File: Lines2dImpl.mesa
Copyright Ó 1992 by Xerox Corporation. All rights reserved.
Author: Eric Bier on June 4, 1985 5:04:38 pm PDT
Last edited by Bier on June 24, 1987 11:34:21 am PDT
Contents: Routines for finding the intersections of various types of lines and line segments in Gargoyle.
Pier, August 8, 1986 12:14:59 pm PDT
Bier, March 21, 1988 12:02:31 pm PST
Michael Plass, March 25, 1992 11:47 am PST
DIRECTORY
Angles2d, Imager, ImagerTransformation, Lines2d, Lines2dTypes, Real, RealFns, Vectors2d;
Lines2dImpl: CEDAR PROGRAM
IMPORTS Angles2d, Imager, ImagerTransformation, RealFns, Vectors2d
EXPORTS Lines2d =
BEGIN
Point: TYPE = Lines2dTypes.Point;
Edge: TYPE = REF EdgeObj;
EdgeObj: TYPE = Lines2dTypes.EdgeObj;
Line: TYPE = REF LineObj;
LineObj: TYPE = Lines2dTypes.LineObj;
Ray: TYPE = REF RayObj;
RayObj: TYPE = Lines2dTypes.RayObj;
Vector: TYPE = Lines2dTypes.Vector;
Making Lines
CreateEmptyLine: PUBLIC PROC RETURNS [line: Line] = {
line ¬ NEW[LineObj];
};
CopyLine: PUBLIC PROC [from: Line, to: Line] = {
to.c ¬ from.c;
to.s ¬ from.s;
to.theta ¬ from.theta;
to.d ¬ from.d;
to.slope ← from.slope;
to.yInt ← from.yInt;
};
EqualLine: PUBLIC PROC [a: Line, b: Line] RETURNS [BOOL] = {
Are these lines mathematically identical?
RETURN[a.d = b.d AND a.theta = b.theta];
};
AlmostEqualLine: PUBLIC PROC [a: Line, b: Line, errorDegrees: REAL, errorDistance: REAL] RETURNS [BOOL] = {
Returns TRUE if the lines differ in slope by no more than errorDegrees and differ in distance from the origin by no more than errorDistance.
RETURN[ABS[a.theta - b.theta] < errorDegrees AND ABS[a.d-b.d] < errorDistance];
};
FillLineFromPoints: PUBLIC PROC [v1, v2: Point, line: Line] = {
Recall y*c - x*s - d = 0;
Calculates the different parts of a line given an ordered pair of points (the tail and the head). Trig lines are directed in sense since 0 <= line.theta <= 180 implies that v1 is lower than or to the right of) v2.
epsilon: REAL = 1.0e-3; -- changed from 1.0e-5 in August 1986, by Bier
-- changed from 1.0e-6 in August 1985 by Bier
Deal with very short and vertical segments
x2Minusx1: REAL ¬ v2.x - v1.x;
y2Minusy1: REAL ¬ v2.y - v1.y;
Notice that zero length lines are considered vertical.
IF ABS[x2Minusx1] < epsilon THEN {-- vertical line
IF v2.y > v1.y THEN {-- line goes up
line.theta ¬ 90.0;
line.s ¬ 1;
we have -x*s = d. where s = 1. Plug in v1. -v1.x*s = d
line.d ¬ -v1.x}
ELSE { -- line goes down
line.theta ¬ -90;
line.s ¬ -1;
we have -x*s = d. where s = -1. Plug in v1. -v1.x*s = d
line.d ¬ v1.x};
line.c ¬ 0;
}
Otherwise, use trig functions.
ELSE {
line.theta ¬ RealFns.ArcTanDeg[y2Minusy1, x2Minusx1];
line.c ¬ RealFns.CosDeg[line.theta];
line.s ¬ RealFns.SinDeg[line.theta];
d ← y1c - x1s. Subsitute in a point to find d.
line.d ¬ v1.y*line.c - v1.x*line.s;
};
}; -- end of FillLineFromPoints
VectorTooSmall: PUBLIC SIGNAL = CODE;
FillLineFromPointAndVector: PUBLIC PROC [pt: Point, vec: Vector, line: Line] = {
epsilon: REAL = 1.0e-3;
IF ABS[vec.x] < epsilon AND ABS[vec.y] < epsilon THEN {
SIGNAL VectorTooSmall;
line.theta ¬ 90.0;
}
ELSE line.theta ¬ RealFns.ArcTanDeg[vec.y, vec.x];
line.c ¬ RealFns.CosDeg[line.theta];
line.s ¬ RealFns.SinDeg[line.theta];
line.d ¬ pt.y*line.c - pt.x*line.s;
};
FillLineFromCoefficients: PUBLIC PROC [sineOfTheta, cosineOfTheta, distance: REAL, line: Line] = {
recall y*c - x*s - d = 0;
Calculates the different parts of a line given c, s and d.
