};
shape: TurtleHeader;
traj: Traj ← NIL; -- must be defined here so it's defined at GetLooksInSegment call-back
class: ATOM ← GGSliceOps.GetType[slice]; -- for use in call-back
IF GGSliceOps.GetType[slice] = $Outline THEN {
[] ← GGParent.WalkChildren[slice, first, DoConsLooks, $Traj];
}
ELSE {
GatherSegs: GGModelTypes.WalkProc = {segList ← CONS[seg, segList]; keep ← FALSE;};
segList: LIST OF Segment ← NIL;
subList: LIST OF LooksInfo ← NIL;
IF AtomButtons.GetBinaryState[choice.shape] = value THEN shape ← MatchTurtle.GetShapeOfSlice[slice];
[] ← GGSliceOps.WalkSegments[slice, GatherSegs];
FOR segs: LIST OF Segment ← segList, segs.rest UNTIL segs = NIL DO
subList ← CONS[GetLooksOfSegment[slice: slice, traj: NIL, seg: segs.first, choice: choice, value: value, shape: shape], subList];
ENDLOOP;
looksList ← CONS[subList, looksList];
};
looksList ← NARROW[GList.DReverse[looksList], LIST OF LIST OF LooksInfo];
};
GetLooksOfSegment: PUBLIC PROC [slice: Slice, traj: Traj, seg: Segment, choice: ChoiceData, value: BOOL ← FALSE, shape: TurtleHeader] RETURNS [looks: LooksInfo] = {
looks ← NEW[LooksInfoObj];
looks.owner.slice ← slice;
looks.owner.traj ← traj;
looks.owner.seg ← seg;
IF AtomButtons.GetBinaryState[choice.shape] = value THEN { -- Shape
looks.shapeDef ← TRUE;
looks.shape ← shape;
};
IF AtomButtons.GetBinaryState[choice.class] = value THEN { -- Class
looks.classDef ← TRUE;
looks.class ← GGSliceOps.GetType[slice];
};
IF AtomButtons.GetBinaryState[choice.type] = value THEN { -- Type
looks.typeDef ← TRUE;
looks.type ← seg.class.type;
};
IF AtomButtons.GetBinaryState[choice.color] = value THEN { -- Color
looks.colorDef ← TRUE;
looks.color ← seg.color;
};
IF AtomButtons.GetBinaryState[choice.fillColor] = value THEN { -- Fill Color
looks.fillColorDef ← TRUE;
looks.fillColor ← GGSliceOps.GetFillColor[slice, NIL].color;
};
IF AtomButtons.GetBinaryState[choice.dash] = value THEN { -- Dashes
looks.dashesDef ← TRUE;
looks.dashes ← NEW[DashInfoObj ← [dashed: seg.dashed, pattern: seg.pattern, offset: seg.offset, length: seg.length]];
};
IF AtomButtons.GetBinaryState[choice.joints] = value THEN { -- Joints
looks.jointsDef ← TRUE;
looks.joints ← IF traj = NIL THEN GGSliceOps.GetStrokeJoint[slice, GGSliceOps.NewParts[slice, NIL, slice]].strokeJoint ELSE GGSliceOps.GetStrokeJoint[traj, NIL].strokeJoint;
};
IF AtomButtons.GetBinaryState[choice.ends] = value THEN { -- Ends
looks.endsDef ← TRUE;
looks.ends ← seg.strokeEnd;
};
IF AtomButtons.GetBinaryState[choice.width] = value THEN { -- Width
looks.widthDef ← TRUE;
looks.width ← seg.strokeWidth;
};
};
GetLooksOfTraj: PUBLIC PROC [traj: Traj, choice: ChoiceData, value: BOOLTRUE] RETURNS [trajLooks: LIST OF LooksInfo ← NIL] = {
shape: TurtleHeader ← IF AtomButtons.GetBinaryState[choice.shape] = value THEN MatchTurtle.TrajToTurtle[traj] ELSE NIL;
FOR i: INT DECREASING IN [0..GGTraj.HiSegment[traj]] DO
trajLooks ← CONS[GetLooksOfSegment[slice: traj.parent, traj: traj, seg: GGTraj.FetchSegment[traj, i], choice: choice, value: value, shape: shape], trajLooks];
ENDLOOP;
};
Matching a domain slice to the from looks.
FindMatchInSlice: PUBLIC PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, direction: REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor ← NIL, rest: SearchInfo ← NIL] = {
IF searchInfo.empty THEN RETURN[NIL, searchInfo];
SELECT GGSliceOps.GetType[searchInfo.slice] FROM
$Circle => [match, rest] ← FindMatchInCircle[searchInfo, fromLooks, matchD];
$Text => [match, rest] ← FindMatchInText[searchInfo, fromLooks, matchD];
$Box => [match, rest] ← FindMatchInBox[searchInfo, fromLooks, matchD];
$Outline => [match, rest] ← FindMatchInOutline[searchInfo, fromLooks, matchD];
ENDCASE; -- can't match on this kind of slice
};
FindMatchInCircle: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
entireCircleD: SliceDescriptor ← GGSliceOps.NewParts[searchInfo.slice, NIL, slice];
looks: LooksInfo;
complexLooks: LIST OF LIST OF LooksInfo;
FOR fromLooks ← fromLooks, fromLooks.rest UNTIL fromLooks=NIL DO
WITH fromLooks.first SELECT FROM
simple: LooksInfo => {looks ← simple; complexLooks ← NIL;};
complex: LIST OF LIST OF LooksInfo => {
looks ← complex.first.first;
complexLooks ← complex;
};
ENDCASE => ERROR;
IF GList.Length[complexLooks] > 1 THEN LOOP;
IF looks.typeDef AND complexLooks#NIL THEN LOOP;
IF SimpleMatch[entireCircleD, looks, matchD] THEN RETURN[entireCircleD, MakeEmpty[searchInfo]];
ENDLOOP;
RETURN[NIL, MakeEmpty[searchInfo]];
};
FindMatchInText: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
entireTextD: SliceDescriptor ← GGSliceOps.NewParts[searchInfo.slice, NIL, slice];
looks: LooksInfo;
complexLooks: LIST OF LIST OF LooksInfo;
FOR fromLooks ← fromLooks, fromLooks.rest UNTIL fromLooks=NIL DO
WITH fromLooks.first SELECT FROM
simple: LooksInfo => {looks ← simple; complexLooks ← NIL;};
complex: LIST OF LIST OF LooksInfo => {
looks ← complex.first.first;
complexLooks ← complex;
};
ENDCASE => ERROR;
IF GList.Length[complexLooks] > 1 THEN LOOP;
IF looks.typeDef AND complexLooks#NIL THEN LOOP;
IF SimpleMatch[entireTextD, looks, matchD] THEN RETURN[entireTextD, MakeEmpty[searchInfo]];
ENDLOOP;
RETURN[NIL, MakeEmpty[searchInfo]];
};
FindMatchInBox: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
matchLevel: MatchViewer.MatchLevel ← MatchViewer.GetMatchData[].matchLevel;
entireBoxD: SliceDescriptor ← GGSliceOps.NewParts[searchInfo.slice, NIL, slice];
