
Copyright Xerox Corporation 1979

Inter-Office Memorandum

To Communications Protocols Date December 20, 1978

From David Boggs Location Palo Alto

Subject TeleSwat Protocol Organization Parc

XEROX

Filed on: [Maxc1]<Pup>TeleSwat.bravo

There may not be a debugger in Peoria, but there is a debugger in Palo Alto and a way to move
packets between Palo Alto and Peoria.

This memo documents the protocol by which Swat communicates with a remote Swatee. I maintain
a lot of software which is used at other Xerox sites, and I often get calls from users when a program
lands in Swat. The caller is rarely facile with Swat’s command language, and it is very difficult to
guide him through the steps necessary to gather debugging information (assuming for the moment
that he has the symbol file on his disk). Many programs are also available as boot files, for which
the only debugger available until now was SSD: a super simple octal debugger. The need for a
cross-net debugger has been clear for a long time. Pup gateways have a rudimentary debugger
server in them, but the effort required to build the remote user has prevented development, and it
has remained only a toy. Bolt Beranek and Newman has developed several cross-net debuggers. I
know of two: one for debugging ArpaNet Imps and one for debugging PDP-11 BCPL programs.

There are many ways to do remote debuggers. A useful way to classify them is to ask where the
logic of the debugger runs: in the machine being debugged or in the machine where the human
debugger is. I considered putting a Telnet server into Swat, and using Chat to control the remote
Swat. Swat’s keyboard and display stream would then be paralleled with the Telnet streams. The
advantages of this approach are that it would use existing software, and Swat could then accept
commands from either the remote Chat or the local keyboard, allowing joint debugging by the guy
with the broken machine and the remote guru. The disadvantage is that it takes a lot of code to
implement a Telnet server and Swat, like all Alto programs, is short on space. A server built on the
standard Pup package would consume about 6K. Building a Telnet server from scratch is too much
work. That eliminated this approach.

The interface between a debugger and a debugee is usually quite simple, and the other approach
where the debugger runs in the remote machine with just a small nub in the debugee looked
promising. The debugger must be able to fetch and store memory locations in the debugee, and tell
it to stop and go. In addition there must be conventions for saving and restoring the debugee’s
state, and interrupting (manually and by breakpoints) and resuming. Since there is not always
network software present in our machines and because of our dislike of omnipotent operating
systems, it is not possible to force a remote machine into the debugger without its consent, so that
eliminates the stop command. This approach greatly reduces the amount of mechanism in the
remote machine - it is possible to write a server which implements Fetch, Store and Go in a few
hundred instructions. The prospect of including such a debug nub in boot files and then being able
to symbolically debug them with Swat convinced me that this was the way to go.

How Swat does it

TeleSwat Protocol 2

Swat contains a very simple Pup Level 0 Ethernet driver, a Level 1 Raw Pup dispatcher, and a
Level 2 TeleSwat User and Server. The ^Z command specifies the address space which Swat peers
into: any bank of memory, or any file created by OutLd (usually, of course, this is Swatee), or any
host in the internet, in which case Swat becomes a TeleSwat user and the remote host is assumed to
implement the server half of this protocol.

The $$^Y command makes Swat a TeleSwat server: it then ignores the keyboard and answers Fetch,
Store and Go packets from the net. If the target address space is set to Swatee using the ^Z
command before making it a server, then things work as you would expect, except remotely. If the
server’s target address space is set to bank 0, the user Swat will be examining the server Swat’s
running core image (in principle the server’s target address space could even be another host...).
Servers other than Swat are not expected to be this fancy; the address space which the server
references on behalf of the user is outside of this protocol.

The TeleSwat user is where the debugger logic is running and most of the Swat in the server is not
being used. A boot file, which usually doesn’t hook up to the local disk and therefore can’t call
Swat, can contain a tiny debug nub which implements the server half of the TeleSwat protocol and
which gets control when the program tries to call Swat. In this case Fetch and Store requests go to
the running core image.

The Protocol

The protocol is designed to minimize work for the server, placing the burden on the user. The
server is completely passive: it only does something in response to a command from a TeleSwat
user, and the only packets it generates are acknowledgements. Duplicate suppression, retransmission
of lost packets, etc is the responsibility of the user. The protocol is connectionless: except for the
Go command, the server is not required to maintain any state from one packet to the next.

