DIRECTORY Imager USING [Rectangle, VEC, Transformation], ImagerPath USING [MoveToProc, CurveToProc], CubicSplines USING [CoeffsSequence], Cubic2 USING [Bezier]; CubicPaths: CEDAR DEFINITIONS ~ BEGIN VEC: TYPE = Imager.VEC; Bezier: TYPE = Cubic2.Bezier; Path: TYPE = REF PathRec; PathRec: TYPE = RECORD[bounds: Imager.Rectangle, cubics: REF PathSequence]; PathSequence: TYPE = RECORD[bezier: SEQUENCE length: NAT OF Bezier]; PathFromCubic: PROC [coeffs: CubicSplines.CoeffsSequence, newBounds: BOOL ฌ TRUE] RETURNS [Path]; EnumeratePath: PROC [path: Path, moveTo: ImagerPath.MoveToProc, curveTo: ImagerPath.CurveToProc]; PointProc: TYPE = PROC [p: VEC] RETURNS [stop: BOOLEAN ฌ FALSE]; WalkPath: PROC [path: Path, tol: REAL, proc: PointProc]; PointOnPath: PROC [pt: VEC, path: Path, tol: REAL] RETURNS [BOOLEAN]; TranslatePath: PROC [path: Path, offset: VEC]; TransformPath: PROC [path: Path, tranformation: Imager.Transformation, newBounds: BOOL ฌ TRUE]; UpdateBounds: PROC [path: Path]; ClosestPoint: PROC [pt: VEC, path: Path] RETURNS[VEC]; CopyPath: PROC [path: Path] RETURNS[Path]; ReversePath: PROC [path: Path]; ClosestPointAnalytic: PROC[pt: VEC, path: Path, tolerance: REAL ฌ 9999.0] RETURNS [closest: VEC, success: BOOL]; GetParam: PROC [bezier: Bezier, pt: VEC] RETURNS [u: REAL]; CubicMeetsLine: PROC [bezier: Bezier, a, b, c: REAL] RETURNS [points: ARRAY [0..2] OF VEC, hitCount: [0..3], tangency: ARRAY [0..2] OF BOOL]; END. X CubicPaths.mesa Copyright ำ 1985, 1986, 1987, 1992 by Xerox Corporation. All rights reserved. Written by: Maureen Stone August 5, 1985 8:39:13 pm PDT Last edited by Bier on December 1, 1986 4:42:55 pm PST Russ Atkinson (RRA) February 2, 1987 10:43:11 pm PST Pier, August 5, 1987 3:50:29 pm PDT Doug Wyatt, April 8, 1992 5:49 pm PDT Call this inside of an Imager.PathProc to display the path. ie: pathProc: ImagerPath.PathProc = {EnumeratePath[path, moveTo, curveTo]}; Enumerates all the points on the curve. Uses subdivision. tol is for the flatness test updates the bounding rectangle reverses it in place Faster than ClosestPointSubdivide, more accurate, and almost as robust. If success = TRUE, the point returned is guaranteed to be quite close to the Bezier path. The point is quite close because it results from plugging in a value of the parameter. The point returned is also quite close to the actual closest point, since the parameter chosen is within a floating point round-off error of being a root of the "closest point" polynomials. IF success = FALSE, no point on path is within tolerance of pt. In this case, closest is not valid data. Given a bezier curve, and a point on the curve, find the parameter value u that generates pt. Find the intersection points of the Bezier cubic piece bezier and the line: ax + by + c = 0. ส฿–(cedarcode) style•NewlineDelimiter ™codešœ ฯkœ™Kšœ ฯeœC™NKšœ8™8Kšœ3™6K™4K™#K™%K˜—š ˜ Kšœœ œ˜.Kšœ œ˜+Kšœ œ˜$Kšœœ ˜—K˜Kšฯn œœ œ˜%K˜Kšœœ œ˜Kšœœ˜Kšœœœ ˜Kšœ œœ#œ˜LKš œœœ œ œœ ˜EK˜š Ÿ œœ2œœœ˜bK™—šŸ œœO˜bK™;K™KK™—šŸ œœœœœœœ˜@K™—šŸœœœ˜9K™XK™—š Ÿ œœœœœœ˜FK™—šŸ œœœ˜.K™—šŸ œœ@œœ˜aK™—šŸ œœ˜ K™K™—š Ÿ œœœœœ˜6K™—šŸœœœ˜*K™—šŸ œœ˜K™K™—šŸœœœœ œ œ œ˜qKšœVœแœ œW™คK™—š Ÿœœœœœ˜;Kšœ]™]K™—šŸœœœœ œœœœœœ˜ŽK™\K™—Kšœ˜—…—ฎ ๅ