looks: LooksInfo;
complexLooks: LIST OF LIST OF LooksInfo;
IF matchLevel = anywhere THEN {
[match, rest] ← FindAnywhereMatchInBox[searchInfo, fromLooks, matchD];
RETURN[match, rest];
};
FOR fromLooks ← fromLooks, fromLooks.rest UNTIL fromLooks=NIL DO
WITH fromLooks.first SELECT FROM
simple: LooksInfo => {looks ← simple; complexLooks ← NIL;};
complex: LIST OF LIST OF LooksInfo => {
looks ← complex.first.first;
complexLooks ← complex;
};
ENDCASE => ERROR;
IF matchLevel = trajLevel OR matchLevel = clusterLevel THEN {
complexLength: NAT ← GList.Length[complexLooks];
IF looks.shapeDef AND complexLength > 1 THEN LOOP; -- boxes are connected entities
IF looks.typeDef AND complexLength # 1 THEN LOOP;
IF looks.typeDef THEN {
IF ComplexMatch[entireBoxD, complexLooks, matchD] THEN RETURN[entireBoxD, MakeEmpty[searchInfo]];
}
ELSE {
IF SimpleMatch[entireBoxD, looks, matchD] THEN RETURN[entireBoxD, MakeEmpty[searchInfo]];
};
}
ELSE ERROR;
ENDLOOP;
RETURN[NIL, MakeEmpty[searchInfo]];
};
FindMatchInOutline: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
entireSliceD: SliceDescriptor ← GGSliceOps.NewParts[searchInfo.slice, NIL, slice];
looks: LooksInfo;
complexLooks: LIST OF LIST OF LooksInfo;
matchLevel: MatchViewer.MatchLevel ← MatchViewer.GetMatchData[].matchLevel;
IF matchLevel = trajLevel THEN {
[match, rest] ← FindTrajMatchInOutline[searchInfo, fromLooks, matchD];
RETURN[match, rest];
};
IF matchLevel = anywhere THEN {
[match, rest] ← FindAnywhereMatchInOutline[searchInfo, fromLooks, matchD];
RETURN[match, rest];
};
FOR fromLooks ← fromLooks, fromLooks.rest UNTIL fromLooks=NIL DO
WITH fromLooks.first SELECT FROM
simple: LooksInfo => {looks ← simple; complexLooks ← NIL;};
complex: LIST OF LIST OF LooksInfo => {
looks ← complex.first.first;
complexLooks ← complex;
};
ENDCASE => ERROR;
IF matchLevel = clusterLevel THEN {
trajList: LIST OF Traj ← GGOutline.TrajectoriesOfOutline[searchInfo.slice];
IF (looks.typeDef OR looks.shapeDef) AND complexLooks # NIL THEN {
IF GList.Length[complexLooks] # GList.Length[trajList] THEN LOOP; -- different traj count
IF ComplexMatch[entireSliceD, complexLooks, matchD] THEN RETURN[entireSliceD, MakeEmpty[searchInfo]];
}
ELSE {
IF SimpleMatch[entireSliceD, looks, matchD] THEN RETURN[entireSliceD, MakeEmpty[searchInfo]];
};
}
ENDLOOP;
RETURN[NIL, MakeEmpty[searchInfo]];
};
FindAnywhereMatchInBox: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
SelectInRange: GGModelTypes.WalkProc = {
keep ← IF segNum >= first AND segNum <= last THEN TRUE ELSE FALSE;
segNum ← segNum + 1;
};
segCount: NAT = 4; -- 4 segs per box
segNum: NAT ← 0;
start, length: NAT; -- refer to the span of segments on searchInfo.segs
first, last: NAT; -- refer to the span of segments relative to the box
startSeg: Segment;
[start, length] ← SegLooksMatch[searchInfo, fromLooks, matchD]; -- note: start is relative to start of list, not start of traj
IF length < 1 THEN RETURN[NIL, NIL];
Make a sliceD for the match, and a rest
startSeg ← NARROW[GList.NthElement[searchInfo.segs, start+1], Segment];
FOR i:INT IN [0..4) DO
IF GGSlice.BoxFetchSegment[searchInfo.slice, i] = startSeg THEN {first ← i; EXIT;};
ENDLOOP;
IF NOT searchInfo.reverse THEN {
last ← (first + length - 1) MOD segCount;
}
ELSE {
last ← first;
first ← (first - length + 1 + segCount) MOD segCount; -- + segCount to keep positive
};
Now we have to splice out the used segments from searchInfo.segs
match ← GGSliceOps.WalkSegments[searchInfo.slice, SelectInRange];
rest ← CopySearchInfo[searchInfo];
rest.segs ← NARROW[GList.NthTail[rest.segs, start + length], LIST OF Segment];
};
FindAnywhereMatchInOutline: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
matchSeq: Sequence;
traj: Traj ← searchInfo.kids.first;
startSeg: Segment;
start, length: NAT; -- refer to a span of segments on searchInfo.segs
first, last: NAT; -- refer to a span of segments in the new sequence (ie, relative to the traj)
segCount: NAT;
searchInfo ← CopySearchInfo[searchInfo];
[start, length] ← SegLooksMatch[searchInfo, fromLooks, matchD]; -- note: start is relative to start of list, not start of traj
IF length < 1 THEN { -- nothing on interest on this traj, go directly to next
searchInfo.kids ← searchInfo.kids.rest;
CacheSegsOfFirstTraj[searchInfo];
RETURN[NIL, searchInfo];
};
Make a sliceD out of it and a rest, and return
startSeg ← NARROW[GList.NthElement[searchInfo.segs, start+1], Segment];
segCount ← GGTraj.HiSegment[traj]+1;
FOR i:INT IN [0..segCount) DO
IF GGTraj.FetchSegment[traj, i] = startSeg THEN {first ← i; EXIT};
ENDLOOP;
IF NOT searchInfo.reverse THEN {
last ← (first + length - 1) MOD segCount;
}
ELSE {
last ← first;
first ← (first - length + 1 + segCount) MOD segCount; -- + segCount to keep positive
};
Now we have to splice out the used segments from searchInfo.segs
BEGIN
trajData: TrajData ← NARROW[traj.data];
searchInfo.segs ← NARROW[GList.NthTail[searchInfo.segs, start + length], LIST OF Segment];
matchSeq ← GGSlice.DescriptorFromParts[traj, GGSequence.CreateFromSegments[trajData, first, last]];
match ← GGParent.DescriptorFromChildDescriptor[searchInfo.slice, matchSeq];
END;
RETURN[match, searchInfo];
};
FindTrajMatchInOutline: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [match: SliceDescriptor, rest: SearchInfo] = {
looks: LooksInfo;
complexLooks: LIST OF LIST OF LooksInfo;