There are three commands and five packet types. The user should employ the Pup ID as a packet
sequence number for duplicate suppression. To respond to a request, the server need only set the
type to ’ack’, exchange the source and destination ports, append the requested information if any,
and send the Pup back to its physical source (note that the server doesn’t have to worry about
routing).

In Fetch and Store commands, the user may optionally request that the server send back a block of
words surrounding the word being fetched or stored. The server may ignore this and only send
back the requested word, but if it complies, the user can then implement a cache and reduce the
number of packets it generates. When the machines are directly connected via an Ethernet, the
cache doesn’t buy much, but when they are separated by a 9.6 KB hop, it wins big. I have
experimentally determined that the optimum block size is about 16 or 32 words; Swat asks for 32
word blocks. The size of the surrounding block of memory requested by the user can be any power
of two up to 256; the server may choose to send a block of a different size (for example: the server
may have a small packet buffer which can hold a block of up to 32 words; if the user requests a
256 word block the server may respond with a 32 word block). The base address of a block is the
address of the fetch or store command which the ack packet is acknowledging ANDed with the
negative block size in the ack packet .

The Go command involves a 3-way hand-shake to protect against lost acknowledgements. The
problem is similar to closing a connection. The user says Go; if the packet is lost, no ack comes
back and the user retransmits. If the ack is lost, the user also retransmits since he can’t distinguish
this from having the Go command clobbered. If the server resumes the Swatee as soon as it
receives a Go, but its ack is lost, the user will be unsure of whether the server heard it, since the
server has stopped listening and isn’t around to retransmit acks. So when the server receives a Go
command, it acknowledges it and then dallies for up to 10 seconds, so that it can retransmit a lost
ack. When the user gets the ack, it sends a GoReply packet (the third packet in the hand-shake
sequence). If the server gets this and the previous packet was a Go, it stops dallying and resumes
the Swatee. If it gets any other command, it abandons the Go command. If the GoReply
command is lost, the server dallies for 10 seconds and then resumes the Swatee. The Pup ID of a

TeleSwat Protocol 3

GoReply packet should be one greater than the previous Go packet.

Details

All numbers are octal. The well known TeleSwat server socket is 60. For this description (and
historical reasons) the data words and bytes in a Pup are numbered from one, not zero.

Store (user to server)

Pup Type: 200
Pup ID: arbitrary (server sends it back in the ack)
Pup Contents: the first data word of the packet contains the address of the word to be
stored into. The second data word is the value to store. If the third data word is non-zero,
then the user is requesting the server to send a block of that many words surrounding the
address specified in word 1. The block should reflect the result of the store.

Ack: The first data word of the ack is the address of a word in the debugee. The second
data word is ignored. If the third word is non-zero, then a block of that many words of the
debugee begins in the fourth data word. The base address of the block is (word 1) AND -
(word 3). Note that the server doesn’t have to send a block, and may choose to send a
block of a different size, usually smaller.

Fetch (user to server)

Pup Type: 201
Pup ID: arbitrary (server sends it back in the ack)
Pup Contents: the first data word is the address to fetch. The second data word is ignored.
If the third data word is non-zero, it is a request for a block of that many words as in the
Store command.

Ack: The first data word is the requested address. The second data word is the contents of
that address. If the third data word is non-zero, then the interpretation is as for the Store
command.

Go (user to server)

Pup Type 202
Pup ID: arbitrary (server sends it back in the ack)
Pup Contents: none

Ack: no contents

GoReply (user to server)

Pup Type: 203
Pup ID: the ID of a previous Go command plus one
Pup Contents: none

Not acknowledged

Acknowledgement (server to user)

Pup Type: 204
Pup ID: same as corresponding request
Pup Contents: See descriptions above.

TeleSwat Protocol 4

Caution : the length of the data portion of a Fetch or Store packet can be as little as 2 (fetch) or 4
(store) bytes, in which case word 3 (block length) is meaningless. Similarly for acks: if the length is
less than 6 bytes, no block follows.

Revision History

December 11, 1978: first release.

December 20, 1978: the second data word in a Store ack is unspecified.

