DIRECTORY Angles2d, Imager, ImagerTransformation, Lines2d, Lines2dTypes, RealFns, Vectors2d; Lines2dImpl: CEDAR PROGRAM IMPORTS Angles2d, Imager, ImagerTransformation, RealFns, Vectors2d EXPORTS Lines2d = BEGIN Point: TYPE = Lines2dTypes.Point; Edge: TYPE = REF EdgeObj; EdgeObj: TYPE = Lines2dTypes.EdgeObj; Line: TYPE = REF LineObj; LineObj: TYPE = Lines2dTypes.LineObj; Ray: TYPE = REF RayObj; RayObj: TYPE = Lines2dTypes.RayObj; Vector: TYPE = Lines2dTypes.Vector; CreateEmptyLine: PUBLIC PROC RETURNS [line: Line] = { line _ NEW[LineObj]; }; CopyLine: PUBLIC PROC [from: Line, to: Line] = { to.c _ from.c; to.s _ from.s; to.theta _ from.theta; to.d _ from.d; }; EqualLine: PUBLIC PROC [a: Line, b: Line] RETURNS [BOOL] = { RETURN[a.d = b.d AND a.theta = b.theta]; }; AlmostEqualLine: PUBLIC PROC [a: Line, b: Line, errorDegrees: REAL, errorDistance: REAL] RETURNS [BOOL] = { RETURN[ABS[a.theta - b.theta] < errorDegrees AND ABS[a.d-b.d] < errorDistance]; }; FillLineFromPoints: PUBLIC PROC [v1, v2: Point, line: Line] = { epsilon: REAL = 1.0e-3; -- changed from 1.0e-5 in August 1986, by Bier -- changed from 1.0e-6 in August 1985 by Bier x2Minusx1: REAL _ v2.x - v1.x; y2Minusy1: REAL _ v2.y - v1.y; IF ABS[x2Minusx1] < epsilon THEN {-- vertical line IF v2.y > v1.y THEN {-- line goes up line.theta _ 90.0; line.s _ 1; line.d _ -v1.x} ELSE { -- line goes down line.theta _ -90; line.s _ -1; line.d _ v1.x}; line.c _ 0; } ELSE { line.theta _ RealFns.ArcTanDeg[y2Minusy1, x2Minusx1]; line.c _ RealFns.CosDeg[line.theta]; line.s _ RealFns.SinDeg[line.theta]; line.d _ v1.y*line.c - v1.x*line.s; }; }; -- end of FillLineFromPoints VectorTooSmall: PUBLIC SIGNAL = CODE; FillLineFromPointAndVector: PUBLIC PROC [pt: Point, vec: Vector, line: Line] = { epsilon: REAL = 1.0e-3; IF ABS[vec.x] < epsilon AND ABS[vec.y] < epsilon THEN { SIGNAL VectorTooSmall; line.theta _ 90.0; } ELSE line.theta _ RealFns.ArcTanDeg[vec.y, vec.x]; line.c _ RealFns.CosDeg[line.theta]; line.s _ RealFns.SinDeg[line.theta]; line.d _ pt.y*line.c - pt.x*line.s; }; FillLineFromCoefficients: PUBLIC PROC [sineOfTheta, cosineOfTheta, distance: REAL, line: Line] = { line.s _ sineOfTheta; line.c _ cosineOfTheta; line.d _ distance; line.theta _ RealFns.ArcTanDeg[sineOfTheta, cosineOfTheta]; }; -- end of FillLineFromCoefficients FillLineFromPointAndAngle: PUBLIC PROC [pt: Point, degrees: REAL, line: Line] = { line.theta _ Angles2d.Normalize[degrees]; line.c _ RealFns.CosDeg[line.theta]; line.s _ RealFns.SinDeg[line.theta]; line.d _ pt.y*line.c - pt.x*line.s; }; -- end of FillLineFromPointAndAngle FillLineNormalToLineThruPoint: PUBLIC PROC [line: Line, pt: Point, normalLine: Line] = { normalLine.s _ line.c; normalLine.c _ -line.s; normalLine.d _ -pt.y*line.s - pt.x*line.c; normalLine.theta _ Angles2d.Add[line.theta, 90]; }; -- end of FillLineAsNormal FillLineLeftOfLine: PUBLIC PROC [line: Line, dist: REAL, parallelLine: Line] = { parallelLine.s _ line.s; parallelLine.c _ line.c; parallelLine.d _ line.d + dist; parallelLine.theta _ line.theta; }; FillLineRightOfLine: PUBLIC PROC [line: Line, dist: REAL, parallelLine: Line] = { parallelLine.s _ line.s; parallelLine.c _ line.c; parallelLine.d _ line.d - dist; parallelLine.theta _ line.theta; }; FillLineTransform: PUBLIC PROC [fixed: Line, transform: ImagerTransformation.Transformation, line: Line] = { point, newPoint: Point; direction, newDirection: Vector; point _ PointOnLine[fixed]; direction _ DirectionOfLine[fixed]; newPoint _ ImagerTransformation.Transform[transform, point]; newDirection _ ImagerTransformation.TransformVec[transform, direction]; FillLineFromPointAndVector[newPoint, newDirection, line]; }; LineFromPoints: PUBLIC PROC [v1, v2: Point] RETURNS [line: Line] = { line _ CreateEmptyLine[]; FillLineFromPoints[v1, v2, line]; }; LineFromPointAndVector: PUBLIC PROC [pt: Point, vec: Vector] RETURNS [line: Line] = { pt2: Point; pt2 _ Vectors2d.Add[pt, vec]; line _ LineFromPoints[pt, pt2]; }; LineFromCoefficients: PUBLIC PROC [sineOfTheta, cosineOfTheta, distance: REAL] RETURNS [line: Line] = { line _ CreateEmptyLine[]; FillLineFromCoefficients[sineOfTheta, cosineOfTheta, distance, line]; }; LineFromPointAndAngle: PUBLIC PROC [pt: Point, degrees: REAL] RETURNS [line: Line] = { line _ CreateEmptyLine[]; FillLineFromPointAndAngle[pt, degrees, line]; }; LineNormalToLineThruPoint: PUBLIC PROC [line: Line, pt: Point] RETURNS [normalLine: Line] = { normalLine _ CreateEmptyLine[]; FillLineNormalToLineThruPoint[line, pt, normalLine]; }; LineLeftOfLine: PUBLIC PROC [line: Line, dist: REAL] RETURNS [parallelLine: Line] = { parallelLine _ CreateEmptyLine[]; FillLineLeftOfLine[line, dist, parallelLine]; }; LineRightOfLine: PUBLIC PROC [line: Line, dist: REAL] RETURNS [parallelLine: Line] = { parallelLine _ CreateEmptyLine[]; FillLineRightOfLine[line, dist, parallelLine]; }; LineTransform: PUBLIC PROC [fixed: Line, transform: ImagerTransformation.Transformation] RETURNS [rotatedLine: Line] = { rotatedLine _ CreateEmptyLine[]; FillLineTransform[fixed, transform, rotatedLine]; }; DrawLine: PUBLIC PROC [dc: Imager.Context, line: Line, clippedBy: Imager.Rectangle, strokeWidth: REAL _ 1.0] = { count: NAT; ray: Ray; params: ARRAY[1..2] OF REAL; p1, p2, basePoint: Point; direction: Vector; DoDrawLine: PROC = { Imager.SetXY[dc, [p1.x, p1.y]]; Imager.Move[dc]; Imager.SetStrokeEnd[dc, round]; Imager.SetStrokeWidth[dc, strokeWidth]; Imager.MaskVector[dc, [0.0, 0.0], [p2.x - p1.x, p2.y - p1.y]]; }; p1 _ [clippedBy.x, clippedBy.y]; p2 _ [clippedBy.x + clippedBy.w, clippedBy.y + clippedBy.h]; basePoint _ PointOnLine[line]; direction _ DirectionOfLine[line]; ray _ CreateRay[basePoint, direction]; [count, params] _ LineRayMeetsBox[ray, p1.x, p1.y, p2.x, p2.y]; IF count = 2 THEN { p1 _ EvalRay[ray, params[1]]; p2 _ EvalRay[ray, params[2]]; Imager.DoSave[dc, DoDrawLine]; }; }; CreateEmptyEdge: PUBLIC PROC RETURNS [edge: Edge] = { edge _ NEW[EdgeObj]; edge.line _ CreateEmptyLine[]; }; CopyEdge: PUBLIC PROC [from: Edge, to: Edge] = { CopyLine[from.line, to.line]; to.start _ from.start; to.end _ from.end; to.startIsFirst _ from.startIsFirst; }; -- end of CopyEdge FillEdge: PUBLIC PROC [v1, v2: Point, edge: Edge] = { y2Minusy1: REAL; FillLineFromPoints[v1, v2, edge.line]; y2Minusy1 _ v2.y - v1.y; IF y2Minusy1 = 0 THEN IF v2.x > v1.x THEN {edge.end _ v2; edge.start _ v1; edge.startIsFirst _ TRUE} ELSE {edge.end _ v1; edge.start _ v2; edge.startIsFirst _ FALSE} ELSE IF v2.y > v1.y THEN {edge.end _ v2; edge.start _ v1; edge.startIsFirst _ TRUE} ELSE {edge.end _ v1; edge.start _ v2; edge.startIsFirst _ FALSE}; }; -- end of FillEdge FillEdgeTransform: PUBLIC PROC [fixed: Edge, transform: ImagerTransformation.Transformation, edge: Edge] = { start, end: Point; start _ ImagerTransformation.Transform[m: transform, v: fixed.start]; end _ ImagerTransformation.Transform[m: transform, v: fixed.end]; FillEdge[start, end, edge]; }; CreateEdge: PUBLIC PROC [v1, v2: Point] RETURNS [edge: Edge] = { edge _ CreateEmptyEdge[]; FillEdge[v1, v2, edge]; }; -- end of CreateEdge EdgeTransform: PUBLIC PROC [fixed: Edge, transform: ImagerTransformation.Transformation] RETURNS [edge: Edge] = { edge _ CreateEmptyEdge[]; FillEdgeTransform[fixed, transform, edge]; }; CreateRay: PUBLIC PROC [basePoint: Point, direction: Vector] RETURNS [ray: Ray] = { ray _ NEW[RayObj _ [basePoint, direction]]; }; CreateRayFromPoints: PUBLIC PROC [p1, p2: Point] RETURNS [ray: Ray] = { ray _ NEW[RayObj _ [p1, Vectors2d.Sub[p2, p1]]]; }; AlmostEqual: PROC [r1, r2, almostZero: REAL] RETURNS [BOOL] = { RETURN[ABS[r1 - r2] < almostZero]; }; LineRayMeetsBox: PUBLIC PROC [ray: Ray, xmin, ymin, xmax, ymax: REAL] RETURNS [count: NAT, params: ARRAY[1..2] OF REAL] = { almostZero: REAL _ 1.0e-3; x, y, t: REAL; count _ 0; IF ABS[ray.d.y] > almostZero THEN { -- intersection occurs t _ (ymax-ray.p.y)/ray.d.y; x _ ray.p.x + t*ray.d.x; IF x >=xmin-almostZero AND x<= xmax+almostZero THEN { -- hits box count _ count + 1; params[count] _ t; }; t _ (ymin-ray.p.y)/ray.d.y; x _ ray.p.x + t*ray.d.x; IF x >=xmin-almostZero AND x<= xmax+almostZero THEN { -- hits box count _ count + 1; params[count] _ t; }; }; IF ABS[ray.d.x] > almostZero THEN { -- intersection occurs IF count < 2 THEN { t _ (xmax-ray.p.x)/ray.d.x; IF count = 0 OR (count = 1 AND NOT AlmostEqual[t, params[1], almostZero]) THEN { y _ ray.p.y + t*ray.d.y; IF y >=ymin-almostZero AND y<= ymax+almostZero THEN { -- hits box count _ count + 1; params[count] _ t; }; }; }; IF count < 2 THEN { t _ (xmin-ray.p.x)/ray.d.x; IF count = 0 OR (count = 1 AND NOT AlmostEqual[t, params[1], almostZero]) THEN { y _ ray.p.y + t*ray.d.y; IF y >=ymin-almostZero AND y<= ymax+almostZero THEN { -- hits box count _ count + 1; params[count] _ t; }; }; }; }; IF count = 2 THEN { IF params[2] < params[1] THEN { temp: REAL _ params[1]; params[1] _ params[2]; params[2] _ temp; }; }; -- make sure hits are sorted }; -- end of LineRayMeetsBox EvalRay: PUBLIC PROC [ray: Ray, param: REAL] RETURNS [point: Point] = { point.x _ ray.p.x + param*ray.d.x; point.y _ ray.p.y + param*ray.d.y; }; AlmostZero: PROC [r: REAL] RETURNS [BOOL] = { epsilon: REAL = 1.0e-5; RETURN[ABS[r] < epsilon]; }; LineMeetsLine: PUBLIC PROC [line1, line2: Line] RETURNS [intersection: Point, parallel: BOOL] = { determinant: REAL; epsilon: REAL = 4E-4; parallel _ FALSE; IF Angles2d.AlmostParallel[line1.theta, line2.theta, epsilon] THEN {parallel _ TRUE; RETURN}; determinant _ line2.s*line1.c - line1.s*line2.c; intersection.x _ (line2.c*line1.d - line1.c*line2.d)/determinant; intersection.y _ (line2.s*line1.d - line1.s*line2.d)/determinant; }; LineMeetsYAxis: PUBLIC PROC [line: Line] RETURNS [yInt: REAL, parallel: BOOL] = { IF line.theta = 90 OR line.theta = -90 THEN parallel _ TRUE ELSE {-- we just want the y Intercept which is calculated at line creation time for now. parallel _ FALSE; yInt _ line.yInt;} }; LineMeetsEdge: PUBLIC PROC [line: Line, edge: Edge] RETURNS [intersection: Point, noHit: BOOL] = { edgeLine: Line _ edge.line; parallel: BOOL; [intersection, parallel] _ LineMeetsLine[edgeLine, line]; IF parallel THEN {noHit _ TRUE; RETURN}; noHit _ NOT OnEdge[intersection, edge]; }; EdgeMeetsEdge: PUBLIC PROC [e1, e2: Edge] RETURNS [intersection: Point, noHit: BOOL] = { e1Line: Line _ e1.line; [intersection, noHit] _ LineMeetsEdge[e1Line, e2]; IF noHit THEN RETURN; noHit _ NOT OnEdge[intersection, e1]; }; SignedLineDistance: PUBLIC PROC [pt: Point, line: Line] RETURNS [d: REAL] = { d _ pt.y*line.c - pt.x*line.s - line.d; }; -- SignedLineDistance LineDistance: PUBLIC PROC [pt: Point, line: Line] RETURNS [d: REAL] = { d _ ABS[pt.y*line.c - pt.x*line.s - line.d]; }; -- LineDistance DropPerpendicular: PUBLIC PROC [pt: Point, line: Line] RETURNS [projectedPt: Point] = { D: REAL _ pt.y*line.c - pt.x*line.s - line.d; projectedPt.x _ pt.x + D*line.s; projectedPt.y _ pt.y - D*line.c; }; PointOnLine: PUBLIC PROC [line: Line] RETURNS [pt: Point] = { IF ABS[line.c] > ABS[line.s] THEN { pt.x _ 0.0; pt.y _ line.d/line.c; } ELSE { pt.y _ 0.0; pt.x _ -line.d/line.s; }; }; DirectionOfLine: PUBLIC PROC [line: Line] RETURNS [direction: Vector] = { direction.x _ line.c; direction.y _ line.s; }; NearestEndpoint: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [endpoint: Point] = { IF ABS[pt.x-edge.start.x] <= ABS[pt.x-edge.end.x] THEN IF ABS[pt.y-edge.start.y] <= ABS[pt.y-edge.end.y] THEN RETURN[edge.start] ELSE GOTO DoMath ELSE IF ABS[pt.y-edge.start.y] > ABS[pt.y-edge.end.y] THEN RETURN[edge.end] ELSE GOTO DoMath; EXITS DoMath => IF DistanceSquaredPointToPoint[pt, edge.start] < DistanceSquaredPointToPoint[pt, edge.end] THEN endpoint _ edge.start ELSE endpoint _ edge.end; }; DistanceSquaredToNearestEndpoint: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [distanceSquared: REAL] = { distance2ToPLo, distance2ToPHi: REAL; distance2ToPLo _ DistanceSquaredPointToPoint[pt, edge.start]; distance2ToPHi _ DistanceSquaredPointToPoint[pt, edge.end]; RETURN[MIN[distance2ToPLo, distance2ToPHi]]; }; NearestPointOnEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [onEdge: Point] = { projectedPt: Point _ DropPerpendicular[pt, edge.line]; IF LinePointOnEdge[projectedPt, edge] THEN onEdge _ projectedPt ELSE onEdge _ NearestEndpoint[pt, edge]; }; DistancePointToEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [distance: REAL] = { projectedPt: Point _ DropPerpendicular[pt, edge.line]; nearEndpoint: Point; IF LinePointOnEdge[projectedPt, edge] THEN distance _ ABS[LineDistance[pt, edge.line]] ELSE { nearEndpoint _ NearestEndpoint[pt, edge]; distance _ DistancePointToPoint[pt, nearEndpoint]; }; }; DistanceSquaredPointToEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [distanceSquared: REAL] = { projectedPt: Point _ DropPerpendicular[pt, edge.line]; IF LinePointOnEdge[projectedPt, edge] THEN {distanceSquared _ LineDistance[pt, edge.line]; distanceSquared _ distanceSquared*distanceSquared} ELSE distanceSquared _ DistanceSquaredToNearestEndpoint[pt, edge]; }; OnEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [BOOL] = { d2: REAL; d2 _ DistanceSquaredPointToEdge[pt, edge]; RETURN[AlmostZero[d2]]; }; LinePointOnEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [BOOL] = { IF ABS[edge.end.x - edge.start.x] <= ABS[edge.end.y - edge.start.y] THEN -- line is more vertical or has zero length RETURN[Between[pt.y, edge.start.y, edge.end.y]] ELSE -- line is more horizontal RETURN[Between[pt.x, edge.start.x, edge.end.x]]; }; -- end of LinePointOnEdge DistancePointToPoint: PUBLIC PROC [p1, p2: Point] RETURNS [distance: REAL] = { distance _ RealFns.SqRt[(p2.y-p1.y)*(p2.y-p1.y) + (p2.x-p1.x)*(p2.x-p1.x)]; }; DistanceSquaredPointToPoint: PUBLIC PROC [p1, p2: Point] RETURNS [distance: REAL] = { distance _ (p2.y-p1.y)*(p2.y-p1.y) + (p2.x-p1.x)*(p2.x-p1.x); }; PointLeftOfLine: PUBLIC PROC [distance: REAL, pOnLine: Point, line: Line] RETURNS [point: Point] = { lineParallel, linePerp: Line; parallel: BOOL; lineParallel _ CreateEmptyLine[]; linePerp _ CreateEmptyLine[]; FillLineFromCoefficients[line.s, line.c, line.d + distance, lineParallel]; FillLineNormalToLineThruPoint[line, pOnLine, linePerp]; [point, parallel] _ LineMeetsLine[lineParallel, linePerp]; IF parallel THEN ERROR; -- perpendicular lines are not parallel }; Between: PRIVATE PROC [test, a, b: REAL] RETURNS [BOOL] = { SELECT a FROM < b => RETURN [a <= test AND test <= b]; = b => RETURN [test = b]; > b => RETURN [b <= test AND test <= a]; ENDCASE => ERROR; }; END. :File: Lines2dImpl.mesa Author: Eric Bier on June 4, 1985 5:04:38 pm PDT Last edited by Bier on June 24, 1987 11:34:21 am PDT Contents: Routines for finding the intersections of various types of lines and line segments in Gargoyle. Pier, August 8, 1986 12:14:59 pm PDT Bier, March 21, 1988 12:02:31 pm PST Making Lines to.slope _ from.slope; to.yInt _ from.yInt; Are these lines mathematically identical? Returns TRUE if the lines differ in slope by no more than errorDegrees and differ in distance from the origin by no more than errorDistance. Recall y*c - x*s - d = 0; Calculates the different parts of a line given an ordered pair of points (the tail and the head). Trig lines are directed in sense since 0 <= line.theta <= 180 implies that v1 is lower than or to the right of) v2. Deal with very short and vertical segments Notice that zero length lines are considered vertical. we have -x*s = d. where s = 1. Plug in v1. -v1.x*s = d we have -x*s = d. where s = -1. Plug in v1. -v1.x*s = d Otherwise, use trig functions. d _ y1c - x1s. Subsitute in a point to find d. recall y*c - x*s - d = 0; Calculates the different parts of a line given c, s and d. IF cosineOfTheta # 0 THEN { -- find its slope and y intercept. line.slope _ sineOfTheta/cosineOfTheta; y intercept occurs when x = 0, ie when y*c = d. y = d/c; line.yInt _ line.d/line.c}; Find a line which is perpendicular to "line" and passes thru "pt". Useful for dropping perpendiculars. If line has the form: y*cos(theta) - x*sin(theta) - d = 0, then normalLine will have the form: y*cos(theta+90) - x*sin(theta+90) - D = 0; or -y*sin(theta) - (x*cos(theta)) - D = 0; to find D, we substitute in pt: D = -pt.y*sin(theta) - pt.x*cos(theta); IF normalLine.c #0 THEN { -- compute slope and yInt normalLine.slope _ normalLine.s/normalLine.c; line.yInt _ normalLine.d/normalLine.c }; parallelLine.slope _ line.slope; parallelLine.slope _ line.slope; Makes a new line that results by transforming line by transform. Imager.Trans[dc]; Draw2d.Line[dc, [0.0, 0.0], [p2.x - p1.x, p2.y - p1.y], solid]; Making Edges Making Rays We can take advantage of the horizontal and vertical lines of the box to do an easy intersection test. Note that we are really testing for line intersections rather than ray intersections. The top line has equation y = ymax. If ray.d.y = 0, we don't hit this line. Otherwise, we use y(t) = ymax = ray.p.y+t*ray.d.y; Solve for t: t = (ymax-ray.p.y)/ray.d.y. Top Line Bottom Line Right Line Left Line Intersections To ensure no errors of more than 0.072 screen dots in a picture of size 14 inches by 14 inches, our angles in radians must be accurate to (theta*1008 < 0.072) theta < 7.142857e-5). In degrees, this is 4.092559e-3. I will use 4e-4 for extra accuracy. e-5 results in determinant = 0.0 for Window.script. (Bier, January 7, 1987) If