
Copyright Xerox Corporation 1979

Inter-Office Memorandum

To Communication Protocols Date July 2, 1978

From Ed Taft Location Palo Alto

Subject State Machine for Organization PARC/CSL
Rendezvous/Termination Protocol

XEROX

Filed on: [Maxc1]<Pup>RTPStates.press

This is a revision of Pup Connection State Diagram, dated October 4, 1975. Only minor changes
have been made.

The attached diagram purports to illustrate Tenex’s management of Pup connections according to
the Rendezvous/Termination Protocol. While some aspects of this diagram are peculiar to the
Tenex implementation, we are presenting it as a model for implementation of the protocol on other
machines. Familiarity with Pup Specifications is assumed, and Implementation of Pup in Tenex
might be of some help.

Pup connections are controlled by a Finite State Machine (FSM) consisting of states, events, actions,
and transitions. At any given moment, a port is in some state, indicated by one of the labelled
circles. Leading out of each state are one or more arcs, each labelled with one or more events and
(optionally) an action. For example, extending down and to the right from the Closed state is an arc
leading to the RFC Out state and labelled "OPENFC, Send RFC". This means that if the port is in
the Closed state and event OPENFC occurs, the action Send RFC is performed and the port’s state is
changed to RFC Out.

If an event occurs and no path out of the current state is labelled with that event, we assume that a
protocol violation or similar error has occurred. Such events give rise to no action and cause the
state to loop back to itself.

Before going into detail, we should note that Tenex implements only a special case of the
Rendezvous Protocol, namely that in which the local Rendezvous Port and Connection Port are the
same. This topic is elaborated upon in the memo Implementation of Pup in Tenex.

Events

There are three classes of events that potentially cause changes to a port’s state. Events may be
initiated by operations performed on the port by the local process (OPENF, CLOSF), by receipt of
a Rendezvous/Termination Protocol Pup from the appropriate foreign port, or by a timeout. These
events will now be described in some detail.

OPENF is the name of the Tenex JSYS used to open a file. In the case of an OPENF applied to
device PUP:, the OPENF may be executed in one of three modes, corresponding to the events
OPENFC, OPENFL, and OPENFN.

The OPENFC operation is used when the local process desires to actively initiate a connection with

State Machine for Rendezvous/Termination Protocol 2

a specific foreign port, while the OPENFL operation puts the port in a passive, Listening state for
the purpose of accepting incoming requests from other ports. Note that a successful rendezvous
requires that one party "listen" while the other "connects".

The OPENFN operation is a means by which a BSP port may be placed immediately in the Open
state without Tenex performing a rendezvous. Obviously, it is assumed that the process has already
performed a rendezvous by some other means. This is the mechanism by means of which servers may
implement separate Rendezvous and Connection ports.

CLOSFN is the normal means by which the local process requests that a connection be terminated,
while CLOSFT requests an abnormal termination. In the Tenex implementation, either operation
may be initiated by the CLOSF JSYS, which generates a CLOSFN event normally but a CLOSFT
event if a timeout error has occurred (i.e. no activity has taken place for a long time despite
repeated probing of the foreign port).

The events RFC rec’d, End rec’d, End Reply rec’d, and Abort rec’d are triggered by receipt of Pups
of those respective types. An incoming Pup of any of the latter three types must (a) have a
Destination Port exactly matching the local port, (b) have a Source Port exactly matching the foreign
port to which the connection has been established, and (c) have a Pup ID equal to the Connection
ID (established by the initiating RFC). If these conditions do not hold, the Pup is discarded
without generating an event. In the case of an RFC, the conditions checked depend on the current
state, and the action performed depends on parameters obtained from the incoming RFC. This will
be described later on.

Whenever a port enters a state (even if it is the state it was in before), a timer is initialized to a
fairly short interval (on the order of a second unless the state being entered is Dally, in which case
the interval should be somewhat longer, say 5 to 10 seconds). If this interval elapses, a Timeout
event is generated. The Timeout event may cause Pups to be retransmitted (RFC Out, End Out),
and is also used to force termination of the Dally state. In other states, the Timeout event is
ignored. The timer used to generate this event is different from the one used to detect long-term
inactivity. That one is typically on the order of several minutes; its expiration does not itself
generate an event but rather signals an error to the process, which may then choose to perform a
CLOSFT to abort the connection.

Actions

The actions Send RFC1, Send RFC2, and Send RFC3 all cause an RFC Pup to be transmitted;
however, the RFC’s parameters are set up in a different manner for the three cases, and there are
some differing auxiliary actions performed as well.