line.s ¬ sineOfTheta;
line.c ¬ cosineOfTheta;
line.d ¬ distance;
line.theta ¬ RealFns.ArcTanDeg[sineOfTheta, cosineOfTheta];
IF cosineOfTheta # 0 THEN { -- find its slope and y intercept.
line.slope ← sineOfTheta/cosineOfTheta;
y intercept occurs when x = 0, ie when y*c = d. y = d/c;
line.yInt ← line.d/line.c};
}; -- end of FillLineFromCoefficients
FillLineFromPointAndAngle: PUBLIC PROC [pt: Point, degrees: REAL, line: Line] = {
line.theta ¬ Angles2d.Normalize[degrees];
line.c ¬ RealFns.CosDeg[line.theta];
line.s ¬ RealFns.SinDeg[line.theta];
line.d ¬ pt.y*line.c - pt.x*line.s;
}; -- end of FillLineFromPointAndAngle
FillLineNormalToLineThruPoint: PUBLIC PROC [line: Line, pt: Point, normalLine: Line] = {
Find a line which is perpendicular to "line" and passes thru "pt". Useful for dropping perpendiculars.
If line has the form: y*cos(theta) - x*sin(theta) - d = 0, then normalLine will have the form:
y*cos(theta+90) - x*sin(theta+90) - D = 0;
or -y*sin(theta) - (x*cos(theta)) - D = 0;
to find D, we substitute in pt:
D = -pt.y*sin(theta) - pt.x*cos(theta);
normalLine.s ¬ line.c;
normalLine.c ¬ -line.s;
normalLine.d ¬ -pt.y*line.s - pt.x*line.c;
normalLine.theta ¬ Angles2d.Add[line.theta, 90];
IF normalLine.c #0 THEN { -- compute slope and yInt
normalLine.slope ← normalLine.s/normalLine.c;
line.yInt ← normalLine.d/normalLine.c
};
}; -- end of FillLineAsNormal
FillLineLeftOfLine: PUBLIC PROC [line: Line, dist: REAL, parallelLine: Line] = {
parallelLine.s ¬ line.s;
parallelLine.c ¬ line.c;
parallelLine.d ¬ line.d + dist;
parallelLine.theta ¬ line.theta;
parallelLine.slope ← line.slope;
};
FillLineRightOfLine: PUBLIC PROC [line: Line, dist: REAL, parallelLine: Line] = {
parallelLine.s ¬ line.s;
parallelLine.c ¬ line.c;
parallelLine.d ¬ line.d - dist;
parallelLine.theta ¬ line.theta;
parallelLine.slope ← line.slope;
};
FillLineTransform: PUBLIC PROC [fixed: Line, transform: ImagerTransformation.Transformation, line: Line] = {
point, newPoint: Point;
direction, newDirection: Vector;
point ¬ PointOnLine[fixed];
direction ¬ DirectionOfLine[fixed];
newPoint ¬ ImagerTransformation.Transform[transform, point];
newDirection ¬ ImagerTransformation.TransformVec[transform, direction];
FillLineFromPointAndVector[newPoint, newDirection, line];
};
LineFromPoints: PUBLIC PROC [v1, v2: Point] RETURNS [line: Line] = {
line ¬ CreateEmptyLine[];
FillLineFromPoints[v1, v2, line];
};
LineFromPointAndVector: PUBLIC PROC [pt: Point, vec: Vector] RETURNS [line: Line] = {
pt2: Point;
pt2 ¬ Vectors2d.Add[pt, vec];
line ¬ LineFromPoints[pt, pt2];
};
LineFromCoefficients: PUBLIC PROC [sineOfTheta, cosineOfTheta, distance: REAL] RETURNS [line: Line] = {
line ¬ CreateEmptyLine[];
FillLineFromCoefficients[sineOfTheta, cosineOfTheta, distance, line];
};
LineFromPointAndAngle: PUBLIC PROC [pt: Point, degrees: REAL] RETURNS [line: Line] = {
line ¬ CreateEmptyLine[];
FillLineFromPointAndAngle[pt, degrees, line];
};
LineNormalToLineThruPoint: PUBLIC PROC [line: Line, pt: Point] RETURNS [normalLine: Line] = {
normalLine ¬ CreateEmptyLine[];
FillLineNormalToLineThruPoint[line, pt, normalLine];
};
LineLeftOfLine: PUBLIC PROC [line: Line, dist: REAL] RETURNS [parallelLine: Line] = {
parallelLine ¬ CreateEmptyLine[];
FillLineLeftOfLine[line, dist, parallelLine];
};
LineRightOfLine: PUBLIC PROC [line: Line, dist: REAL] RETURNS [parallelLine: Line] = {
parallelLine ¬ CreateEmptyLine[];
FillLineRightOfLine[line, dist, parallelLine];
};
LineTransform: PUBLIC PROC [fixed: Line, transform: ImagerTransformation.Transformation] RETURNS [rotatedLine: Line] = {
Makes a new line that results by transforming line by transform.
rotatedLine ¬ CreateEmptyLine[];
FillLineTransform[fixed, transform, rotatedLine];
};
DrawLine: PUBLIC PROC [dc: Imager.Context, line: Line, clippedBy: Imager.Rectangle, strokeWidth: REAL ¬ 1.0] = {
count: NAT;
ray: Ray;
params: ARRAY[1..2] OF REAL;
p1, p2, basePoint: Point;
direction: Vector;
DoDrawLine: PROC = {
Imager.SetXY[dc, [p1.x, p1.y]];
Imager.Trans[dc];
Imager.Move[dc];
Imager.SetStrokeEnd[dc, round];
Imager.SetStrokeWidth[dc, strokeWidth];
Imager.MaskVector[dc, [0.0, 0.0], [p2.x - p1.x, p2.y - p1.y]];
Draw2d.Line[dc, [0.0, 0.0], [p2.x - p1.x, p2.y - p1.y], solid];
};
p1 ¬ [clippedBy.x, clippedBy.y];
p2 ¬ [clippedBy.x + clippedBy.w, clippedBy.y + clippedBy.h];
basePoint ¬ PointOnLine[line];
direction ¬ DirectionOfLine[line];
ray ¬ CreateRay[basePoint, direction];
[count, params] ¬ LineRayMeetsBox[ray, p1.x, p1.y, p2.x, p2.y];
IF count = 2 THEN {
p1 ¬ EvalRay[ray, params[1]];
p2 ¬ EvalRay[ray, params[2]];
Imager.DoSave[dc, DoDrawLine];
};
};
Making Edges
CreateEmptyEdge: PUBLIC PROC RETURNS [edge: Edge] = {
edge ¬ NEW[EdgeObj];
edge.line ¬ CreateEmptyLine[];
};
CopyEdge: PUBLIC PROC [from: Edge, to: Edge] = {
CopyLine[from.line, to.line];
to.start ¬ from.start;
to.end ¬ from.end;
to.startIsFirst ¬ from.startIsFirst;
}; -- end of CopyEdge
FillEdge: PUBLIC PROC [v1, v2: Point, edge: Edge] = {
y2Minusy1: REAL;
FillLineFromPoints[v1, v2, edge.line];
y2Minusy1 ¬ v2.y - v1.y;
IF y2Minusy1 = 0 THEN
IF v2.x > v1.x THEN {edge.end ¬ v2; edge.start ¬ v1; edge.startIsFirst ¬ TRUE}
ELSE {edge.end ¬ v1; edge.start ¬ v2; edge.startIsFirst ¬ FALSE}
ELSE
IF v2.y > v1.y THEN {edge.end ¬ v2; edge.start ¬ v1; edge.startIsFirst ¬ TRUE}
ELSE {edge.end ¬ v1; edge.start ¬ v2; edge.startIsFirst ¬ FALSE};
}; -- end of FillEdge
FillEdgeTransform: PUBLIC PROC [fixed: Edge, transform: ImagerTransformation.Transformation, edge: Edge] = {
start, end: Point;
start ¬ ImagerTransformation.Transform[m: transform, v: fixed.start];
end ¬ ImagerTransformation.Transform[m: transform, v: fixed.end];
FillEdge[start, end, edge];
};
CreateEdge: PUBLIC PROC [v1, v2: Point] RETURNS [edge: Edge] = {
edge ¬ CreateEmptyEdge[];
FillEdge[v1, v2, edge];
}; -- end of CreateEdge
EdgeTransform: PUBLIC PROC [fixed: Edge, transform: ImagerTransformation.Transformation] RETURNS [edge: Edge] = {
edge ¬ CreateEmptyEdge[];
FillEdgeTransform[fixed, transform, edge];
};
Making Rays
CreateRay: PUBLIC PROC [basePoint: Point, direction: Vector] RETURNS [ray: Ray] = {
ray ¬ NEW[RayObj ¬ [basePoint, direction]];
};
CreateRayFromPoints: PUBLIC PROC [p1, p2: Point] RETURNS [ray: Ray] = {
ray ¬ NEW[RayObj ¬ [p1, Vectors2d.Sub[p2, p1]]];
};
AlmostEqual: PROC [r1, r2, almostZero: REAL] RETURNS [BOOL] = {
RETURN[ABS[r1 - r2] < almostZero];
};
LineRayMeetsBox: PUBLIC PROC [ray: Ray, xmin, ymin, xmax, ymax: REAL] RETURNS [count: NAT, params: ARRAY[1..2] OF REAL] = {
We can take advantage of the horizontal and vertical lines of the box to do an easy intersection test. Note that we are really testing for line intersections rather than ray intersections.
almostZero: REAL ¬ 1.0e-3;
x, y, t: REAL;
count ¬ 0;
The top line has equation y = ymax. If ray.d.y = 0, we don't hit this line. Otherwise, we use y(t) = ymax = ray.p.y+t*ray.d.y; Solve for t: t = (ymax-ray.p.y)/ray.d.y.
IF ABS[ray.d.y] > almostZero THEN { -- intersection occurs
Top Line
t ¬ (ymax-ray.p.y)/ray.d.y;
x ¬ ray.p.x + t*ray.d.x;
IF x >=xmin-almostZero AND x<= xmax+almostZero THEN { -- hits box
count ¬ count + 1;
params[count] ¬ t;
};
Bottom Line
t ¬ (ymin-ray.p.y)/ray.d.y;
x ¬ ray.p.x + t*ray.d.x;
IF x >=xmin-almostZero AND x<= xmax+almostZero THEN { -- hits box
count ¬ count + 1;
params[count] ¬ t;
};
};
IF ABS[ray.d.x] > almostZero THEN { -- intersection occurs
Right Line
IF count < 2 THEN {
t ¬ (xmax-ray.p.x)/ray.d.x;
IF count = 0 OR (count = 1 AND NOT AlmostEqual[t, params[1], almostZero]) THEN {
y ¬ ray.p.y + t*ray.d.y;
IF y >=ymin-almostZero AND y<= ymax+almostZero THEN { -- hits box
count ¬ count + 1;
params[count] ¬ t;
};
};
};
Left Line
IF count < 2 THEN {
t ¬ (xmin-ray.p.x)/ray.d.x;
IF count = 0 OR (count = 1 AND NOT AlmostEqual[t, params[1], almostZero]) THEN {
y ¬ ray.p.y + t*ray.d.y;
IF y >=ymin-almostZero AND y<= ymax+almostZero THEN { -- hits box
count ¬ count + 1;
params[count] ¬ t;
};
};
};
};
IF count = 2 THEN {
IF params[2] < params[1] THEN {
temp: REAL ¬ params[1];
params[1] ¬ params[2];
params[2] ¬ temp;
};
}; -- make sure hits are sorted
}; -- end of LineRayMeetsBox
EvalRay: PUBLIC PROC [ray: Ray, param: REAL] RETURNS [point: Point] = {
point.x ¬ ray.p.x + param*ray.d.x;
point.y ¬ ray.p.y + param*ray.d.y;
};
Intersections
AlmostZero: PROC [r: REAL] RETURNS [BOOL] = {
epsilon: REAL = 1.0e-5;
RETURN[ABS[r] < epsilon];
};
LineMeetsLine: PUBLIC PROC [line1, line2: Line] RETURNS [intersection: Point, parallel: BOOL] = {
To ensure no errors of more than 0.072 screen dots in a picture of size 14 inches by 14 inches, our angles in radians must be accurate to (theta*1008 < 0.072) theta < 7.142857e-5). In degrees, this is 4.092559e-3. I will use 4e-4 for extra accuracy. e-5 results in determinant = 0.0 for Window.script. (Bier, January 7, 1987)
If line1 is of the form: c1*y - s1*x - d1 = 0;
and line2 of the form: c2*y - s2*x - d2 = 0;
then we solve simultaneously.
x = (c2d1 - c1d2)/(s2c1 - s1c2);
y = (s2d1 - s1d2)/(s2c1 - s1c2);
determinant: REAL;
epsilon: REAL = 4E-4;
parallel ¬ FALSE;
IF Angles2d.AlmostParallel[line1.theta, line2.theta, epsilon] THEN {
RETURN[intersection: [Real.PlusInfinity, Real.PlusInfinity], parallel: TRUE]
};
determinant ¬ line2.s*line1.c - line1.s*line2.c;
determinant should not be zero since the lines are not parallel.
intersection.x ¬ (line2.c*line1.d - line1.c*line2.d)/determinant;
intersection.y ¬ (line2.s*line1.d - line1.s*line2.d)/determinant;
};
LineMeetsYAxis: PUBLIC PROC [line: Line] RETURNS [yInt: REAL, parallel: BOOL] = {
IF line.theta = 90 OR line.theta = -90 THEN parallel ¬ TRUE
ELSE {-- we just want the y Intercept which is calculated at line creation time for now.
parallel ¬ FALSE;
yInt ¬ line.yInt;}
};
LineMeetsEdge: PUBLIC PROC [line: Line, edge: Edge] RETURNS [intersection: Point, noHit: BOOL] = {
Find the intersection of line with the line of seg. See if this point is within the bounds of seg.
edgeLine: Line ¬ edge.line;
parallel: BOOL;
[intersection, parallel] ¬ LineMeetsLine[edgeLine, line];
IF parallel THEN {noHit ¬ TRUE; RETURN};
noHit ¬ NOT OnEdge[intersection, edge];
};
EdgeMeetsEdge: PUBLIC PROC [e1, e2: Edge] RETURNS [intersection: Point, noHit: BOOL] = {
Find the intersection of e1, with e2. See if this point is within the bounds of e1 and e2.
e1Line: Line ¬ e1.line;
[intersection, noHit] ¬ LineMeetsEdge[e1Line, e2];
IF noHit THEN RETURN;
noHit ¬ NOT OnEdge[intersection, e1];
};
Direction and Distance for Lines
SignedLineDistance: PUBLIC PROC [pt: Point, line: Line] RETURNS [d: REAL] = {
Because of our choice or representation for a Line, plugging the point into the line equation gives us the signed distance.
ie. distance = y*cos(theta) - x*sin(theta) - d;
d ¬ pt.y*line.c - pt.x*line.s - line.d;
}; -- SignedLineDistance
LineDistance: PUBLIC PROC [pt: Point, line: Line] RETURNS [d: REAL] = {
Because of our choice or representation for a Line, plugging the point into the line equation gives us the signed distance.
ie. distance = y*cos(theta) - x*sin(theta) - d;
d ¬ ABS[pt.y*line.c - pt.x*line.s - line.d];
}; -- LineDistance
DropPerpendicular: PUBLIC PROC [pt: Point, line: Line] RETURNS [projectedPt: Point] = {
We drop a normal from the point onto the line and find where it hits.
The line equation of the normal we drop can be found using FillLineAsNormal above.
We will have line equations:
c*y - s*x - d = 0. The vector v = [c, s] is the unit vector parallel to line. The vector
l = [-s, c] is the unit vector 90 degrees counter-clockwise of v. If pt is distance D from line (along l), then the new point we want is pt-D*l.
This routine takes 4 mults, 4 adds.
D: REAL ¬ pt.y*line.c - pt.x*line.s - line.d;
projectedPt.x ¬ pt.x + D*line.s;
projectedPt.y ¬ pt.y - D*line.c;
};
PointOnLine: PUBLIC PROC [line: Line] RETURNS [pt: Point] = {
Finds any old point on line and returns it.
IF ABS[line.c] > ABS[line.s] THEN {
pt.x ¬ 0.0;
pt.y ¬ line.d/line.c;
}
ELSE {
pt.y ¬ 0.0;
pt.x ¬ -line.d/line.s;
};
};
DirectionOfLine: PUBLIC PROC [line: Line] RETURNS [direction: Vector] = {
Returns the direction vector of line.
direction.x ¬ line.c;
direction.y ¬ line.s;
};
Distance for Edges
NearestEndpoint: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [endpoint: Point] = {
Look for an obvious winner first. If that fails, do math.
