DIRECTORY Basics USING [CompareInt, Comparison, LongNumber], BigCardinals USING [BigAdd, BigCARD, BigCompare, BigDivMod, BigFail, BigFromCard, BigGCD, BigMultiply, BigOdd, BigSubtract, BigToCard, TimesTwoToTheNth, Zero], Real USING [Fix, FScale, Round], RealFns USING [ArcTan, Cos, Exp, Ln, Power, Sin, SqRt, Tan], Scheme USING [Any, ArithOp, Bignum, Car, Cdr, Complain, Complex, Cons, DefinePrimitive, Environment, false, Fixnum, Flonum, Number, NumberKind, NumberRep, Primitive, ProperList, Ratnum, RegisterInit, Symbol, true, undefined]; SchemeArithmeticImpl: CEDAR PROGRAM IMPORTS Basics, BigCardinals, Real, RealFns, Scheme EXPORTS Scheme ~ BEGIN OPEN Scheme; PrimitiveProc: TYPE ~ PROC [self: Primitive, a, b, c: Any, rest: ProperList] RETURNS [result: Any ¬ NIL]; SmallValue: TYPE ~ [-100..1000]; smallFixnumTable: REF ARRAY SmallValue OF Fixnum ~ InitSmallFixnumTable[]; InitSmallFixnumTable: PROC RETURNS [a: REF ARRAY SmallValue OF Fixnum] ~ { a ¬ NEW[ARRAY SmallValue OF Fixnum]; FOR i: INT IN SmallValue DO a[i] ¬ NEW[INT ¬ i]; ENDLOOP; }; MakeFixnum: PUBLIC PROC [int: INT] RETURNS [Fixnum] ~ { IF int IN SmallValue THEN RETURN [smallFixnumTable[int]] ELSE RETURN [NEW[INT ¬ int]] }; Negative: PUBLIC PROC [a: Any] RETURNS [BOOL] ~ { WITH a SELECT FROM a: Fixnum => RETURN [a­<0]; a: Flonum => RETURN [a.real<0.0]; a: Bignum => RETURN [a.neg]; a: Ratnum => RETURN [Negative[a.numerator]]; ENDCASE => Complain[a, "not a real number"]; }; TheReal: PROC [a: Any] RETURNS [Any] ~ { WITH a SELECT FROM a: Fixnum => RETURN [a]; a: Flonum => RETURN [a]; a: Bignum => RETURN [a]; a: Ratnum => RETURN [a]; ENDCASE => Complain[a, "not a real number"]; }; ComplexPrim: PrimitiveProc ~ { SELECT self.data FROM $rectangular => RETURN [MakeRectangular[a, b]]; $polar => RETURN [MakePolar[a, b]]; $realPart => { WITH a SELECT FROM c: Complex => {RETURN [c.x]}; ENDCASE => {RETURN [TheReal[a]]}; }; $imagPart => { WITH a SELECT FROM c: Complex => {RETURN [c.y]}; ENDCASE => {RETURN [Zero[Exact[a]]]}; }; ENDCASE => ERROR; }; MakeNumber: PROC [any: Any] RETURNS [Number] ~ { WITH any SELECT FROM a: Fixnum => { card: CARD ~ ABS[a­]; -- will ABS overflow for INT.FIRST? not for PrincOps. bigCARD: BigCardinals.BigCARD ~ BigCardinals.BigFromCard[card]; RETURN [NEW[NumberRep.bignum ¬ [TRUE, bignum[a­<0, bigCARD]]]] }; num: Number => RETURN [num]; ENDCASE => Complain[any, "not a number"]; }; inexactZero: Flonum ~ NEW[NumberRep.flonum ¬ [FALSE, flonum[0.0]]]; exactZero: Fixnum ~ MakeFixnum[0]; Zero: PROC [exact: BOOL] RETURNS [Any] ~ { RETURN [IF exact THEN exactZero ELSE inexactZero] }; MakeRectangular: PUBLIC PROC [realPart, imagPart: Any] RETURNS [Any] ~ { exact: BOOL ~ Exact[TheReal[realPart]] AND Exact[TheReal[imagPart]]; IF NumericallyEqual[imagPart, exactZero] THEN RETURN [ConvertExactness[realPart, exact]]; RETURN [NEW[NumberRep.complex ¬ [exact, complex[ConvertExactness[realPart, exact], ConvertExactness[imagPart, exact]]] ]] }; MakePolar: PUBLIC PROC [magnitude, angle: Any] RETURNS [Any] ~ { exact: BOOL ~ Exact[TheReal[magnitude]] AND Exact[TheReal[angle]]; IF NumericallyEqual[angle, exactZero] THEN RETURN [ConvertExactness[magnitude, exact]] ELSE { f: REAL ~ TheREAL[angle]; cos: REAL ~ RealFns.Cos[f]; sin: REAL ~ RealFns.Sin[f]; cis: Complex ~ NEW[NumberRep.complex ¬[FALSE, complex[ NEW[NumberRep.flonum ¬ [FALSE, flonum[cos]]], NEW[NumberRep.flonum ¬ [FALSE, flonum[sin]]]]]]; RETURN [Arith[mult, magnitude, cis]] }; }; TheINT: PUBLIC PROC [any: Any] RETURNS [INT] ~ { WITH TheInteger[any] SELECT FROM k: Fixnum => { RETURN [k­] }; num: Bignum => { c: CARD ¬ CARD.LAST; c ¬ BigCardinals.BigToCard[num.magnitude ! BigCardinals.BigFail => CONTINUE]; IF num.neg THEN { IF c <= CARD[INT.LAST]+1 THEN RETURN [-c] } ELSE { IF c <= CARD[INT.LAST] THEN RETURN [c] }; }; ENDCASE => ERROR; Complain[any, "integer out of bounds"]; }; TheCARD: PUBLIC PROC [any: Any] RETURNS [CARD] ~ { WITH TheInteger[any] SELECT FROM k: Fixnum => { IF 0 <= k­ THEN RETURN [k­] }; num: Bignum => { c: CARD ¬ CARD.LAST; ok: BOOL ¬ TRUE; c ¬ BigCardinals.BigToCard[num.magnitude ! BigCardinals.BigFail => {ok¬FALSE; CONTINUE}]; IF ok AND NOT num.neg THEN { RETURN [c] }; }; ENDCASE => ERROR; Complain[any, "integer out of bounds"]; }; KCheck: PUBLIC PROC [any: Any, max: INT ¬ INT.LAST] RETURNS [INT] ~ { WITH TheInteger[any] SELECT FROM k: Fixnum => { IF 0 <= k­ AND k­ <= max THEN RETURN [k­] }; num: Bignum => { c: CARD ¬ CARD.LAST; IF NOT num.exact THEN Complain[any, "not an exact integer"]; c ¬ BigCardinals.BigToCard[num.magnitude ! BigCardinals.BigFail => CONTINUE]; IF c <= CARD[max] AND NOT num.neg THEN RETURN [c]; }; ENDCASE => ERROR; Complain[any, "integer out of bounds"]; }; TheComplex: PUBLIC PROC [a: Any] RETURNS [Complex] ~ { WITH a SELECT FROM a: Complex => RETURN [a]; n: Fixnum => NULL; n: Number => NULL; ENDCASE => Complain[a, "not a number"]; RETURN [NEW[NumberRep.complex ¬ [Exact[a], complex[x: a, y: MakeFixnum[0]]]]] }; Frac: PROC [num: BigCardinals.BigCARD] RETURNS [REAL] ~ { v: REAL ¬ 0.0; IF num # BigCardinals.Zero THEN { sig: INT ¬ -INT[num.size]*BITS[CARD16]; FOR i: NAT IN [0..num.size) DO v ¬ v + Real.FScale[num.contents[i], sig]; sig ¬ sig + BITS[CARD16]; ENDLOOP; }; RETURN [v] }; Exponent: PROC [num: BigCardinals.BigCARD] RETURNS [INT] ~ { RETURN [IF num = BigCardinals.Zero THEN 0 ELSE INT[num.size]*BITS[CARD16]] }; TheREAL: PUBLIC PROC [a: Any] RETURNS [REAL] ~ { WITH a SELECT FROM a: Fixnum => RETURN [REAL[a­]]; a: Flonum => RETURN [a.real]; a: Bignum => { mag: REAL ~ Real.FScale[Frac[a.magnitude], Exponent[a.magnitude]]; v: REAL ~ IF a.neg THEN -mag ELSE mag; RETURN [v] }; a: Ratnum => { n: Bignum ~ NARROW[a.numerator]; d: Bignum ~ NARROW[a.denominator]; mag: REAL ~ Real.FScale[Frac[n.magnitude]/Frac[d.magnitude], Exponent[n.magnitude]-Exponent[d.magnitude]]; v: REAL ~ IF n.neg THEN -mag ELSE mag; RETURN [v] }; ENDCASE => Complain[a, "domain error"]; }; TheFlonum: PUBLIC PROC [a: Any] RETURNS [Flonum] ~ { WITH a SELECT FROM a: Flonum => RETURN [a]; ENDCASE => RETURN [NEW[NumberRep.flonum ¬ [FALSE, flonum[TheREAL[a]]]]]; }; Exact: PUBLIC PROC [a: Any] RETURNS [BOOL] ~ { WITH a SELECT FROM a: Fixnum => RETURN [TRUE]; a: Number => RETURN [a.exact]; ENDCASE => Complain[a, "not a number"]; }; Odd: PROC [a: Any] RETURNS [BOOL] ~ { WITH TheInteger[a] SELECT FROM a: Fixnum => RETURN [OddINT[a­]]; b: Bignum => RETURN [BigCardinals.BigOdd[b.magnitude]]; ENDCASE => ERROR; }; OddINT: PROC [int: INT] RETURNS [BOOL] ~ { lc: Basics.LongNumber ~ [li[int]]; RETURN [VAL[lc.lo MOD 2]] }; largestFlonumFraction: REAL ¬ LargestFlonumFraction[]; LargestFlonumFraction: PROC RETURNS [REAL] ~ INLINE { a: REAL ¬ 0.5; FOR i: NAT IN [0..1000) DO b: REAL ~ a+a+0.5; IF b = REAL[Real.Fix[b]] THEN RETURN [a]; a ¬ b; ENDLOOP; ERROR; -- this doesn't act like floating point! }; IsNaN: PROC [real: REAL] RETURNS [BOOL] ~ INLINE { SingleReal: TYPE = MACHINE DEPENDENT RECORD [ sign: BOOL, exp: CARDINAL [0..377B], m: CARDINAL [0..37777777B] ]; rep: SingleReal ~ LOOPHOLE[real]; RETURN [rep.exp = 255] }; TheInteger: PUBLIC PROC [a: Any] RETURNS [Any] ~ { WITH a SELECT FROM a: Fixnum => RETURN [a]; a: Bignum => RETURN [a]; f: Flonum => { bignum: Bignum ¬ NIL; IF ABS[f.real] > largestFlonumFraction THEN { s: REAL ¬ f.real; e: NAT ¬ 0; UNTIL ABS[s] < LAST[INT] DO s ¬ s*0.5; e ¬ e + 1; ENDLOOP; bignum ¬ NARROW[MakeNumber[MakeFixnum[Real.Fix[s]]]]; IF FALSE -- TRUE if BigCardinals.TimesTwoToTheNth is buggy THEN { FOR i: NAT IN [0..e) DO bignum.magnitude ¬ BigCardinals.BigAdd[bignum.magnitude, bignum.magnitude]; ENDLOOP; } ELSE bignum.magnitude ¬ BigCardinals.TimesTwoToTheNth[bignum.magnitude, e]; bignum.exact ¬ f.exact; RETURN [bignum] } ELSE IF f.real = REAL[Real.Fix[f.real]] THEN { bignum ¬ NARROW[MakeNumber[MakeFixnum[Real.Fix[f.real]]]]; }; IF bignum # NIL THEN { bignum.exact ¬ f.exact; RETURN [bignum] }; }; ENDCASE => NULL; Complain[a, "not an integer"]; }; IsInteger: PUBLIC PROC [a: Any] RETURNS [BOOL] ~ { WITH a SELECT FROM a: Fixnum => RETURN [TRUE]; a: Number => { WITH a SELECT FROM bignum: Bignum => RETURN [TRUE]; flonum: Flonum => { IF ABS[flonum.real] > largestFlonumFraction THEN RETURN [TRUE]; IF flonum.real = REAL[Real.Fix[flonum.real]] THEN RETURN [TRUE]; }; ENDCASE => NULL; }; ENDCASE => NULL; RETURN [FALSE] }; NumTypePredPrim: PrimitiveProc ~ { t: Any ~ self.data; WITH a SELECT FROM a: Fixnum => RETURN [SELECT t FROM $number, $complex, $real, $rational, $integer, $exact => true, $inexact => false, $odd => (IF OddINT[a­] THEN true ELSE false), $even => (IF OddINT[a­] THEN false ELSE true) ENDCASE => ERROR]; a: Number => { SELECT t FROM $exact => RETURN [IF a.exact THEN true ELSE false]; $inexact => RETURN [IF a.exact THEN false ELSE true]; $number => RETURN [true]; $complex => IF a.tag <= complex THEN RETURN [true]; $real => IF a.tag <= ratnum THEN RETURN [true]; $rational => IF a.tag = ratnum OR IsInteger[a] THEN RETURN [true]; $integer => IF IsInteger[a] THEN RETURN [true]; $odd, $even => { is: Symbol ¬ IF Odd[a] THEN $odd ELSE $even; RETURN [IF is=t THEN true ELSE false] }; ENDCASE => ERROR; }; ENDCASE => { SELECT t FROM $exact, $inexact, $odd, $even => Complain[a, "domain error"] ENDCASE}; RETURN [false] }; Raise: PROC [a: Number, b: Number] RETURNS [Number] ~ { WITH a SELECT FROM flonum: Flonum => { IF IsInteger[flonum] THEN RETURN [MakeNumber[TheInteger[flonum]]] ELSE { f: REAL ¬ flonum.real*2.0; t: REAL ¬ 2.0; bigt: BigCardinals.BigCARD ¬ bignumTwo.magnitude; UNTIL ABS[f] > largestFlonumFraction OR t > 1.0e+15 DO f ¬ f * t; t ¬ t * t; bigt ¬ BigCardinals.BigMultiply[bigt, bigt]; ENDLOOP; UNTIL ABS[f] > largestFlonumFraction DO f ¬ f * 2.0; bigt ¬ BigCardinals.BigAdd[bigt, bigt]; ENDLOOP; RETURN [NARROW[MakeRatnum[num: NARROW[MakeNumber[TheInteger[NEW[NumberRep.flonum ¬ [TRUE, flonum[f]]]]]], denom: NARROW[MakeBignum[neg: FALSE, mag: bigt, exact: TRUE, reduce: FALSE]], exact: flonum.exact]]] }; }; bignum: Bignum => { RETURN [NEW[NumberRep.ratnum ¬ [a.exact, ratnum[bignum, bignumOne]]]] }; ENDCASE => NULL; IF b.tag = complex AND a.tag < complex THEN { RETURN [NEW[NumberRep.complex ¬ [a.exact, complex[a, MakeFixnum[0]]]]] }; Complain[a, "unimplemented coercion"] }; refForComparison: REF ARRAY Basics.Comparison OF REF Basics.Comparison ¬ NEW[ARRAY Basics.Comparison OF REF Basics.Comparison ¬ [less: NEW[Basics.Comparison ¬ less], equal: NEW[Basics.Comparison ¬ equal], greater: NEW[Basics.Comparison ¬ greater]]]; FlonumArith: PROC [op: ArithOp, a: REAL, b: REAL] RETURNS [Any] ~ { CompareREAL: PROC [a, b: REAL] RETURNS [c: Basics.Comparison] ~ INLINE { c ¬ SELECT TRUE FROM a=b => equal, a>b => greater, ENDCASE => less; }; realResult: REAL ¬ 0.0; SELECT op FROM plus => realResult ¬ (a+b); minus => realResult ¬ (a-b); mult => realResult ¬ (a*b); divide => realResult ¬ (a/b); equality => RETURN [IF a = b THEN true ELSE false]; compare => RETURN [refForComparison[CompareREAL[a, b]]]; ENDCASE => ERROR; IF IsNaN[realResult] THEN RETURN [NIL]; RETURN [NEW[NumberRep.flonum ¬ [FALSE, flonum[realResult]]]] }; bigINT: BigCardinals.BigCARD ~ BigCardinals.BigFromCard[LAST[INT]]; MakeBignum: PROC [neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL ¬ TRUE] RETURNS [Any] ~ { IF reduce AND exact AND BigCardinals.BigCompare[mag, bigINT] # greater THEN { i: INT ¬ BigCardinals.BigToCard[mag]; IF neg THEN i ¬ -i; RETURN [MakeFixnum[i]] }; RETURN [NEW[NumberRep.bignum ¬ [exact, bignum[neg, mag]]]] }; BignumArith: PROC [op: ArithOp, a: Bignum, b: Bignum, reduce: BOOL ¬ TRUE] RETURNS [Any] ~ { aMag: BigCardinals.BigCARD ¬ a.magnitude; aNeg: BOOL ¬ a.neg; bMag: BigCardinals.BigCARD ¬ b.magnitude; bNeg: BOOL ¬ b.neg; DO SELECT op FROM plus => { IF aNeg # bNeg THEN { bNeg ¬ NOT bNeg; op ¬ minus; LOOP }; aMag ¬ BigCardinals.BigAdd[aMag, bMag]; }; minus => { IF aNeg # bNeg THEN { bNeg ¬ NOT bNeg; op ¬ plus; LOOP }; SELECT BigCardinals.BigCompare[aMag, bMag] FROM greater => { aMag ¬ BigCardinals.BigSubtract[large: aMag, small: bMag] }; equal => { aMag ¬ BigCardinals.Zero; aNeg ¬ FALSE }; less => { aMag ¬ BigCardinals.BigSubtract[large: bMag, small: aMag]; aNeg ¬ NOT aNeg }; ENDCASE => ERROR; }; mult => { aMag ¬ BigCardinals.BigMultiply[aMag, bMag]; aNeg ¬ aNeg # bNeg AND aMag#BigCardinals.Zero; }; divide => { RETURN [MakeRatnum[a, b, a.exact AND b.exact]] }; equality, compare => { sigA: INT ~ IF aMag=BigCardinals.Zero THEN 0 ELSE IF aNeg THEN -1 ELSE +1; sigB: INT ~ IF bMag=BigCardinals.Zero THEN 0 ELSE IF bNeg THEN -1 ELSE +1; c: Basics.Comparison ¬ Basics.CompareInt[sigA, sigB]; IF c = equal THEN { c ¬ IF aNeg THEN BigCardinals.BigCompare[bMag, aMag] ELSE BigCardinals.BigCompare[aMag, bMag]; }; IF op = equality THEN RETURN [IF c = equal THEN true ELSE false]; RETURN [refForComparison[c]]; }; quotient => { aMag ¬ BigCardinals.BigDivMod[aMag, bMag ! BigCardinals.BigFail => IF subclass = $DivideByZero THEN Complain[a, "divided by zero"]].quo; aNeg ¬ aNeg # bNeg AND aMag#BigCardinals.Zero; }; remainder => { aMag ¬ BigCardinals.BigDivMod[aMag, bMag ! BigCardinals.BigFail => IF subclass = $DivideByZero THEN Complain[a, "divided by zero"]].rem; }; ENDCASE => ERROR; EXIT; ENDLOOP; RETURN [MakeBignum[neg: aNeg, mag: aMag, exact: a.exact AND b.exact, reduce: reduce]] }; bignumOne: Bignum ~ NEW[NumberRep.bignum ¬ [TRUE, bignum[FALSE, BigCardinals.BigFromCard[1]]]]; bignumTwo: Bignum ~ NEW[NumberRep.bignum ¬ [TRUE, bignum[FALSE, BigCardinals.BigFromCard[2]]]]; half: Ratnum ~ NARROW[MakeRatnum[bignumOne, bignumTwo, TRUE]]; MakeRatnum: PROC [num, denom: Bignum, exact: BOOL] RETURNS [Any] ~ { gcd: BigCardinals.BigCARD ~ BigCardinals.BigGCD[num.magnitude, denom.magnitude]; IF num.exact AND denom.exact AND NOT denom.neg AND BigCardinals.BigCompare[gcd, bignumOne.magnitude] = equal AND BigCardinals.BigCompare[denom.magnitude, bignumOne.magnitude] # equal THEN NULL ELSE { numMag: BigCardinals.BigCARD ~ BigCardinals.BigDivMod[num.magnitude, gcd].quo; denomMag: BigCardinals.BigCARD ~ BigCardinals.BigDivMod[denom.magnitude, gcd].quo; numNeg: BOOL ~ num.neg # denom.neg AND numMag # BigCardinals.Zero; IF BigCardinals.BigCompare[denomMag, bignumOne.magnitude] = equal THEN RETURN [MakeBignum[numNeg, numMag, exact]]; num ¬ NEW[NumberRep.bignum ¬ [TRUE, bignum[numNeg, numMag]]]; denom ¬ NEW[NumberRep.bignum ¬ [TRUE, bignum[FALSE, denomMag]]]; }; RETURN [NEW[NumberRep.ratnum ¬ [exact, ratnum[num, denom]]]] }; RationalArith: PROC [op: ArithOp, a: Ratnum, b: Ratnum] RETURNS [Any] ~ { aNum: Bignum ~ NARROW[a.numerator]; aDenom: Bignum ~ NARROW[a.denominator]; bNum: Bignum ~ NARROW[b.numerator]; bDenom: Bignum ~ NARROW[b.denominator]; num: Bignum ¬ NIL; denom: Bignum ¬ NIL; SELECT op FROM plus => { aNbD: Bignum ~ NARROW[BignumArith[mult, aNum, bDenom, FALSE]]; aDbN: Bignum ~ NARROW[BignumArith[mult, aDenom, bNum, FALSE]]; num ¬ NARROW[BignumArith[plus, aNbD, aDbN, FALSE]]; denom ¬ NARROW[BignumArith[mult, aDenom, bDenom, FALSE]]; }; minus => { aNbD: Bignum ~ NARROW[BignumArith[mult, aNum, bDenom, FALSE]]; aDbN: Bignum ~ NARROW[BignumArith[mult, aDenom, bNum, FALSE]]; num ¬ NARROW[BignumArith[minus, aNbD, aDbN, FALSE]]; denom ¬ NARROW[BignumArith[mult, aDenom, bDenom, FALSE]]; }; mult => { num ¬ NARROW[BignumArith[mult, aNum, bNum, FALSE]]; denom ¬ NARROW[BignumArith[mult, aDenom, bDenom, FALSE]]; }; divide => { num ¬ NARROW[BignumArith[mult, aNum, bDenom, FALSE]]; denom ¬ NARROW[BignumArith[mult, aDenom, bNum, FALSE]]; }; equality => { RETURN [IF BignumArith[equality, aNum, bNum] = true AND BignumArith[equality, aDenom, bDenom] = true THEN true ELSE false] }; compare => { sigA: INT ~ IF aNum.magnitude=BigCardinals.Zero THEN 0 ELSE IF aNum.neg THEN -1 ELSE +1; sigB: INT ~ IF bNum.magnitude=BigCardinals.Zero THEN 0 ELSE IF bNum.neg THEN -1 ELSE +1; c: Basics.Comparison ¬ Basics.CompareInt[sigA, sigB]; IF c = equal THEN { left: Bignum ¬ NARROW[BignumArith[mult, aNum, bDenom, FALSE]]; right: Bignum ¬ NARROW[BignumArith[mult, bNum, aDenom, FALSE]]; RETURN [BignumArith[compare, left, right]] }; RETURN [refForComparison[c]]; }; ENDCASE => ERROR; RETURN [MakeRatnum[num, denom, a.exact AND b.exact]] }; ComplexArith: PROC [op: ArithOp, a: Complex, b: Complex] RETURNS [Any] ~ { realPart: Any ¬ NIL; imagPart: Any ¬ NIL; exact: BOOL ~ a.exact AND b.exact; SELECT op FROM plus, minus => {realPart ¬ Arith[op, a.x, b.x]; imagPart ¬ Arith[op, a.y, b.y]}; mult => { realPart ¬ Arith[minus, Arith[mult, a.x, b.x], Arith[mult, a.y, b.y]]; imagPart ¬ Arith[plus, Arith[mult, a.x, b.y], Arith[mult, a.y, b.x]]; }; divide => { d: Any ~ Arith[plus, Arith[mult, b.x, b.x], Arith[mult, b.y, b.y]]; xd: Any ~ Arith[plus, Arith[mult, a.x, b.x], Arith[mult, a.y, b.y]]; yd: Any ~ Arith[minus, Arith[mult, a.y, b.x], Arith[mult, a.x, b.y]]; realPart ¬ Arith[divide, xd, d]; imagPart ¬ Arith[divide, yd, d]; }; equality => { RETURN [IF Arith[equality, a.x, b.x] = true AND Arith[equality, a.y, b.y] = true THEN true ELSE false]; }; compare => Complain[Cons[a, Cons[b, NIL]], "comparison not allowed for non-reals"]; ENDCASE => ERROR; IF Arith[equality, imagPart, MakeFixnum[0]] = true AND exact = Exact[realPart] THEN RETURN [ConvertExactness[realPart, exact]]; RETURN [NEW[NumberRep.complex ¬ [exact, complex[ConvertExactness[realPart, exact], ConvertExactness[imagPart, exact]]]]] }; Arith: PUBLIC PROC [op: ArithOp, a: Any, b: Any] RETURNS [Any] ~ { integerOp: BOOL ~ SELECT op FROM quotient, remainder => TRUE ENDCASE => FALSE; WITH a SELECT FROM aa: Fixnum => { WITH b SELECT FROM bb: Fixnum => { a: INT ~ aa­; b: INT ~ bb­; SELECT op FROM plus => { IF a >= 0 THEN {IF b <= 0 OR a <= INT.LAST-b THEN RETURN [MakeFixnum[a+b]]} ELSE {IF b >= 0 OR a >= INT.FIRST-b THEN RETURN [MakeFixnum[a+b]]}; }; minus => { IF a >= 0 THEN {IF b >= 0 OR a <= INT.LAST+b THEN RETURN [MakeFixnum[a-b]]} ELSE {IF b <= 0 OR a >= INT.FIRST+b THEN RETURN [MakeFixnum[a-b]]}; }; mult => { IF MAX[ABS[a],ABS[b]] <= 32767 THEN RETURN [MakeFixnum[a*b]] }; divide => { IF b = 0 THEN Complain[aa, "divided by zero"]; IF a MOD b = 0 THEN RETURN [MakeFixnum[a/b]]; }; quotient => { IF a >= 0 AND b > 0 THEN RETURN [MakeFixnum[a/b]]; }; remainder => { IF a >= 0 AND b > 0 THEN RETURN [MakeFixnum[a MOD b]]; }; equality => { RETURN [IF a=b THEN true ELSE false] }; compare => { RETURN [refForComparison[Basics.CompareInt[a, b]]] }; ENDCASE => ERROR; }; ENDCASE => NULL; }; ENDCASE => NULL; -- handle complex and flonum arithmetic -- { aComplex, aExact, bComplex, bExact: BOOL ¬ FALSE; WITH a SELECT FROM n: Fixnum => { aExact ¬ TRUE }; n: Number => { aExact ¬ n.exact; aComplex ¬ (n.tag = complex) }; ENDCASE => NULL; WITH b SELECT FROM n: Fixnum => { bExact ¬ TRUE }; n: Number => { bExact ¬ n.exact; bComplex ¬ (n.tag = complex) }; ENDCASE => NULL; IF NOT (integerOp OR (aExact AND bExact)) THEN { IF aComplex OR bComplex THEN {RETURN [ComplexArith[op, TheComplex[a], TheComplex[b]]]} ELSE { result: Any ~ FlonumArith[op, TheREAL[a], TheREAL[b]]; IF result # NIL THEN RETURN[result]; }; }; }; -- coerce to compatible types before operating -- { x: Number ¬ MakeNumber[IF integerOp THEN TheInteger[a] ELSE a]; y: Number ¬ MakeNumber[IF integerOp THEN TheInteger[b] ELSE b]; IF x.tag < bignum THEN x ¬ Raise[x, bignumOne]; -- don't do floating-point arithmetic if the arguments are exact or if there was a floating-point exception UNTIL x.tag = y.tag DO WHILE x.tag < y.tag DO x ¬ Raise[x, y] ENDLOOP; WHILE x.tag > y.tag DO y ¬ Raise[y, x] ENDLOOP; ENDLOOP; SELECT x.tag FROM bignum => RETURN [BignumArith[op, NARROW[x], NARROW[y]]]; ratnum => RETURN [RationalArith[op, NARROW[x], NARROW[y]]]; complex => RETURN [ComplexArith[op, NARROW[x], NARROW[y]]]; general => ERROR; -- not yet implemented ENDCASE => ERROR; }; }; ArithPrim: PrimitiveProc ~ { op: ArithOp ~ NARROW[self.data, REF ArithOp]­; IF op IN [plus..divide] THEN { IF b = undefined THEN { identity: Any ~ MakeFixnum[IF op IN [plus..minus] THEN 0 ELSE 1]; b ¬ IF a = undefined THEN identity ELSE a; a ¬ identity; } ELSE { com: ArithOp ¬ SELECT op FROM minus => plus, divide => mult ENDCASE => op; WHILE rest # NIL DO b ¬ Arith[com, b, rest.car]; rest ¬ NARROW[rest.cdr] ENDLOOP; } }; result ¬ Arith[op, a, b]; }; MakeReal: PUBLIC PROC [negative: BOOL, numerator, denominator: BigCardinals.BigCARD, exponent: INT, radix: INT, exact: BOOL] RETURNS [Any] ~ { num: Any ¬ MakeBignum[negative, numerator, exact]; denom: Any ¬ MakeBignum[FALSE, denominator, exact]; core: Any ¬ Arith[divide, num, denom]; IF exponent = 0 THEN RETURN [core] ELSE { zero: Fixnum ¬ MakeFixnum[0]; one: Fixnum ¬ MakeFixnum[1]; two: Fixnum ¬ MakeFixnum[2]; Expt: PROC [base, exponent: Any] RETURNS [Any] ~ { IF NumericallyEqual[exponent, zero] THEN RETURN [one] ELSE IF Odd[exponent] THEN RETURN [Arith[mult, base, Expt[base, Arith[minus, exponent, one]]]] ELSE { part: Any ¬ Expt[base, Arith[quotient, exponent, two]]; RETURN [Arith[mult, part, part]] }; }; expPart: Any ¬ Expt[MakeFixnum[radix], MakeFixnum[ABS[exponent]]]; RETURN [Arith[IF exponent < 0 THEN divide ELSE mult, core, expPart]] }; }; ConvertExactness: PUBLIC PROC [a: Any, exact: BOOL] RETURNS [Any] ~ { IF Exact[a] = exact THEN RETURN [a] ELSE { WITH a SELECT FROM a: Fixnum => RETURN [MakeBignum[neg: a­ < 0, mag: BigCardinals.BigFromCard[ABS[a­]], exact: exact]]; b: Bignum => RETURN [MakeBignum[neg: b.neg, mag: b.magnitude, exact: exact]]; f: Flonum => { IF exact AND IsInteger[f] THEN RETURN [ConvertExactness[TheInteger[f], exact]] ELSE RETURN [NEW[NumberRep.flonum ¬ [exact, flonum[f.real]]]]; }; q: Ratnum => RETURN [NEW[NumberRep.ratnum ¬ [exact, ratnum[q.numerator, q.denominator]]]]; z: Complex => RETURN [NEW[NumberRep.complex ¬ [exact, complex[ConvertExactness[z.x, exact], ConvertExactness[z.y, exact]]]]]; ENDCASE => ERROR; }; }; NumericallyEqual: PROC [a, b: Any] RETURNS [BOOL] ~ INLINE { RETURN [Arith[equality, a, b]#false]; }; RealFnsPrim: PrimitiveProc ~ { f: REAL ~ TheREAL[a]; imag: BOOL ¬ FALSE; realResult: REAL ¬ 0.0; flo: Flonum ¬ NIL; IF IsNaN[f] THEN realResult ¬ f ELSE SELECT self.data FROM $sqrt => {realResult ¬ RealFns.SqRt[ABS[f]]; imag ¬ (f < 0)}; $exp => {realResult ¬ RealFns.Exp[f]}; $expt => { e: REAL ~ TheREAL[b]; realResult ¬ IF IsNaN[e] THEN e ELSE RealFns.Power[f, e]; }; $log => {realResult ¬ RealFns.Ln[f]}; $sin => {realResult ¬ RealFns.Sin[f]}; $cos => {realResult ¬ RealFns.Cos[f]}; $tan => {realResult ¬ RealFns.Tan[f]}; $atan => { IF b = undefined THEN realResult ¬ RealFns.ArcTan[f, 1.0] ELSE { e: REAL ~ TheREAL[b]; realResult ¬ IF IsNaN[e] THEN e ELSE RealFns.ArcTan[f, e]; }; }; ENDCASE => ERROR; IF IsNaN[realResult] THEN Complain[Cons[a, IF b = undefined THEN NIL ELSE Cons[b, NIL]], " floating-point exception"]; flo ¬ NEW[NumberRep.flonum ¬ [FALSE, flonum[realResult]]]; IF imag THEN RETURN [NEW[NumberRep.complex ¬ [FALSE, complex[MakeFixnum[0], flo]]]] ELSE RETURN [flo] }; NumFnsPrim: PrimitiveProc ~ { SELECT self.data FROM $numerator => { IF IsInteger[a] THEN RETURN [a]; WITH a SELECT FROM r: Ratnum => RETURN [r.numerator] ENDCASE => Complain[a, "is not rational"]; }; $denominator => { IF IsInteger[a] THEN RETURN [MakeFixnum[1]]; WITH a SELECT FROM r: Ratnum => RETURN [r.denominator] ENDCASE => Complain[a, "is not rational"]; }; $gcd => { gcd: BigCardinals.BigCARD ¬ BigCardinals.Zero; exact: BOOL ¬ TRUE; FOR each: Any ¬ rest, Cdr[each] UNTIL each = NIL DO WITH TheInteger[Car[each]] SELECT FROM n: Fixnum => gcd ¬ BigCardinals.BigGCD[BigCardinals.BigFromCard[n­], gcd]; n: Bignum => { exact ¬ exact AND n.exact; gcd ¬ BigCardinals.BigGCD[n.magnitude, gcd]; }; ENDCASE => ERROR; ENDLOOP; RETURN [MakeBignum[neg: FALSE, mag: gcd, exact: exact, reduce: TRUE]]; }; $truncate => { result: Any ¬ NIL; IF IsInteger[a] THEN RETURN [TheInteger[a]]; WITH a SELECT FROM q: Ratnum => { result ¬ Arith[quotient, q.numerator, q.denominator] }; f: Flonum => { result ¬ MakeFixnum[Real.Fix[f.real]] }; ENDCASE => Complain[a, "is not real"]; RETURN [ConvertExactness[result, Exact[a]]] }; $round => { result: Any ¬ NIL; IF IsInteger[a] THEN RETURN [TheInteger[a]]; WITH a SELECT FROM q: Ratnum => { neg: BOOL ~ Negative[q]; qh: Any ~ Arith[IF neg THEN minus ELSE plus, q, half]; IF IsInteger[qh] THEN { result ¬ (IF Odd[qh] THEN Arith[IF neg THEN plus ELSE minus, qh, MakeFixnum[1]] ELSE qh); } ELSE { WITH qh SELECT FROM qh: Ratnum => { result ¬ Arith[quotient, qh.numerator, qh.denominator] }; ENDCASE => ERROR; }; }; f: Flonum => { result ¬ MakeFixnum[Real.Round[f.real]] }; ENDCASE => Complain[a, "is not real"]; RETURN [ConvertExactness[result, Exact[a]]] }; $exact => { RETURN [ConvertExactness[a, TRUE]] }; $inexact => { RETURN [ConvertExactness[a, FALSE]] }; ENDCASE => Complain[a, "function is not implemented"]; }; RegisterEssentials: PROC [env: Environment] ~ { DefinePrimitive[name: "+", nArgs: 2, dotted: FALSE, proc: ArithPrim, env: env, doc: "Binary arithmetic addition", data: NEW[ArithOp ¬ plus]]; DefinePrimitive[name: "-", nArgs: 2, dotted: FALSE, proc: ArithPrim, env: env, doc: "Binary arithmetic subtraction", data: NEW[ArithOp ¬ minus]]; DefinePrimitive[name: "*", nArgs: 2, dotted: FALSE, proc: ArithPrim, env: env, doc: "Binary arithmetic multiplication", data: NEW[ArithOp ¬ mult]]; DefinePrimitive[name: "/", nArgs: 2, dotted: FALSE, proc: ArithPrim, env: env, doc: "Binary arithmetic division", data: NEW[ArithOp ¬ divide]]; DefinePrimitive[name: "quotient", nArgs: 2, dotted: FALSE, proc: ArithPrim, env: env, doc: "integer quotient", data: NEW[ArithOp ¬ quotient]]; DefinePrimitive[name: "remainder", nArgs: 2, dotted: FALSE, proc: ArithPrim, env: env, doc: "integer remainder with sign of dividend", data: NEW[ArithOp ¬ remainder]]; DefinePrimitive[name: "complex?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $complex, doc: "test for a complex number"]; DefinePrimitive[name: "real?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $real, doc: "test for a real (i.e., non-complex) number"]; DefinePrimitive[name: "rational?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $rational, doc: "test for a rational number"]; DefinePrimitive[name: "integer?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $integer, doc: "test for an integer number"]; DefinePrimitive[name: "exact?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $exact, doc: "test a number for exactness"]; DefinePrimitive[name: "inexact?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $inexact, doc: "test a number for inexactness"]; DefinePrimitive[name: "odd?