The action Send RFC1 is performed when the local port is taking the initiative in establishing the
connection. In this case, the RFC’s Source Port and Connection Port fields are set to the local port
address; the Destination Port is set to the desired foreign Rendezvous Port, and the Pup ID (i.e.
the Connection ID) is chosen locally by some suitable means (e.g. reading a real-time clock). Note
that the same Pup ID should be used for any retransmission of the RFC as was used for the initial RFC.

Send RFC2 is the action performed when the local port is in the Listening state and an RFC is
received which passes through whatever address filtering has been specified (generally it is
completely wildcard). In this case, the Connection ID and foreign Connection Port are gotten from
the incoming RFC. The answering RFC is then generated by exchanging the Pup Source and
Destination and supplying the local port address as the Connection Port.

Send RFC3 is the action performed when an RFC is received while the state is Open or End Out
(meaning that we believe the connection has been fully established but the foreign process has not
yet seen our answering RFC). In this case, the incoming RFC is accepted only if all the following
conditions hold: (a) the port was previously in the Listening state; (b) the Connection Port is
exactly the same as the foreign Connection Port previously remembered (in action Send RFC2); and

State Machine for Rendezvous/Termination Protocol 3

(c) the Connection ID is the same as the ID already established for the connection. If these
conditions are satisfied, the answering RFC is generated as in the action Send RFC2. Requirement (a)

is important, since if we were to reply to an RFC after having been the initiator of a connection, receipt of a delayed
duplicate RFC could result in both parties bouncing the RFC back and forth between them indefinitely. This memory of
"having been listening" should really be represented by other states in the FSM (duplicates of Open and End Out), but
we have not done so in the interest of avoiding excessive clutter.

The action Open Connection is performed only for a port in the RFC Out state when an answering
RFC is received. The RFC should not be accepted unless the Source and Destination Port fields
(reversed) and the Pup ID match the corresponding fields of the RFC we sent previously (by action
Send RFC1). The only operation performed by this action is to remember the foreign Connection
Port contained in the incoming RFC.

The actions Send End, Send End Reply and Send Abort are self-explanatory. Each of these is
constructed using the local and foreign Connection Ports and the Connection ID for the Source
Port, Destination Port, and Pup ID, respectively.

Miscellaneous

The FSM just described deals only with the Rendezvous/Termination Protocol and not with the
actual transfer of data by means of the Byte Stream Protocol (or, possibly, some alternative
protocol). However, this protocol interacts with BSP in two important ways.

First, BSP operations should be performed only when the connection state is Open, End In, or End
Out. Furthermore, the local process should not be permitted to generate more output when the
state is End Out, and should be given an end-of-file indication upon exhausting the input stream
and finding the state to be End In. Incoming Acknowledgments should be ignored and no Datas or
ADatas should be transmitted (or even retransmitted) when the state is End Out, and incoming Datas
and ADatas should be ignored and no Acknowledgments transmitted when End In.

Second, the CLOSFN event must not be generated until all outgoing data has been successfully
transmitted and acknowledged. This ensures clean termination of the outgoing byte stream before
sending either an End or an End Reply, as required by the protocol.

The Abort state is included in the FSM purely as a means by which the local process may discover
that the connection has been aborted by the foreign process. In most other respects, this state is
equivalent to Closed, and the transition from Abort to Closed generates no action.

Summary

The following table enumerates all states, events, and actions in the FSM.

States Events Actions

Closed OPENFC Send RFC1
Listening OPENFL Send RFC2
RFC Out OPENFN Send RFC3
Open CLOSFN Open Connection
End In CLOSFT Send End
End Out RFC rec’d Send End Reply
Dally End rec’d Send Abort
Abort End Reply rec’d

Abort rec’d
Timeout

r rr

rrr

r

rr

rrr

rr

q

q

q
r

<
r

>

>

<

<

Closed

Listening RFC Out

Open

End OutEnd In

Dally

Abort

OPENFL OPENFC

Send RFC

Timeout
Send RFC 1

1

CLOSF

Send
Abort

OPENFNCLOSF

RFC rec’d

Send RFC 2

RFC rec’d

Open Conn

Abort rec’d

Abort rec’dEnd rec’d

CLOSFN

Send End

End Reply rec’d

CLOSFT>

r
Timeout
Send End

RFC rec’d
Send RFC 3

Abort
rec’d

Send EndReply

Send EndReply

CLOSFN

Send EndReply

CLOSFT

Send
Abort

Abort
rec’d

EndReply rec’d or

Timeout or CLOSF T End rec’d
Send EndReply

rec’d
Abort

CLOSF

<
<

r

q

q

q

>

r

q

Send
Abort

q

<

3Send RFC
RFC rec’d

Rendezvous/Termination State Diagram

RTPStates.sil

End rec’d

r

End rec’d