IF ABS[pt.x-edge.start.x] <= ABS[pt.x-edge.end.x] THEN
IF ABS[pt.y-edge.start.y] <= ABS[pt.y-edge.end.y] THEN RETURN[edge.start]
ELSE GOTO DoMath
ELSE
IF ABS[pt.y-edge.start.y] > ABS[pt.y-edge.end.y] THEN RETURN[edge.end]
ELSE GOTO DoMath;
EXITS
DoMath =>
IF DistanceSquaredPointToPoint[pt, edge.start] < DistanceSquaredPointToPoint[pt, edge.end]
THEN endpoint ¬ edge.start
ELSE endpoint ¬ edge.end;
};
DistanceSquaredToNearestEndpoint: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [distanceSquared: REAL] = {
distance2ToPLo, distance2ToPHi: REAL;
distance2ToPLo ¬ DistanceSquaredPointToPoint[pt, edge.start];
distance2ToPHi ¬ DistanceSquaredPointToPoint[pt, edge.end];
RETURN[MIN[distance2ToPLo, distance2ToPHi]];
};
NearestPointOnEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [onEdge: Point] = {
projectedPt: Point ¬ DropPerpendicular[pt, edge.line];
IF LinePointOnEdge[projectedPt, edge] THEN onEdge ¬ projectedPt
ELSE onEdge ¬ NearestEndpoint[pt, edge];
};
DistancePointToEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [distance: REAL] = {
perpendicular distance if possible, else distance to nearest endpoint.
projectedPt: Point ¬ DropPerpendicular[pt, edge.line];
nearEndpoint: Point;
IF LinePointOnEdge[projectedPt, edge] THEN distance ¬ ABS[LineDistance[pt, edge.line]]
ELSE {
nearEndpoint ¬ NearestEndpoint[pt, edge];
distance ¬ DistancePointToPoint[pt, nearEndpoint];
};
};
DistanceSquaredPointToEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [distanceSquared: REAL] = {
Perpendicular distance if possible, else distance to nearest endpoint.
projectedPt: Point ¬ DropPerpendicular[pt, edge.line];
IF LinePointOnEdge[projectedPt, edge]
THEN {distanceSquared ¬ LineDistance[pt, edge.line];
distanceSquared ¬ distanceSquared*distanceSquared}
ELSE distanceSquared ¬ DistanceSquaredToNearestEndpoint[pt, edge];
};
OnEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [BOOL] = {
d2: REAL;
d2 ¬ DistanceSquaredPointToEdge[pt, edge];
RETURN[AlmostZero[d2]];
};
LinePointOnEdge: PUBLIC PROC [pt: Point, edge: Edge] RETURNS [BOOL] = {
Assumes pt is on edge.line. Is it on edge?
IF ABS[edge.end.x - edge.start.x] <= ABS[edge.end.y - edge.start.y] THEN -- line is more vertical or has zero length
RETURN[Between[pt.y, edge.start.y, edge.end.y]]
ELSE -- line is more horizontal
RETURN[Between[pt.x, edge.start.x, edge.end.x]];
}; -- end of LinePointOnEdge
Distance for Points
DistancePointToPoint: PUBLIC PROC [p1, p2: Point] RETURNS [distance: REAL] = {
distance ¬ RealFns.SqRt[(p2.y-p1.y)*(p2.y-p1.y) + (p2.x-p1.x)*(p2.x-p1.x)];
};
DistanceSquaredPointToPoint: PUBLIC PROC [p1, p2: Point] RETURNS [distance: REAL] = {
distance ¬ (p2.y-p1.y)*(p2.y-p1.y) + (p2.x-p1.x)*(p2.x-p1.x);
};
PointLeftOfLine: PUBLIC PROC [distance: REAL, pOnLine: Point, line: Line] RETURNS [point: Point] = {
point is a point to the left of the directed line, on the normal to the line which intersects the line at pOnLine. If distance is negative, the point will be to the right of the directed line.
Method: The point we want will be at the intersection these two lines
1) The line parallel to "line" but distance to its left
2) The line perpendicular to "line" at pOnLine.
We can generate both of these easily as follows:
lineParallel, linePerp: Line;
parallel: BOOL;
lineParallel ¬ CreateEmptyLine[];
linePerp ¬ CreateEmptyLine[];
FillLineFromCoefficients[line.s, line.c, line.d + distance, lineParallel];
FillLineNormalToLineThruPoint[line, pOnLine, linePerp];
[point, parallel] ¬ LineMeetsLine[lineParallel, linePerp];
IF parallel THEN ERROR; -- perpendicular lines are not parallel
};
UTILITY FUNCTIONS
Between: PRIVATE PROC [test, a, b: REAL] RETURNS [BOOL] = {
SELECT a FROM
< b => RETURN [a <= test AND test <= b];
= b => RETURN [test = b];
> b => RETURN [b <= test AND test <= a];
ENDCASE => ERROR;
};
END.