searchInfo ← CopySearchInfo[searchInfo];
FOR trajs: LIST OF Traj ← searchInfo.kids, trajs.rest UNTIL trajs=NIL DO
currentTraj: Traj ← trajs.first;
searchInfo.kids ← trajs.rest;
FOR fromList: LIST OF REF ANY ← fromLooks, fromList.rest UNTIL fromList=NIL DO
WITH fromList.first SELECT FROM
simple: LooksInfo => {looks ← simple; complexLooks ← NIL;};
complex: LIST OF LIST OF LooksInfo => {
looks ← complex.first.first;
complexLooks ← complex;
};
ENDCASE => ERROR;
IF complexLooks=NIL THEN { -- ie, simple
trajData: TrajData ← NARROW[currentTraj.data];
seq: SliceDescriptor ← GGSlice.DescriptorFromParts[
currentTraj,
GGSequence.CreateComplete[trajData]
];
sliceD: SliceDescriptor ← GGParent.DescriptorFromChildDescriptor[searchInfo.slice, seq];
IF SimpleMatch[sliceD, looks, matchD] THEN RETURN[sliceD, searchInfo];
}
ELSE {
FOR list: LIST OF LIST OF LooksInfo ← complexLooks, list.rest UNTIL list=NIL DO
IF TrajMatch[currentTraj, list.first, matchD] THEN {
trajData: TrajData ← NARROW[currentTraj.data];
seq: SliceDescriptor ← GGSlice.DescriptorFromParts[
currentTraj,
GGSequence.CreateComplete[trajData]
];
match ← GGParent.DescriptorFromChildDescriptor[searchInfo.slice, seq];
RETURN[match, searchInfo];
};
ENDLOOP;
};
ENDLOOP;
ENDLOOP;
RETURN[NIL, searchInfo];
};
Utilities for the above routines
ManhattanDistance: PROC [pt1, pt2: Point] RETURNS [REAL] = {
RETURN[ABS[pt2.x - pt1.x] + ABS[pt2.y - pt1.y]];
};
SegLooksMatch: PROC [searchInfo: SearchInfo, fromLooks: LIST OF REF ANY, matchD: MatchDescriptor] RETURNS [start, length: NAT ← 0] = {
noneFound: BOOLTRUE;
newStart, newLength: NAT;
looks: LooksInfo;
complexLooks: LIST OF LooksInfo;
reverse: BOOLFALSE;
mapping: LIST OF ItemMatch ← NIL;
saveDObj, bestDObj: Match.MatchDObj;
fromLooks ← FlattenLooks[fromLooks];
FOR fromLooks ← fromLooks, fromLooks.rest UNTIL fromLooks=NIL DO
WITH fromLooks.first SELECT FROM
simple: LooksInfo => {looks ← simple; complexLooks ← NIL;};
complex: LIST OF LooksInfo => { -- not LIST OF LIST OF, since we've flattened slices
looks ← complex.first;
complexLooks ← complex;
};
ENDCASE => ERROR;
IF NOT SliceLevelMatch[searchInfo.slice, IF searchInfo.kids = NIL THEN NIL ELSE searchInfo.kids.first, looks] THEN LOOP;
saveDObj ← matchD^;
IF NOT looks.typeDef THEN [newStart, newLength, reverse] ← SimpleSegMatch[searchInfo, looks, matchD]
ELSE [newStart, newLength, reverse] ← CompoundSegMatch[searchInfo, complexLooks, matchD];
IF newLength > 0 THEN { -- we've found a match, but is it the (closest, longest) match?
IF start = newStart AND newLength > length THEN length ← newLength;
IF noneFound OR newStart < start THEN {
start ← newStart;
length ← newLength;
mapping ← MakeSegMapping[searchInfo, start, length, reverse, looks, complexLooks];
bestDObj ← saveDObj;
};
noneFound ← FALSE;
};
ENDLOOP;
IF length > 0 THEN {
matchD^ ← bestDObj;
matchD.mapping ← NARROW[GList.Append[mapping, matchD.mapping]];
};
};
FlattenLooks: PROC [looksList: LIST OF REF ANY] RETURNS [newList: LIST OF REF ANY] = {
FOR looksList ← looksList, looksList.rest UNTIL looksList=NIL DO
WITH looksList.first SELECT FROM
simple: LooksInfo => newList ← CONS[simple, newList];
complex: LIST OF LIST OF LooksInfo => {
FOR complex ← complex, complex.rest UNTIL complex=NIL DO
newList ← CONS[complex.first, newList];
ENDLOOP;
};
ENDCASE => ERROR;
ENDLOOP;
newList ← NARROW[GList.DReverse[newList], LIST OF REF ANY];
};
MakeSegMapping: PROC [searchInfo: SearchInfo, start, length: NAT, reverse: BOOL ← FALSE, looks: LooksInfo, complexLooks: LIST OF LooksInfo] RETURNS [mapping: LIST OF ItemMatch ← NIL] = {
segList: LIST OF Segment ← NARROW[GList.NthTail[searchInfo.segs, start]];
traj: Traj ← IF GGSliceOps.GetType[searchInfo.slice] = $Outline THEN searchInfo.kids.first ELSE NIL;
IF reverse AND looks.typeDef THEN segList ← NARROW[GList.Reverse[segList]];
THROUGH [0..length) DO
newItem: ItemMatch;
IF looks.typeDef THEN {
newItem ← NEW[ItemMatchObj ← [matcher: complexLooks.first.owner, matchee: [slice: searchInfo.slice, traj: traj, seg: segList.first], backwards: reverse]];
complexLooks ← complexLooks.rest;
}
ELSE {
newItem ← NEW[ItemMatchObj ← [matcher: looks.owner, matchee: [slice: searchInfo.slice, traj: traj, seg: segList.first], backwards: reverse]];
};
mapping ← CONS[newItem, mapping];
segList ← segList.rest;
ENDLOOP;
};
SimpleSegMatch: PROC [searchInfo: SearchInfo, looks: LooksInfo, matchD: MatchDescriptor] RETURNS [start, length: NAT ← 0, reverse: BOOL ← FALSE] = {
IF NOT looks.shapeDef THEN { -- Grab first run that fits description
index: NAT ← 0;
FOR segs: LIST OF Segment ← searchInfo.segs, segs.rest UNTIL segs=NIL DO
match: BOOLSegmentMatch[segs.first, looks];
IF match AND length < 1 THEN start ← index;
IF match THEN length ← length + 1;
IF length > 0 AND NOT match THEN EXIT;
index ← index + 1;
ENDLOOP;
}
ELSE {
[start, length, reverse] ← ShapeDrivenSegMatch[searchInfo, looks, matchD];
RETURN[start, length, reverse];
};
};
ShapeDrivenSegMatch: PROC [searchInfo: SearchInfo, looks: LooksInfo, matchD: MatchDescriptor] RETURNS [start, length: NAT ← 0, reverse: BOOL ← FALSE] = {
looks.shapeDef is TRUE, looks.typeDef is FALSE
matchData: MatchData ← MatchViewer.GetMatchData[];
revCheck: BOOLNOT AtomButtons.GetBinaryState[matchData.polarity];
matchList: LIST OF Segment ← NIL;
IF looks.shapeDef AND looks.shape.closed THEN revCheck ← FALSE; -- can't flip closed turtles!