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $odd, doc: "test an integer for oddness"]; DefinePrimitive[name: "even?", nArgs: 1, dotted: FALSE, proc: NumTypePredPrim, env: env, data: $even, doc: "test an integer for evenness"]; }; RegisterOptionals: PROC [env: Environment] ~ { DefinePrimitive[name: "+", nArgs: 2, optional: 2, dotted: TRUE, proc: ArithPrim, env: env, doc: "n-ary arithmetic addition", data: NEW[ArithOp ¬ plus]]; DefinePrimitive[name: "-", nArgs: 2, optional: 1, dotted: TRUE, proc: ArithPrim, env: env, doc: "n-ary arithmetic subtraction", data: NEW[ArithOp ¬ minus]]; DefinePrimitive[name: "*", nArgs: 2, optional: 2, dotted: TRUE, proc: ArithPrim, env: env, doc: "n-ary arithmetic multiplication", data: NEW[ArithOp ¬ mult]]; DefinePrimitive[name: "/", nArgs: 2, optional: 1, dotted: TRUE, proc: ArithPrim, env: env, doc: "n-ary arithmetic division", data: NEW[ArithOp ¬ divide]]; DefinePrimitive[name: "exact->inexact", nArgs: 1, dotted: FALSE, proc: NumFnsPrim, env: env, data: $inexact, doc: "convert a number to an inexact number"]; DefinePrimitive[name: "inexact->exact", nArgs: 1, dotted: FALSE, proc: NumFnsPrim, env: env, data: $exact, doc: "convert a number to an exact number"]; DefinePrimitive[name: "numerator", nArgs: 1, dotted: FALSE, proc: NumFnsPrim, env: env, data: $numerator, doc: "extract the numerator of a rational number"]; DefinePrimitive[name: "denominator", nArgs: 1, dotted: FALSE, proc: NumFnsPrim, env: env, data: $denominator, doc: "extract the denominator of a rational number"]; DefinePrimitive[name: "gcd", nArgs: 0, dotted: TRUE, proc: NumFnsPrim, env: env, data: $gcd, doc: "greatest common divisor of integers"]; DefinePrimitive[name: "truncate", nArgs: 1, dotted: FALSE, proc: NumFnsPrim, env: env, data: $truncate, doc: "truncate towards zero"]; DefinePrimitive[name: "round", nArgs: 1, dotted: FALSE, proc: NumFnsPrim, env: env, data: $round, doc: "round towards even"]; DefinePrimitive[name: "make-rectangular", nArgs: 2, dotted: FALSE, proc: ComplexPrim, env: env, data: $rectangular, doc: "make a complex number from rectangular coordinates"]; DefinePrimitive[name: "make-polar", nArgs: 2, dotted: FALSE, proc: ComplexPrim, env: env, data: $polar, doc: "make a complex number from polar coordinates"]; DefinePrimitive[name: "real-part", nArgs: 1, dotted: FALSE, proc: ComplexPrim, env: env, data: $realPart, doc: "extract the real part of a complex number"]; DefinePrimitive[name: "imag-part", nArgs: 1, dotted: FALSE, proc: ComplexPrim, env: env, data: $imagPart, doc: "extract the imaginary part of a complex number"]; }; RegisterRealFns: PROC [env: Environment] ~ { DefinePrimitive[name: "real-fns-sqrt", nArgs: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $sqrt, doc: "square root of a real number"]; DefinePrimitive[name: "real-fns-exp", nArgs: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $exp, doc: "exponential function of a real number"]; DefinePrimitive[name: "real-fns-expt", nArgs: 2, dotted: FALSE, proc: RealFnsPrim, env: env, data: $expt, doc: "exponentiation for real numbers"]; DefinePrimitive[name: "real-fns-log", nArgs: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $log, doc: "natural logarithm of a real number"]; DefinePrimitive[name: "real-fns-sin", nArgs: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $sin, doc: "sin of a real number"]; DefinePrimitive[name: "real-fns-cos", nArgs: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $cos, doc: "cosine of a real number"]; DefinePrimitive[name: "real-fns-tan", nArgs: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $tan, doc: "tangent of a real number"]; DefinePrimitive[name: "real-fns-atan", nArgs: 2, optional: 1, dotted: FALSE, proc: RealFnsPrim, env: env, data: $atan, doc: "arc-tangent of a real number or a pair of real numbers"]; }; RegisterInit[RegisterEssentials]; RegisterInit[RegisterOptionals]; RegisterInit[RegisterRealFns]; END. x SchemeArithmeticImpl.mesa Copyright Σ 1988, 1989, 1991 by Xerox Corporation. All rights reserved. Last changed by Pavel on March 15, 1989 3:06:41 am PST Michael Plass, December 27, 1990 4:17 pm PST Arithmetic Primitives any must represent an exact non-negative integer not exceeding max, or we Complain Result will be either a Fixnum or a Bignum, or else we Complain t was in danger of overflow, so proceed cautiously The second arg is a target; Raise just need to make progress towards the target Process non-standard number of arguments Compute and return the appropriate real number that is (perhaps approximately) equal to (IF negative THEN -1 ELSE 1) * (numerator / denominator) * (radix ^ exponent) ENABLE Real.RealException => { msg: ROPE ~ Rope.Cat["arithmetic exception:", IF flags[invalidOperation] THEN " invalid-operation" ELSE NIL, IF flags[divisionByZero] THEN " division-by-zero" ELSE NIL, IF flags[fixOverflow] OR flags[overflow] THEN " overflow" ELSE NIL, IF flags[underflow] THEN " underflow" ELSE NIL ]; Complain[Cons[a, IF b = undefined THEN NIL ELSE Cons[b, NIL]], msg] }; Registration of Primitives Initalization Κ*Φ–(cedarcode) style•NewlineDelimiter ™codešœ™Kšœ Οeœ=™HK™6K™,K™—šΟk ˜ Kšœžœ&˜2Kšœ žœ˜ŸKšœžœ˜ Kšœžœ/˜Kšœ˜—Kšœžœ˜Kšžœ"˜)—Kšœ˜K˜—Kšœžœžœ˜Cšœ"˜"K˜—š œžœ žœžœ ˜*Kšžœžœžœ žœ ˜1K˜K˜—š œžœžœžœ ˜HKšœžœžœ˜DKšžœ'žœžœ%˜Yšžœžœ˜KšœV˜VKšœ˜—K˜K˜—š  œžœžœžœ ˜@Kšœžœžœ˜Bšžœ#˜%Kšžœžœ%˜0šžœ˜Kšœžœ˜Kšœžœ˜Kšœžœ˜šœ˜šžœžœ ˜'Kšžœžœ˜-Kšžœžœ˜0——Kšžœ˜$Kšœ˜——K˜K˜—š  œžœžœ žœžœ˜0šžœžœž˜ Kšœžœ˜šœ˜Kšœžœžœžœ˜KšœCžœ˜Mšžœ ˜ Kšžœžœžœžœžœžœžœ˜2Kšžœžœžœžœžœžœžœ˜0—Kšœ˜—Kšžœžœ˜—Kšœ'˜'Kšœ˜K˜—š  œžœžœ žœžœ˜2šžœžœž˜ Kšœžœ žœžœ˜-šœ˜Kšœžœžœžœ˜Kšœžœžœ˜KšœGžœžœ˜YKš žœžœžœ žœžœ˜*Kšœ˜—Kšžœžœ˜—Kšœ'˜'Kšœ˜K˜—š œžœžœžœžœžœžœžœ˜EK™Ršžœžœž˜ Kš œžœ žœ žœžœ˜;šœ˜Kšœžœžœžœ˜Kšžœžœ žœ'˜žœ˜a—Kšžœ˜Kšœ˜K˜—š œžœžœ ˜7šžœžœž˜šœ˜šžœ˜Kšžœžœ!