line1 is of the form: c1*y - s1*x - d1 = 0; and line2 of the form: c2*y - s2*x - d2 = 0; then we solve simultaneously. x = (c2d1 - c1d2)/(s2c1 -s1c2); y = (s2d1 - s1d2)/(s2c1 - s1c2); determinant should not be zero since the lines are not parallel. Find the intersection of line with the line of seg. See if this point is within the bounds of seg. Find the intersection of e1, with e2. See if this point is within the bounds of e1 and e2. Direction and Distance for Lines Because of our choice or representation for a Line, plugging the point into the line equation gives us the signed distance. ie. distance = y*cos(theta) - x*sin(theta) - d; Because of our choice or representation for a Line, plugging the point into the line equation gives us the signed distance. ie. distance = y*cos(theta) - x*sin(theta) - d; We drop a normal from the point onto the line and find where it hits. The line equation of the normal we drop can be found using FillLineAsNormal above. We will have line equations: c*y - s*x - d = 0. The vector v = [c, s] is the unit vector parallel to line. The vector l = [-s, c] is the unit vector 90 degrees counter-clockwise of v. If pt is distance D from line (along l), then the new point we want is pt-D*l. This routine takes 4 mults, 4 adds. Finds any old point on line and returns it. Returns the direction vector of line. Distance for Edges Look for an obvious winner first. If that fails, do math. perpendicular distance if possible, else distance to nearest endpoint. Perpendicular distance if possible, else distance to nearest endpoint. Assumes pt is on edge.line. Is it on edge? Distance for Points point is a point to the left of the directed line, on the normal to the line which intersects the line at pOnLine. If distance is negative, the point will be to the right of the directed line. Method: The point we want will be at the intersection these two lines 1) The line parallel to "line" but distance to its left 2) The line perpendicular to "line" at pOnLine. We can generate both of these easily as follows: UTILITY FUNCTIONS Κ§˜Icodešœ™Kšœ0™0Kšœ4™4šœj™jK™$K™$—K˜šΟk ˜ KšœR˜R—K˜šœ œ˜Kšœ;˜BKšœ ˜—K˜š˜Kšœœ˜!Kšœœœ ˜Kšœ œ˜%Kšœœœ ˜Kšœ œ˜%Kšœœœ˜Kšœœ˜#Kšœœ˜#K˜—Ihead™ K™šΟnœœœœ˜5Kšœœ ˜Kšœ˜K˜—šžœœœ˜0Kšœ˜Kšœ˜Kšœ˜Kšœ˜Kšœ™Kšœ™Kšœ˜K˜—K˜š ž œœœœœ˜Kšœ'™'Kšœ9™9Kšœ™—KšœŸ"˜%K˜—šžœœœœ˜QKšœ)˜)Kšœ$˜$Kšœ$˜$Kšœ#˜#KšœŸ#˜&K˜—šžœœœ.˜XK™gKšœ^™^Kšœ*™*Kšœ*™*Kšœ™Kšœ'™'Kšœ˜Kšœ˜Kšœ*˜*Kšœ0˜0šœœŸ™3Kšœ-™-Kšœ%™%Kšœ™—KšœŸ˜—K˜šžœœœœ˜PKšœ˜Kšœ˜Kšœ˜Kšœ ˜ Kšœ ™ K˜K˜—šžœœœœ˜QKšœ˜Kšœ˜Kšœ˜Kšœ ˜ Kšœ ™ K˜K˜—šžœœœN˜lKšœ˜Kšœ ˜ Kšœ˜Kšœ#˜#Kšœ<˜˜>Kšœ?™?K˜—Kšœ ˜ Kšœ<˜˜BKšœ˜K˜—šžœ œœœ˜>KšœΟuœœ˜ Kšœ’œ(˜*Kšœ ’œ˜K˜—š žœœœœœ˜GKšœ+™+Kš œœœœŸ+˜uKšœ)˜/KšœŸ˜Kšœ*˜0KšœŸ˜—L™š žœœœœ œ˜NKšœK˜KKšœ˜—š žœœœœ œ˜UKšœ=˜=Kšœ˜—š žœœœ œœ˜dKšœΑ™ΑKšœF™FKšœ7™7Kšœ/™/Kšœ0™0K˜Kšœ˜Kšœ œ˜Kšœ!˜!Kšœ˜KšœJ˜JKšœ7˜7Kšœ:˜:Kšœ œœŸ'˜?Kšœ˜—K˜Kšœ™K˜š žœœœœœœ˜;šœ˜ Kšœœ œ ˜(Kšœœ ˜Kšœœ œ ˜(Kšœœ˜Kšœ˜——K˜Kšœ˜K˜—…—8~__