FOR segs: LIST OF Segment ← searchInfo.segs, segs.rest UNTIL segs = NIL DO
tail: LIST OF TurtleInfo ← NIL;
ends: LIST OF LIST OF TurtleInfo ← NIL;
Find longest run, starting at subList.first, for which we have a basic match
FOR subList: LIST OF Segment ← segs, subList.rest UNTIL subList=NIL DO
IF SegmentMatch[subList.first, looks] THEN {
matchList ← CONS[subList.first, matchList];
tail ← MatchTurtle.SegmentToTurtle[subList.first, tail, searchInfo.reverse];
ends ← CONS[MatchTurtle.CopyTurtleTail[tail], ends]; -- list of backwards turtleTails
}
ELSE EXIT;
ENDLOOP;
Now we must find the longest sub-run with a shape match in matchList
FOR matchList ← matchList, matchList.rest UNTIL matchList = NIL DO -- matchList is backwards
turtle: TurtleHeader ← MatchTurtle.PackageTurtleTail[ends.first];
revTurtle: TurtleHeader ← turtle;
IF searchInfo.reverse THEN turtle ← MatchTurtle.FlipTurtle[turtle] -- so polarity works right
ELSE IF revCheck THEN revTurtle ← MatchTurtle.FlipTurtle[revTurtle];
IF MatchTurtle.TurtleEqual[looks.shape, turtle, MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[start, GList.Length[matchList], FALSE];
IF revCheck AND MatchTurtle.TurtleEqual[looks.shape, revTurtle, MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[start, GList.Length[matchList], TRUE];
ends ← ends.rest;
ENDLOOP;
start ← start + 1;
ENDLOOP;
};
CompoundSegMatch: PROC [searchInfo: SearchInfo, looks: LIST OF LooksInfo, matchD: MatchDescriptor] RETURNS [start, length: NAT ← 0, reverse: BOOLFALSE] = {
We're being called, since typeDef is TRUE (shapeDef may be TRUE)
matchData: MatchData ← MatchViewer.GetMatchData[];
revCheck: BOOLNOT AtomButtons.GetBinaryState[matchData.polarity];
single: LooksInfo;
matchLength: NAT ← GList.Length[looks];
revLooks: LIST OF LooksInfo;
IF looks=NIL THEN RETURN ELSE single ← looks.first; -- if looks is NIL, target not compound
IF single.shapeDef AND single.shape.closed THEN revCheck ← FALSE; -- can't flip closed turtles!
revLooks ← IF revCheck THEN FlipLooks[looks] ELSE NIL;
FOR subList: LIST OF Segment ← searchInfo.segs, subList.rest UNTIL subList = NIL DO
foreMatch: BOOLTRUE;
backMatch: BOOL ← revCheck;
foreLooks: LIST OF LooksInfo ← looks;
backLooks: LIST OF LooksInfo ← revLooks;
segs: LIST OF Segment ← subList;
tail: LIST OF TurtleInfo ← NIL;
turtle: TurtleHeader;
THROUGH [0..matchLength) DO
IF segs=NIL THEN RETURN; -- No matches found (signaled by length ← 0)
IF foreMatch AND NOT SegmentMatch[segs.first, foreLooks.first] THEN foreMatch ← FALSE;
IF backMatch AND NOT SegmentMatch[segs.first, backLooks.first] THEN backMatch ← FALSE;
IF NOT foreMatch AND NOT backMatch THEN EXIT;
IF single.shapeDef THEN tail ← MatchTurtle.SegmentToTurtle[segs.first, tail, searchInfo.reverse];
segs ← segs.rest; -- do list bookkeeping . . .
foreLooks ← foreLooks.rest;
IF backLooks # NIL THEN backLooks ← backLooks.rest;
ENDLOOP;
IF single.shapeDef AND (foreMatch OR backMatch) THEN {
turtle ← MatchTurtle.PackageTurtleTail[tail];
IF searchInfo.reverse THEN turtle ← MatchTurtle.FlipTurtle[turtle];
};
IF foreMatch THEN {
IF NOT single.shapeDef OR MatchTurtle.TurtleEqual[single.shape, turtle, MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[start, matchLength, FALSE];
};
IF backMatch THEN {
IF NOT single.shapeDef OR MatchTurtle.TurtleEqual[single.shape, MatchTurtle.FlipTurtle[turtle], MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[start, matchLength, TRUE];
};
start ← start + 1;
ENDLOOP;
No matches found (signaled by length ← 0)
};
FlipLooks: PROC [looksList: LIST OF LooksInfo] RETURNS [newList: LIST OF LooksInfo] = {
newList ← NARROW[GList.Reverse[looksList], LIST OF LooksInfo];
And more to come!!
};
SimpleMatch: PROC [sliceD: SliceDescriptor, looks: LooksInfo, matchD: MatchDescriptor ← NIL, checkShape: BOOLTRUE] RETURNS [match: BOOLTRUE] = {
Compare two single-path objects.
slice: Slice ← sliceD.slice;
IF looks.typeDef AND looks.type # GGSliceOps.GetType[slice] THEN RETURN[FALSE];
IF looks.classDef AND looks.class # GGSliceOps.GetType[slice] THEN RETURN[FALSE];
IF looks.colorDef AND NOT GGCoreOps.EquivalentColors[looks.color, GGSliceOps.GetStrokeColor[slice, sliceD.parts].color] THEN RETURN[FALSE];
IF looks.fillColorDef AND NOT GGCoreOps.EquivalentColors[looks.fillColor, GGSliceOps.GetFillColor[slice, sliceD.parts].color] THEN RETURN[FALSE];
IF looks.stringDef AND (GGSliceOps.GetType[slice] # $Text OR NOT Rope.Equal[GGSlice.GetText[slice], looks.string]) THEN RETURN[FALSE];
IF looks.fontDef AND NOT FontEqual[looks.font, GGSlice.GetFontData[slice].fontData] THEN RETURN[FALSE];
IF looks.fontTformDef AND NOT FontAndTransformEqual[looks.fontTform, GGSlice.GetFontData[slice].fontData] THEN RETURN[FALSE];
IF looks.dashesDef THEN {
dashInfo: DashInfo ← NEW[DashInfoObj];
[dashed: dashInfo.dashed, pattern: dashInfo.pattern, offset: dashInfo.offset, length: dashInfo.length] ← GGSliceOps.GetDashed[slice, sliceD.parts];
IF NOT DashEqual[dashInfo, looks.dashes] THEN RETURN[FALSE];
};
IF looks.jointsDef AND looks.joints # GGSliceOps.GetStrokeJoint[slice, sliceD.parts].strokeJoint THEN RETURN[FALSE];
IF looks.endsDef AND looks.ends # GGSliceOps.GetStrokeEnd[slice, sliceD.parts].strokeEnd THEN RETURN[FALSE];
IF looks.widthDef AND looks.width # GGSliceOps.GetStrokeWidth[slice, sliceD.parts].strokeWidth THEN RETURN[FALSE];
IF checkShape AND looks.shapeDef THEN {
IF GGSliceOps.GetType[slice] = $Outline THEN {
seqs: LIST OF SliceDescriptor ← GGParent.ListIncludedChildren[sliceD.slice, sliceD.parts, first];
IF seqs=NIL OR seqs.rest#NIL THEN RETURN[FALSE]; -- can't match multiple spans
IF NOT MatchTurtle.TurtleEqualEitherWay[looks.shape, MatchTurtle.TrajToTurtle[seqs.first.slice], MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[FALSE];
}
ELSE IF NOT MatchTurtle.TurtleEqualEitherWay[looks.shape, MatchTurtle.GetShapeOfSlice[slice], MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[FALSE];
};
IF checkShape THEN AddMapping[matchD, looks.owner, SliceDToItemID[sliceD]];
};
AddMapping: PROC [matchD: MatchDescriptor, matcher, matchee: ItemID, backwards: BOOLFALSE] = {
newMatch: ItemMatch ← NEW[ItemMatchObj ← [matcher: matcher, matchee: matchee, backwards: backwards]];
matchD.mapping ← CONS[newMatch, matchD.mapping];
};
ComplexMatch: PROC [sliceD: SliceDescriptor, sliceLooks: LIST OF LIST OF LooksInfo, matchD: MatchDescriptor] RETURNS [BOOLTRUE] = {
At this point it is known that the slice is either a box or an outline, and sliceLooks is of complex form
SELECT GGSliceOps.GetType[sliceD.slice] FROM
$Outline => RETURN[ComplexOutlineMatch[sliceD, sliceLooks, matchD]];
$Box => RETURN[ComplexBoxMatch[sliceD, sliceLooks, matchD]];
ENDCASE => ERROR;
};
SliceDToItemID: PROC [sliceD: SliceDescriptor] RETURNS [itemID: ItemID] = {
NOTE: only works for SliceDescriptors of entire slices (if slice is not an outline) or SliceDesriptors of single trajectories (if slice is an outline)
itemID.slice ← sliceD.slice;
IF GGSliceOps.GetType[sliceD.slice] = $Outline THEN {
childD: SliceDescriptor ← GGParent.FirstIncludedChild[sliceD.slice, sliceD.parts, first];
Must include a single trajectory.
itemID.traj ← childD.slice;
};
};
Outline utilities
ComplexOutlineMatch: PROC [sliceD: SliceDescriptor, sliceLooks: LIST OF LIST OF LooksInfo, matchD: MatchDescriptor] RETURNS [BOOLFALSE] = {
We're matching on the shape or type (or both) of the Outline trajectories
matchData: MatchData ← MatchViewer.GetMatchData[];
structure: BOOLTRUE;
trajs: LIST OF Traj ← GGOutline.TrajectoriesOfOutline[sliceD.slice]; -- sliceD is complete
IF structure THEN {
copyD: MatchDescriptor ← NEW[MatchDObj ← matchD^];
traj: Traj ← trajs.first;
trajLooks: LIST OF LooksInfo ← sliceLooks.first;
looks: LooksInfo ← trajLooks.first;
matcher: MatchTurtle.Matcher;
next: PositionDescriptor;
IF matchD.posD.valid THEN RETURN[OutlineMatchOriented[trajs, sliceLooks, structure, matchD]]; -- ie, we already have an orientation to match on.
Try to match traj with looks, for every possible orientation...
IF NOT TrajMatch[traj, trajLooks, copyD, FALSE] THEN RETURN[FALSE];
IF NOT looks.shapeDef THEN {
IF OutlineMatchOriented[trajs.rest, sliceLooks.rest, structure, copyD] THEN {
matchD^ ← copyD^;
RETURN[TRUE];
}
ELSE RETURN [FALSE];
};
matcher ← MatchTurtle.CreateMatcher[looks.shape, MatchTurtle.TrajToTurtle[traj], MatchViewer.GetMatchTolerance[], AtomButtons.GetBinaryState[matchData.polarity]];
WHILE (next ← MatchTurtle.NextMatch[matcher]) # NIL DO
copyD.posD ← next;
IF OutlineMatchOriented[trajs.rest, sliceLooks.rest, structure, copyD] THEN {
matchD^ ← copyD^;
RETURN[TRUE];
};
ENDLOOP;
}
ELSE {
MatchViewer.ErrorFeedback["Only can deal with structure matches now."];
};
};
OutlineMatchOriented: PROC [trajs: LIST OF Traj, sliceLooks: LIST OF LIST OF LooksInfo, structure: BOOL ← FALSE, matchD: MatchDescriptor] RETURNS [BOOLTRUE] = {
We're matching on the shape or type (or both) of the Outline trajectories.
IF trajs=NIL THEN RETURN[TRUE]; -- base case
IF structure THEN {
traj: Traj ← trajs.first;
trajData: TrajData ← NARROW[traj.data];
trajLooks: LIST OF LooksInfo ← sliceLooks.first;
looks: LooksInfo ← trajLooks.first;
segGen: SegmentGenerator ← GGSequence.SegmentsInTraj[trajData];
copyD: MatchDescriptor ← NEW[MatchDObj ← matchD^];
IF NOT TrajMatch[traj, trajLooks, copyD, FALSE] THEN RETURN[FALSE];
IF looks.shapeDef AND NOT MatchTurtle.TurtleEqual[looks.shape, MatchTurtle.TrajToTurtle[traj], MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN[FALSE];
IF NOT OutlineMatchOriented[trajs.rest, sliceLooks.rest, structure, copyD] THEN RETURN[FALSE]
ELSE matchD^ ← copyD^; -- only make changes in the descriptor if there's a match!
}
ELSE {
MatchViewer.ErrorFeedback["Only can deal with structure matches now."];
RETURN[FALSE];
};
};
TrajMatch: PROC [traj: Traj, trajLooks: LIST OF LooksInfo, matchD: MatchDescriptor, checkShape: BOOLTRUE] RETURNS [BOOLTRUE] = {
We're matching on shape or type (or both) of Outline trajectories
trajData: TrajData ← NARROW[traj.data];
segGen: SegmentGenerator ← GGSequence.SegmentsInTraj[trajData];
looks: LooksInfo ← trajLooks.first;
localMapping: LIST OF ItemMatch ← NIL;
IF looks.typeDef THEN {
First do traj & slice specific checks
IF looks.classDef AND looks.class # $Outline THEN RETURN[FALSE];
IF looks.jointsDef AND looks.joints # GGSliceOps.GetStrokeJoint[traj, NIL].strokeJoint THEN RETURN[FALSE];
IF looks.fillColorDef AND NOT GGCoreOps.EquivalentColors[looks.fillColor, GGSliceOps.GetFillColor[traj.parent, NIL].color] THEN RETURN [FALSE];
Next do lower level segment checks if typeDef is TRUE
IF trajData.segCount # GList.Length[trajLooks] THEN RETURN[FALSE];
FOR seg: Segment ← GGSequence.NextSegment[segGen], GGSequence.NextSegment[segGen] UNTIL seg = NIL DO
IF NOT SegmentMatch[seg, trajLooks.first] THEN RETURN[FALSE];
localMapping ← CONS[NEW[ItemMatchObj ← [matcher: trajLooks.first.owner, matchee: [slice: traj.parent, traj: traj, seg: seg]]], localMapping]; -- looks good so far
trajLooks ← trajLooks.rest;
ENDLOOP;
}
ELSE { -- match the looks characteristics on the traj as a whole
seq: Sequence ← GGSlice.DescriptorFromParts[
traj,
GGSequence.CreateComplete[trajData]
];
sliceD: SliceDescriptor ← GGParent.DescriptorFromChildDescriptor[traj.parent, seq];
IF NOT SimpleMatch[sliceD, looks, matchD, FALSE] THEN RETURN[FALSE];
localMapping ← LIST[NEW[ItemMatchObj ← [matcher: looks.owner, matchee: [slice: traj.parent, traj: traj]]]];
};
IF checkShape AND looks.shapeDef AND NOT MatchTurtle.TurtleEqualEitherWay[looks.shape, MatchTurtle.TrajToTurtle[traj], MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN [FALSE];
matchD.mapping ← NARROW[GList.Append[localMapping, matchD.mapping]]; -- save mapping
};
Box utilities
ComplexBoxMatch: PROC [sliceD: SliceDescriptor, sliceLooks: LIST OF LIST OF LooksInfo, matchD: MatchDescriptor] RETURNS [BOOLTRUE] = {
Object type or shape is set but object class may not be set. Consider the box to be a set of $Line segments.