˜,šžœ˜Kšœžœ˜Kšœžœ˜K˜1šžœžœžœ ž˜6K˜ K˜ K•StartOfExpansion:[in1: BigCardinals.BigCARD, in2: BigCardinals.BigCARD]˜,Kšžœ˜—šžœžœž˜'Kšœ2™2K˜ K–:[in1: BigCardinals.BigCARD, in2: BigCardinals.BigCARD]˜'Kšžœ˜—K–P[neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL _ TRUE]šžœžœžœžœžœžœžœžœ žœ˜ΞKšœ˜——Kšœ˜—˜Kšžœžœ:˜EK˜—Kšžœžœ˜—šžœžœžœ˜-Kšžœžœ;˜FKšœ˜—Kšœ%˜%Kšœ˜KšœO™OK˜—šœžœžœžœžœžœžœžœžœžœ#žœ&žœ ˜ωK˜—š   œžœžœžœžœ ˜Cš   œžœžœžœžœ˜Išœžœžœž˜K˜ K˜Kšžœ ˜—K˜—Kšœ žœ˜šžœž˜K˜K˜K˜K˜Kš œ žœžœžœžœ˜3Kšœ žœ'˜8Kšžœžœ˜—Kšžœžœžœžœ˜'Kšžœžœžœ˜š  œžœžœžœ ˜DKšœP˜Pš žœ žœ žœžœ žœ:žœE˜ΆKšžœž˜ šžœ˜KšœN˜NKšœR˜RKšœžœžœ˜BKšžœ@žœžœ%˜rKšœžœžœ˜=Kšœžœžœ žœ˜@Kšœ˜——Kšžœžœ1˜Kšœžœ!žœ˜>Kšœžœžœ˜3Kšœžœ#žœ˜9Kšœ˜—šœ ˜ Kšœžœ!žœ˜>Kšœžœ!žœ˜>Kšœžœ žœ˜4Kšœžœ#žœ˜9Kšœ˜—šœ ˜ Kšœžœžœ˜3Kšœžœ#žœ˜9Kšœ˜—šœ ˜ Kšœžœ!žœ˜5Kšœžœ!žœ˜7Kšœ˜—šœ ˜ Kš žœžœ*žœ.žœžœ˜zKšœ˜—šœ ˜ Kšœžœžœ"žœžœžœ žœžœ˜XKšœžœžœ"žœžœžœ žœžœ˜XK˜5šžœ žœ˜Kšœžœ!žœ˜>Kšœžœ!žœ˜?Kšžœ$˜*Kšœ˜—Kšžœ˜Kšœ˜—Kšžœžœ˜—Kšžœ!žœ ˜4Kšœ˜K˜—š  œžœ'žœ ˜JKšœžœ˜Kšœžœ˜Kšœžœ žœ ˜"šžœž˜K˜Pšœ ˜ K˜FK˜EKšœ˜—šœ ˜ KšœC˜CKšœD˜DKšœE˜EK˜ K˜ Kšœ˜—šœ ˜ Kš žœžœ"žœ"žœžœ˜gKšœ˜—Kšœ$žœ,˜SKšžœžœ˜—Kšžœ1žœžœžœ%˜Kšžœžœm˜xKšœ˜K˜—K˜š œžœžœžœ ˜BKš œ žœžœžœžœžœžœ˜Nšžœžœž˜šœ˜šžœžœž˜šœ˜Kšœžœ˜ Kšœžœ˜ šžœž˜šœ ˜ šžœ˜ Kšžœžœžœžœžœžœžœ˜AKšžœžœžœžœžœžœžœ˜C—K˜—šœ ˜ šžœ˜ Kšžœžœžœžœžœžœžœ˜AKšžœžœžœžœžœžœžœ˜C—Kšœ˜—Kš œ žœžœžœžœžœžœ˜Išœ ˜ Kšžœžœ!˜.Kšžœžœžœžœ˜-Kšœ˜—šœ ˜ Kšžœžœžœžœ˜2Kšœ˜—šœ˜Kš žœžœžœžœžœ˜6Kšœ˜—Kš œžœžœžœžœ ˜5Kšœ žœ/˜BKšžœžœ˜—Kšœ˜—Kšžœžœ˜—Kšœ˜—Kšžœžœ˜—š‘*œ˜,Kšœ$žœžœ˜1šžœžœž˜Kšœžœ˜K˜@Kšžœžœ˜—šžœžœž˜Kšœžœ˜K˜@Kšžœžœ˜—š žœžœ žœ žœ žœ˜0šžœ žœ ˜Kšžœžœ2˜>šžœ˜Kšœ6˜6Kšžœ žœžœžœ ˜$Kšœ˜——Kšœ˜—K˜—š‘1œ˜3Kšœžœ žœžœ˜?Kšœžœ žœžœ˜?Kšžœžœ‘k˜›šžœž˜Kšžœžœžœ˜/Kšžœžœžœ˜/Kšžœ˜—šžœž˜Kšœ žœžœžœ˜9Kšœ žœžœžœ˜;Kšœ žœžœžœ˜;Kšœ žœ‘˜(Kšžœžœ˜—Kšœ˜—Kšœ˜K˜—š  œ˜Kšœžœ žœ ˜.šžœžœžœ˜K™(šžœ˜šžœ˜Kš œžœžœžœžœ˜AKšœžœžœ žœ˜*K˜ Kšœ˜—šžœ˜Kšœžœžœžœ˜Jšžœžœž˜K˜Kšœžœ ˜Kšžœ˜—Kšœ˜——Kšœ˜—K˜Kšœ˜K˜—š œžœžœ žœ:žœ žœ žœžœ ˜Ž™WK™M—K˜2Kšœžœ˜3K˜&K˜šžœ žœ˜Kšžœ˜ —šžœ˜K˜K˜K˜š œžœžœ ˜2šžœ!žœ˜)Kšžœ˜ —–[a: Scheme.Any]šžœžœžœ˜Kšžœ=˜C—šžœ˜K˜7Kšžœ˜ Kšœ˜—K˜—Kšœ2žœ ˜BK˜Kšžœžœ žœžœ˜DKšœ˜—K˜K˜—š  œžœžœžœžœ ˜Ešžœ˜Kšžœžœ˜šžœ˜šžœžœž˜K–P[neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL _ TRUE]šœ žœ8žœ˜dKšœ žœ:˜M–=[num: Scheme.Bignum, denom: Scheme.Bignum, exact: BOOL]šœ˜šžœžœ ˜Kšžœžœ)˜4Kšžœžœžœ.˜>—Kšœ˜—K–=[num: Scheme.Bignum, denom: Scheme.Bignum, exact: BOOL]šœ žœžœB˜ZK–=[num: Scheme.Bignum, denom: Scheme.Bignum, exact: BOOL]šœžœžœd˜}Kšžœžœ˜—Kšœ˜——K˜K˜—š  œžœ žœžœžœ˜Kšžœžœžœžœ™;Kš žœžœžœ žœžœ™CKšžœžœžœž™.K™—Kš œžœžœžœžœ žœ™CKšœ™—Kšœžœ˜Kšœžœžœ˜Kšœ žœ˜Kšœžœ˜š žœ žœžœžœ ž˜:Kšœ$žœ˜=K˜&šœ ˜ Kšœžœ˜Kšœ žœ žœžœ˜9Kšœ˜—K–[REAL]˜%K–[REAL]˜&K–[REAL]˜&K–[REAL]˜&–[REAL]šœ ˜ šžœ˜Kšžœ$˜(šžœ˜Kšœžœ˜Kšœ žœ žœžœ˜:Kšœ˜——Kšœ˜—Kšžœžœ˜—Kšžœžœžœžœžœžœ žœ!˜vKšœžœžœ˜:Kšžœžœžœžœžœ!žœžœ˜eK˜K˜—š  œ˜šžœ ž˜–[REAL]šœ˜Kšžœžœžœ˜ šžœžœž˜Kšœ žœ˜!Kšžœ#˜*—Kšœ˜—–[REAL]šœ˜Kšžœžœžœ˜,šžœžœž˜Kšœ žœ˜#Kšžœ#˜*—Kšœ˜—šœ ˜ K˜.Kšœžœžœ˜šžœžœžœž˜3šžœžœž˜&K˜Jšœ˜Kšœžœ ˜K˜,K˜—Kšžœžœ˜—Kšžœ˜—K–P[neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL _ TRUE]šžœžœ"žœ˜FKšœ˜—šœ˜K–P[neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL _ TRUE]šœžœ˜K–P[neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL _ TRUE]šžœžœžœ˜,šžœžœž˜šœ˜K˜4K˜—šœ˜K˜%K˜—Kšžœ˜&—Kšžœ%˜+Kšœ˜—šœ ˜ K–P[neg: BOOL, mag: BigCardinals.BigCARD, exact: BOOL, reduce: BOOL _ TRUE]šœžœ˜Kšžœžœžœ˜,šžœžœž˜šœ˜Kšœžœ˜Kšœžœžœžœ˜6šžœ˜šžœ˜šœ žœ˜Kšžœžœžœžœ˜:Kšžœ˜ —Kšœ˜—šžœ˜šžœžœž˜K˜IKšžœžœ˜—Kšœ˜——K˜—K˜9Kšžœ˜&—Kšžœ%˜+Kšœ˜—Kšœ žœžœ˜1Kšœžœžœ˜4Kšžœ/˜6—K˜K˜——š ™š œžœ˜/Kšœ-žœFžœ˜Kšœ-žœIžœ˜‘Kšœ-žœLžœ˜“Kšœ-žœFžœ˜Kšœ4žœ<žœ˜ŽKšœ5žœSžœ˜§Kšœ4žœU˜ŽKšœ1žœc˜™Kšœ5žœW˜‘Kšœ4žœV˜Kšœ2žœU˜ŒKšœ4žœY˜’Kšœ0žœS˜ˆKšœ1žœU˜‹Kšœ˜K˜—š œžœ˜.Kšœ:žœEžœ˜˜Kšœ:žœHžœ˜œKšœ:žœKžœ˜žKšœ:žœEžœ˜šKšœ:žœ\˜›Kšœ:žœX˜—Kšœ5žœc˜Kšœ7žœg˜£Kšœ/žœV˜‰Kšœ4žœM˜†Kšœ1žœG˜}Kšœ<žœn˜―Kšœ6žœb˜Kšœ5žœb˜œKšœ5žœg˜‘Kšœ˜K˜—š œžœ˜,Kšœ9žœQ˜Kšœ8žœY˜–Kšœ9žœT˜’Kšœ8žœV˜“Kšœ8žœH˜…Kšœ8žœK˜ˆKšœ8žœL˜‰KšœFžœk˜ΆKšœ˜K˜——™ Kšœ!˜!K˜ Kšœ˜K˜—Kšžœ˜K˜—…—vμ¦: