
PDP-11/34 Ethernet Software

BY Gregory L. Thomas

September 6, 1979

Filed on: [MAXC]<ASDSoftware>PDP-Software.press

XEROX
XBS / ADVANCED SYSTEMS DEPARTMENT
701 Aviation Boulevard / El Segundo / California 90245

Copyright Xerox Corporation 1979
2

PDP-11/34 Ethernet Software
The software which is provided to support the Ethernet hardware consists of five
distinct levels:

Services --- This is a collection of routines for memory allocation, queuing, timing,
tasking, and moving data.

PUP Level 0 --- These routines provide the user’s interface to the Ethernet hardware.
They output and input PUP’s to and from queues and handle interrupts.

PUP Level 1 --- The routines at this level provide for building PUP’s, calculating
checksums, routing via gateways, decommutating to sockets, socket management, and
PUP validity checking.

EFTP Protocol --- A single-ACK-per-packet reliable protocol is provided in this
package along with mechanisms for transferring data to and from packets. This
protocol is compatible with EFTP on the Alto.

Applications Programs --- Two programs are provided. The first is a test routine
which tests the correct operation of the hardware and software by forwarding a PUP
from one host to another. The second is a file transfer routine (usable under RT-11
only) which allows for the transfer of files between PDP-11’s and Altos.

Contxt

PUP Level 1 Pup1i

Applications Programs

Pup1OC Pup1b PupRte PupDG

EFTP Protocol

PUP Level 0

Services

PupTst EftpDr

EFTP

Pup0b Pup0a

Alloc Queue Timer OSA

Copyright Xerox Corporation 1979
3

The Ethernet software was written to be run in one of three modes: standalone,
under RT-11, or under RSX-11M. In order to accomplish this it was necessary to
provide multiple versions of those routines which access the hardware or make
monitor calls. In addition, RSX-11M loadable drivers are provided with the
software.

The PDP-11 Ethernet software is composed of and was generated from the following
Alto packages:

EFTP Protocol
PUP Levels 1 & 0
Context
Queue
Timer

All of these packages are documented in a manual entitled "Alto Software Packages"
which is stored in two sections at:

[MAXC]<ALTODOCS>PACKAGES1.PRESS
[MAXC]<ALTODOCS>PACKAGES2.PRESS

In addition, the modules "OSA", which contains some of the routines and functions
of the Alto operating system, and "Alloc" are documented in the "Alto Operating
System Reference Manual" at:

[MAXC]<ALTODOCS>OS.PRESS

All Alto BCPL code was syntactically modified to conform to the requirements and
limitations of the PDP-11 DOS compiler, but is otherwise unchanged. The BCPL
compiler generated MACRO-11 source code with the name *.PAL. All assembly
language code was rewritten in MACRO-11 and given the name *.MAC, *.RT, or
*.RSX. Because the code is virtually unchanged from the Alto implementation, the
Alto documentation is totally definitive and trustworthy with two exceptions:

(1) Because of a PDP-11 BCPL limitation, defaulted arguments must be set to
zero (rather than omitted).
(2) Timer increments were changed from .01 seconds to .1 seconds because of
the resolution available from a 60-cycle clock.

The module OSA.*, which simulates the Alto operating system, contains the entry
point for the program and sets up memory areas for the allocation of stacks and
dynamic memory pools. It also provides procedures to increment the variable
BINCLK every 100 milliseconds. These two functions must be modified as a
function of the operating system and the hardware clocks available to the system.

The module PUPTST.* contains a test routine which will forward a pup from one
host to another using EFTP protocol. The destination host is predefined as being
344#. Two Altos using EFTP.RUN can be used to perform this test.

Copyright Xerox Corporation 1979
4

Source File Information

The source code is available in three forms: (1) as a dump file on a file server, (2) on
an RT-11 floppy, and (3) on an RSX-11M floppy.

The dump file is located at [MAXC]<ASDSoftware>PDP-Ethernet.dm and consists of
the following files:

DESCRIPTION BCPL MACRO11 COMMENTS

Applications DLIB .HDR
 Programs PUPTST.BPL PUPTST.PAL

EFTPDR.BPL EFTPDR.PAL
EFTPSB.MAC RT-11 Subroutine for EFTPDR

EFTP Protocol EFTP .HDR
EFTP .BPL EFTP .PAL

PUP Level 1 LEVEL1.HDR
PUP1I .BPL PUP1I .PAL
PUP1OC.BPL PUP1OC.PAL
PUP1B .BPL PUP1B .PAL
PUPRTE.BPL PUPRTE.PAL
PUPDG .BPL PUPDG .PAL

PUP Level 0 LEVEL0.HDR
PUP0B .BPL PUP0B .PAL

PUP0A .MAC Standalone or RT-11
PUP0A .RSX RSX-11M

Services PUPLIB.HDR
ALLOC .BPL ALLOC .PAL

QUEUE .MAC Standalone or RT-11
QUEUE .RSX RSX-11M
TIMER .MAC
CONTXT.MAC
OSA .MAC Standalone
OSA .RT RT-11
OSA .RSX RSX-11M

I/O Drivers ENDRV .RSX RSX-11M
ENTAB .RSX RSX-11M

Copyright Xerox Corporation 1979
5

The RT-11 floppy consists of the following files:

DESCRIPTION BCPL, etc. MACRO11 COMMENTS

EFTP Run Module EFTP .SAV Executable Load Module
EFTP .COM LINK Command File

Applications DLIB .HDR
 Programs PUPTST.BPL PUPTST.PAL

EFTPDR.BPL EFTPDR.PAL
EFTPSB.MAC RT-11 Subroutine for EFTPDR

EFTP Protocol EFTP .HDR
EFTP .BPL EFTP .PAL

PUP Level 1 LEVEL1.HDR
PUP1I .BPL PUP1I .PAL
PUP1OC.BPL PUP1OC.PAL
PUP1B .BPL PUP1B .PAL
PUPRTE.BPL PUPRTE.PAL
PUPDG .BPL PUPDG .PAL

PUP Level 0 LEVEL0.HDR
PUP0B .BPL PUP0B .PAL

PUP0A .MAC

Services PUPLIB.HDR
ALLOC .BPL ALLOC .PAL

QUEUE .MAC
TIMER .MAC
CONTXT.MAC
OSA .RT

Copyright Xerox Corporation 1979
6

The RSX-11M floppy consists of the following files:

DESCRIPTION BCPL, etc. MACRO11 COMMENTS

EFTP Run Module EFTP .TSK Executable Load Module
EFTP .COM LINK Command File

Applications DLIB .HDR
 Programs PUPTST.BPL PUPTST.PAL

EFTP Protocol EFTP .HDR
EFTP .BPL EFTP .PAL

PUP Level 1 LEVEL1.HDR
PUP1I .BPL PUP1I .PAL
PUP1OC.BPL PUP1OC.PAL
PUP1B .BPL PUP1B .PAL
PUPRTE.BPL PUPRTE.PAL
PUPDG .BPL PUPDG .PAL

PUP Level 0 LEVEL0.HDR
PUP0B .BPL PUP0B .PAL

PUP0A .RSX

Services PUPLIB.HDR
ALLOC .BPL ALLOC .PAL

QUEUE .RSX
TIMER .MAC
CONTXT.MAC
OSA .RSX

I/O Drivers EN .TSK Loadable Driver
EN .COM LINK Command File

ENDRV .RSX
ENTAB .RSX

Copyright Xerox Corporation 1979
7

BCPL System Information

1. Register Allocation

The BCPL stack register is general register zero, the system stack register (the SP)
and the program counter(the PC) are necesarily registers six and seven. On function
entry registers one to four are used to pass the first four arguments, on function
return register one holds any result. The only use of the system stack by the BCPL
system is on function entry to hold temporarily the return link.

2. BCPL Stack Arrangement

As noted the runtime stack grows down store, and is allocated as shown.

 HI store LO store
 stack ptr
 |
 -----------------------------------|-----------------
 | | | old frame | | | current frame
 ------------^-^------------------^-^-----------------
 | | | |
 debug| debug|
 | |
 previous current
 routine routine
 link link

The ’savespace-size’ holding the static links of function entry is of size two, one of
which is used for the code address linking, and hence also the previous frame size,
and the other for debugging information or for use with the Intcode Interpreter.

Vectors are arranged to run up store, according to the BCPL definition. However
the "vector" of arguments to a routine does not follow the definition - it grows down
store!

3. Global Vector Linking

The Global Vector is known at link time as the Named Csect ’GLOBAL’, linking of
BCPL programs with this Csect is automatic. At the machine code level the
conventional mechanism of accessing this Csect is by assigning a variable G to the
address of global zero and offsetting from this address. Thus:

 .CSECT GLOBAL ;enter Csect Global
 G=. ;G = address of global zero
 .=G+101.+101. ;at global one hundred and one
 FUNC ;insert the value FUNC

Copyright Xerox Corporation 1979
8

The variable G must only be assigned to once per assembler segment.

4. Function calling Sequence

 .
 .
 JSR PC,@G+N ;calling through global N/2
 M ;frame size M+2 bytes
 .
 .

5. Function Entry Sequence

 SUB @0(SP),R0 ;standard entry code
 MOV (SP)+,-(R0) ;end of entry sequence
 MOV R0,R5 ;copy known args to the stack
 MOV R1,-(R5) ;first arg on
 MOV R2,-(R5) ;second on, etc up to four args
 .
 . ;code of the routine

6. Function Exit Sequence

 . ;code of the routine
 .
 MOV (R0)+,R5 ;result, if any, must be in R1
 ADD (R5)+,R0
 JMP (R5) ;return completed

7. BCPL Addresses

At all times it must be remembered that BCPL manipulates addresses as integers.
These integers are the addresses of consecutive sixteen bit fields in store and hence
must be word addresses. To convert a BCPL address to a machine address one must
thus convert to a byte address, which is most easily performed by a single left shift.

8. BCPL Strings

BCPL strings are vectors, considered as a sequence of bytes, the less significant half
of each word preceeding the more significant, and these pairs being treated in their
order of appearance in the vector. The value of the first byte of the string is the
number of bytes in the string, excluding itself.