GatherSegs: GGModelTypes.WalkProc = {segList ← CONS[seg, segList]; keep ← TRUE};
segList: LIST OF Segment ← NIL;
looks: LooksInfo;
slice: Slice ← sliceD.slice;
IF GList.Length[sliceLooks.first] # 4 THEN RETURN[FALSE]; -- boxes have 4 segs. We may have to change this later on if we allow wildcard segs
First do slice specific checks
looks ← sliceLooks.first.first;
IF looks.fillColorDef AND NOT GGCoreOps.EquivalentColors[looks.fillColor, GGSliceOps.GetFillColor[sliceD.slice, sliceD.parts].color] THEN RETURN [FALSE];
IF looks.shapeDef AND NOT MatchTurtle.TurtleEqualEitherWay[looks.shape, MatchTurtle.GetShapeOfSlice[slice], MatchViewer.GetMatchTolerance[], matchD.posD] THEN RETURN [FALSE]; -- shape may be out of phase with segments!
Looks good so far. Now we match against the individual segments
[] ← GGSliceOps.WalkSegments[slice, GatherSegs];
segList ← NARROW[GList.DReverse[segList]];
IF NOT SegListMatch[segList, sliceLooks.first] THEN RETURN [FALSE];
FOR looksList: LIST OF LooksInfo ← sliceLooks.first, looksList.rest UNTIL looksList = NIL DO
AddMapping[matchD, looksList.first.owner, [slice: sliceD.slice, seg: segList.first]];
segList ← segList.rest;
ENDLOOP; -- register matches
};
SegListMatch: PROC [segList: LIST OF Segment, looks: LIST OF LooksInfo] RETURNS [BOOLTRUE] = {
IF GList.Length[segList] # GList.Length[looks] THEN RETURN[FALSE]; -- this will change with advent of wildcards
FOR segList ← segList, segList.rest UNTIL segList=NIL DO
IF NOT SegmentMatch[segList.first, looks.first] THEN RETURN[FALSE];
looks ← looks.rest;
ENDLOOP;
};
SegmentMatch: PROC [seg: Segment, looks: LooksInfo] RETURNS [BOOLTRUE] = {
Segment-Level checks
IF looks.typeDef AND looks.type # seg.class.type THEN RETURN[FALSE];
IF looks.colorDef AND NOT GGCoreOps.EquivalentColors[looks.color, seg.color] THEN RETURN[FALSE];
IF looks.dashesDef THEN {
dashInfo: DashInfo ← NEW[DashInfoObj ← [dashed: seg.dashed, pattern: seg.pattern, offset: seg.offset, length: seg.length]];
IF NOT DashEqual[dashInfo, looks.dashes] THEN RETURN[FALSE];
};
IF looks.endsDef AND looks.ends # seg.strokeEnd THEN RETURN[FALSE];
IF looks.widthDef AND looks.width # seg.strokeWidth THEN RETURN[FALSE];
};
SliceLevelMatch: PROC [slice: Slice, traj: Traj ← NIL, looks: LooksInfo] RETURNS [BOOLTRUE] = {
Slice-Level checks
IF looks.classDef AND looks.class # GGSliceOps.GetType[slice] THEN RETURN[FALSE];
IF looks.fillColorDef AND NOT GGCoreOps.EquivalentColors[looks.fillColor, GGSliceOps.GetFillColor[slice, NIL].color] THEN RETURN[FALSE];
IF GGSliceOps.GetType[slice] = $Outline AND looks.jointsDef AND traj # NIL AND looks.joints # GGSliceOps.GetStrokeJoint[traj, NIL].strokeJoint THEN RETURN[FALSE];
};
Comparing Look Properties
LooksEqual: PUBLIC PROC [l1, l2: LooksInfo] RETURNS [BOOLTRUE] = {
Doesn't compare the shape fields
IF l1 = l2 THEN RETURN[TRUE];
IF l1 = NIL OR l2 = NIL THEN RETURN[FALSE];
IF (l1.classDef # l2.classDef) OR (l1.typeDef # l2.typeDef) OR (l1.colorDef # l2.colorDef) OR (l1.fillColorDef # l2.fillColorDef) OR (l1.stringDef # l2.stringDef) OR (l1.fontDef # l2.fontDef) OR (l1.fontTformDef # l2.fontTformDef) OR (l1.dashesDef # l2.dashesDef) OR (l1.jointsDef # l2.jointsDef) OR (l1.endsDef # l2.endsDef) OR (l1.widthDef # l2.widthDef) THEN RETURN[FALSE];
IF l1.classDef AND l1.class # l2.class THEN RETURN[FALSE];
IF l1.typeDef AND l1.type # l2.type THEN RETURN[FALSE];
IF l1.colorDef AND NOT GGCoreOps.EquivalentColors[l1.color, l2.color] THEN RETURN[FALSE];
IF l1.fillColorDef AND NOT GGCoreOps.EquivalentColors[l1.fillColor, l2.fillColor] THEN RETURN[FALSE];
IF l1.stringDef AND NOT Rope.Equal[l1.string, l2.string] THEN RETURN[FALSE];
IF l1.fontDef AND NOT FontEqual[l1.font, l2.font] THEN RETURN[FALSE];
IF l1.fontTformDef AND NOT FontAndTransformEqual[l1.fontTform, l2.fontTform] THEN RETURN[FALSE];
IF l1.dashesDef AND NOT DashEqual[l1.dashes, l2.dashes] THEN RETURN[FALSE];
IF l1.jointsDef AND l1.joints # l2.joints THEN RETURN[FALSE];
IF l1.endsDef AND l1.ends # l2.ends THEN RETURN[FALSE];
IF l1.widthDef AND l1.width # l2.width THEN RETURN[FALSE];
};
FontAndTransformEqual: PROC [f1, f2: GGFont.FontData] RETURNS [match: BOOLFALSE] = {
Uses the criteria of GGEvent.SelectMatchingData
maxPixels: REAL = 10000.0;
IF f1 # NIL AND f2 # NIL AND Rope.Equal[f1.literal, f2.literal, FALSE] AND RealFns.AlmostEqual[f1.storedSize, f2.storedSize, -9] AND ImagerTransformation.CloseToTranslation[f1.transform, f2.transform, maxPixels] THEN RETURN[TRUE];
};
FontEqual: PROC [f1, f2: GGFont.FontData] RETURNS [match: BOOLFALSE] = {
IF f1 # NIL AND f2 # NIL AND Rope.Equal[f1.literal, f2.literal, FALSE] AND RealFns.AlmostEqual[f1.storedSize, f2.storedSize, -9] THEN RETURN[TRUE];
};
DashEqual: PROC [d1, d2: DashInfo] RETURNS [match: BOOLTRUE] = {
IF d1.dashed = FALSE AND d2.dashed = FALSE THEN RETURN [TRUE];
IF d1.dashed # d2.dashed OR d1.offset # d2.offset OR d1.length # d2.length OR d1.pattern.len # d2.pattern.len THEN RETURN [FALSE];
FOR i:INT IN [0..d1.pattern.len) DO
IF d1.pattern[i] # d2.pattern[i] THEN RETURN[FALSE];
ENDLOOP;
};
Disjunctive Search Routines
SearchDisjInit: PUBLIC PROC [them: GGData, event: LIST OF REF ANY] = {
Find any object that matches an object in the From viewer (searchOp = disjunction)
matchData: MatchData ← MatchViewer.GetMatchData[];
searchState: SearchState ← Match.GetSearchState[];
If searching in new viewer or caret position changed or starting search from top,
then build a new description of the target scene.
IF them # matchData.theirData OR GGCaret.GetPoint[them.caret] # matchData.lastCaretPos OR event.rest.first = $SearchFromTop THEN {
searchState.ahead ← RemakeDisjList[them, event.rest.first, TRUE];
matchData.theirData ← them;
matchData.lastCaretPos ← GGCaret.GetPoint[them.caret];
}
ELSE IF event.rest.first # searchState.lastDirection THEN { -- reverse search direction
Match-select all normal-selected slices, so they're not included in search.
DoSelect: PROC [normalD: SliceDescriptor] RETURNS [done: BOOLFALSE] = {
GGSelect.SelectSlice[normalD, them.scene, match];
};
matchSelectD: SliceDescriptor ← NIL;
[] ← GGScene.WalkSelectedSlices[them.scene, first, DoSelect, normal];
IF searchState.ahead # NIL THEN {
firstSlice: Slice ← searchState.ahead.first.slice;
matchSelectD ← GGSelect.FindSelectedSlice[firstSlice, them.scene, match];
matchSelectD ← GGSelect.FindSelectedSlice[firstSlice, match];
IF matchSelectD = NIL THEN matchSelectD ← GGSliceOps.NewParts[firstSlice, NIL, none];
};
searchState.ahead ← RemakeDisjList[them, event.rest.first, TRUE];
RemoveSelected[searchState.ahead, matchSelectD]; --do bookkeeping so that search will begin (in the other direction) where the last search left off
};
Otherwise, leave searchState alone.
searchState.lastDirection ← IF event.rest.first = $SearchFromTop THEN $SearchBelow ELSE event.rest.first;
};
SearchDisjNext: PUBLIC PROC [searchList: LIST OF SearchInfo, direction: REF ANY, refresh: BOOLTRUE] RETURNS [newSearchList: LIST OF SearchInfo, found: BOOL ← FALSE] = {
target: SliceDescriptor ← NIL;
matchData: MatchData ← MatchViewer.GetMatchData[];
check, checkNext: SearchInfo ← NIL;
fromLooks: LIST OF REF ANY ← GetFromLooks[];
matchD: MatchDescriptor ← Match.CreateMatchDescriptor[];
DO
IF NOT IsEmptySearchInfo[check] THEN { -- something left of this slice to match on
[target, checkNext] ← FindMatchInSlice[check, fromLooks, direction, matchD];
DisjClearMatchBits[check, checkNext, matchData.theirData.scene];
IF target = NIL THEN check ← checkNext -- no match
ELSE { -- we've matched something!
fromData: GGData ← MatchViewer.GetFromData[];
GGSelect.DeselectAll[matchData.theirData.scene, normal];
IF NOT AtomButtons.GetBinaryState[matchData.contextSensitive] THEN Match.SelectMapped[matchData.theirData.scene, matchD.mapping]
ELSE Match.SelectMapped[matchData.theirData.scene, Match.SelectionFilter[fromData.scene, matchD.mapping]];
matchData.lastCaretPos ← [GGCaret.GetPoint[matchData.theirData.caret].x, target.slice.boundBox.hiY];
GGCaret.SetAttractor[matchData.theirData.caret, matchData.lastCaretPos, [0, -1], NIL];
IF refresh THEN GGWindow.RestoreScreenAndInvariants[paintAction: $SelectionChanged, ggData: matchData.theirData, remake: none, edited: FALSE, okToSkipCapture: FALSE];
Match.RememberMatchDescriptor[matchD];
IF checkNext = NIL THEN ERROR; -- we no longer consider nil SearchInfo's empty
RETURN[CONS[checkNext, searchList], TRUE];
};
}
ELSE -- no more interesting stuff in slice
IF searchList # NIL THEN {
IF check # NIL THEN GGSelect.DeselectEntireSlice[check.slice, matchData.theirData.scene, match];
check ← searchList.first;
searchList ← searchList.rest;
}
ELSE {
GGSelect.DeselectAll[matchData.theirData.scene, normal];
IF refresh THEN GGWindow.RestoreScreenAndInvariants[paintAction: $SelectionChanged, ggData: matchData.theirData, remake: none, edited: FALSE, okToSkipCapture: FALSE];
Match.RememberMatchDescriptor[NIL];
RETURN[NIL, FALSE];
};
ENDLOOP;
};
RemakeDisjList: PUBLIC PROC [theirData: GGData, direction: REF ANY, select: BOOL ← FALSE] RETURNS [toSearch: LIST OF SearchInfo] = {
toSearch will hold SearchInfo's for objects whose boundBox is below the caret if the search is progressing in a downwards direction, and above the caret if the search is progressing upwards. If select is true, then all slices ahead will be match selected (and those behind will be cleared). This routine is called during disjunction search.
GetOrderedSlices: PROC [ggData: GGData, direction: REF ANY] RETURNS [sliceList: LIST OF Slice ← NIL] = {
scene: Scene ← ggData.scene;
caretPos: Point ← GGCaret.GetPoint[ggData.caret];
SELECT direction FROM
$SearchBelow => {
DoSearchBelow: PROC [slice: Slice] RETURNS [done: BOOLFALSE] = {
IF caretPos.y >= GGSliceOps.GetBoundBox[slice].hiY THEN sliceList ← CONS[slice, sliceList];
};
[] ← GGScene.WalkSlices[scene, first, DoSearchBelow];
};
$SearchAbove => {
DoSearchAbove: PROC [slice: Slice] RETURNS [done: BOOLFALSE] = {
IF caretPos.y <= GGSliceOps.GetBoundBox[slice].hiY THEN sliceList ← CONS[slice, sliceList];
};
[] ← GGScene.WalkSlices[scene, first, DoSearchAbove];
};
$SearchFromTop => {
DoSearchFromTop: PROC [slice: Slice] RETURNS [done: BOOLFALSE] = {
sliceList ← CONS[slice, sliceList];
};
[] ← GGScene.WalkSlices[scene, first, DoSearchFromTop];
};
ENDCASE => ERROR;
sliceList ← HeightSort[sliceList, IF direction = $SearchAbove THEN FALSE ELSE TRUE];
};
caretPos: Point ← GGCaret.GetPoint[theirData.caret];
slices: LIST OF Slice ← GetOrderedSlices[theirData, direction];
IF select THEN GGSelect.DeselectAll[theirData.scene, match]; -- speeds subsequent selections
FOR sList: LIST OF Slice ← slices, sList.rest UNTIL sList = NIL DO
IF select THEN GGSelect.SelectEntireSlice[sList.first, theirData.scene, match];
toSearch ← CONS[CreateSearchInfo[sList.first, direction], toSearch];
ENDLOOP;
};
DisjClearMatchBits: PROC [first, next: SearchInfo, scene: Scene] = {
SegmentsInInfo: GGModelTypes.WalkProc = { RETURN[GList.Member[seg, next.segs]]; };
If the next SearchInfo is Empty, then deselect the entire slice described by first
IF IsEmptySearchInfo[next] THEN GGSelect.DeselectEntireSlice[first.slice, scene, match]
ELSE { -- a bit more complicated (part of next still remains to be searched)
SELECT GGSliceOps.GetType[first.slice] FROM
$Box => {
newSelection: SliceDescriptor ← GGSliceOps.WalkSegments[next.slice, SegmentsInInfo];
GGSelect.DeselectEntireSlice[first.slice, scene, match];
GGSelect.SelectSlice[newSelection, scene, match];
};
$Outline => {
newSelection: SliceDescriptor ← GGSliceOps.WalkSegments[next.slice, SegmentsInInfo];
FOR trajList: LIST OF Traj ← next.kids.rest, trajList.rest UNTIL trajList = NIL DO
trajData: TrajData ← NARROW[trajList.first.data];
seq: Sequence ← GGSlice.DescriptorFromParts[
trajList.first,
GGSequence.CreateComplete[trajData]
];
trajD: SliceDescriptor ← GGParent.DescriptorFromChildDescriptor[seq.slice.parent, seq];
newSelection ← GGSliceOps.UnionParts[newSelection, trajD];
ENDLOOP;
GGSelect.DeselectEntireSlice[first.slice, scene, match];
GGSelect.SelectSlice[newSelection, scene, match];
};
ENDCASE => GGSelect.DeselectEntireSlice[first.slice, scene, match];
};
};
Bookkeeping to keep track of what parts of a slice have been visited, when a substitution or change of search direction has occurred.
RemoveSelected: PUBLIC PROC [infoList: LIST OF SearchInfo, sliceD: SliceDescriptor] = {
We have done a replace or changed the search direction.
sliceD is the SliceDescriptor of the "in progress" SearchInfo.
infoList is the ahead SearchInfo list.
We remove the sliceD pieces from the ahead list since they have already been looked at.
IF sliceD = NIL THEN RETURN;
FOR iList: LIST OF SearchInfo ← infoList, iList.rest UNTIL iList = NIL DO
IF sliceD.slice = iList.first.slice THEN RemoveDescriptorFromInfo[sliceD, iList.first];
ENDLOOP;
};
RemoveDescriptorFromInfo: PUBLIC PROC [sliceD: SliceDescriptor, info: SearchInfo] = {
FilterSegs: PROC [sliceD: SliceDescriptor, info: SearchInfo] = {
segList, revSegs: LIST OF Segment ← NIL;
segGen: SegmentGenerator ← GGSliceOps.SegmentsInDescriptor[sliceD];
FOR seg: Segment ← GGSliceOps.NextSegment[sliceD.slice, segGen].seg, GGSliceOps.NextSegment[sliceD.slice, segGen].seg UNTIL seg = NIL DO
segList ← CONS [seg, segList];
ENDLOOP; -- we've formed a list of segments in the descriptor
revSegs ← NARROW[GList.Reverse[info.segs]];
info.segs ← NIL;
FOR infoSegs: LIST OF Segment ← revSegs, infoSegs.rest UNTIL infoSegs = NIL DO
IF GList.Member[infoSegs.first, segList] THEN EXIT
ELSE info.segs ← CONS[infoSegs.first, info.segs];
ENDLOOP;
};
matchLevel: MatchViewer.MatchLevel ← MatchViewer.GetMatchData[].matchLevel;
IF info.slice # sliceD.slice THEN RETURN; -- sliceD and info must relate to same slice
IF GGSliceOps.IsEmptyParts[sliceD] THEN RETURN; -- nothing to remove
SELECT GGSliceOps.GetType[sliceD.slice] FROM
$Box => {
IF matchLevel = clusterLevel OR matchLevel = trajLevel THEN info.empty ← TRUE
ELSE FilterSegs[sliceD, info]; -- matchLevel = anywhere
};
$Outline => {
IF matchLevel = clusterLevel THEN info.empty ← TRUE
ELSE IF matchLevel = trajLevel THEN {
revTrajs: LIST OF Traj ← NARROW[GList.Reverse[info.kids]];
info.kids ← NIL;
FOR trajs: LIST OF Traj ← revTrajs, trajs.rest UNTIL trajs = NIL DO
seq: SliceDescriptor ← GGParent.ChildDescriptorFromDescriptor[sliceD, trajs.first];
IF NOT GGSliceOps.IsEmptyParts[seq] THEN EXIT
ELSE info.kids ← CONS[trajs.first, info.kids];
ENDLOOP;
}
ELSE { -- matchLevel = anywhere
oldTrajs: LIST OF Traj ← info.kids;
revTrajs: LIST OF Traj ← NARROW[GList.Reverse[info.kids]];
info.kids ← NIL;
FOR trajs: LIST OF Traj ← revTrajs, trajs.rest UNTIL trajs = NIL DO
seq: SliceDescriptor ← GGParent.ChildDescriptorFromDescriptor[sliceD, trajs.first];
info.kids ← CONS[trajs.first, info.kids];
IF NOT GGSliceOps.IsEmptyParts[seq] THEN EXIT;
ENDLOOP;
IF info.kids.first # oldTrajs.first THEN {
info.segs ← NIL;
CacheSegsOfFirstTraj[info];
};
FilterSegs[sliceD, info];
};
};
ENDCASE => info.empty ← TRUE;
};
General Search Utilities
HeightSort: PUBLIC PROC [slices: LIST OF Slice, ascending: BOOL ← FALSE] RETURNS [LIST OF Slice] = {
Height sorts slices by upper left of bounding box (according to the ascending BOOL). Breaks ties by using loX values (ordered according to the complement of the ascending BOOL), so if ascending = FALSE, search will proceed downwards and left to right.
CompareReal: PROC [r1, r2: REAL] RETURNS [Basics.Comparison] ~ {
RETURN [IF r1=r2 THEN equal ELSE IF r1>r2 THEN greater ELSE less];
};
CompareProc: GList.CompareProc = {
[ref1: REF ANY, ref2: REF ANY] RETURNS [Basics.Comparison]
slice1: Slice ← NARROW[ref1];
slice2: Slice ← NARROW[ref2];
epsilon: REAL ← 0.072; -- 0.001 inches
priority1: REAL ← GGSliceOps.GetBoundBox[slice1].hiY;
priority2: REAL ← GGSliceOps.GetBoundBox[slice2].hiY;
IF ABS[priority1 - priority2] <= 0.0 THEN { -- sort left to right
priority1 ← GGSliceOps.GetBoundBox[slice2].loX; -- slices swapped intentionally
priority2 ← GGSliceOps.GetBoundBox[slice1].loX;
};
IF ascending THEN RETURN[CompareReal[priority1, priority2]]
ELSE RETURN[CompareReal[priority2, priority1]];
};
slices ← NARROW[GList.Sort[slices, CompareProc]];
RETURN[slices];
};
END.