
Leaf and Sequin Protocols
Jeffrey Mogul [Stanford University/Computer Science Department]
July 23, 1982

Abstract: Leaf is a Pup-based protocol for remote random access to files. Leaf is
implemented on top of Sequin, a reliable packet protocol. This document describes
Sequin, Leaf, their interaction, the intended use of Leaf, and some implementation
details.

0. Introduction

Leaf is a protocol which allows clients to access files across networks via servers. It is distinct from
FTP in that, whereas FTP operations involve copying entire files from one place to another, Leaf
involves read and write access to selected parts of a file. Instead of copying the file, it is (possibly)
modified in place. The Leaf protocol is intended to provide some amount of security and reliability,
and to provide for some sharing of file access.

The Leaf protocol uses, as a transport mechanism, the Pup-based Sequin protocol. Sequin is a
connection-based, full-duplex, sequenced, duplicate-free, reliable packet protocol. What this means is
the two parties (a client and a server) communicating via Sequin maintain some state information
not explicitly contained in the packets to provide a system whereby every packet sent by a user of
Sequin is guaranteed to arrive exactly once at its destination. Further, packets arrive in the order
they are sent. [Note: Leaf requires a bidirectional packet stream, but not a full-duplex one.]
Sequin includes a timeout mechanism that handles the problem of crashed hosts.

1. Sequin

Sequin is a packet-based protocol; that is, users of Sequin send and receive packets. A Sequin
packet is formatted as a Pup packet, except that the PupID field of the packet is redefined to
contain four bytes of Sequin-specific information [see fig. 1.] The Sequin header bytes are:

Send Sequence - This byte starts at 0, and is incremented after every packet sent that
contains data. Control packets do not increment the sequence number.

Receive Sequence - This byte also starts at zero, and is the Send sequence number that you
are awaiting. The Send Sequence number of a control packet must match this
number in order to be processed.

Allocate - specifies the total buffering available at the reciever. This specifies how many
unacknowledged sequence numbers can be sent. To decrease the probability of
sequence errors going undetected because of wrap-around, Allocate should not
be greater than about 30. This may vary over the lifetime of a connection, so
each end should pay attention to its partner’s Allocate byte.

LEAF AND SEQUIN PROTOCOLS 2

Control - This byte can take on a number of values, indicating the packet’s functon
within the Sequin protocol:

0 = SequinData - Indicates that this packet contains data for the next higher level
protocol.

1 = SequinAck - Acknowledges a data packet without returning more data, thus
allowing the sender to release buffer space. Also acknowledges a
SequinNop.

2 = SequinNop - Used to maintain activity on a connection, to prevent a timeout.

3 = SequinRestart - Means ��retransmit everything for which you have not received an
acknowledgement.’’ Used, e.g., if a packet is received out of order.

4 = SequinCheck - A check is a request for acknowledgement, so that you can see what
your partner’s sequence numbers are. This is useful if you are
expecting a reply and either your request or your reply was dropped.
If the request was dropped, resend it. If the reply was dropped, you
must do a restart. [This is obsolete, and SequinNop should be used
instead.]

5 = SequinOpen - Opens a connection. Both sequence numbers should be reset.
This may carry data, thus it must advance the send sequence number.
This is always sent from a client to a server, and the Pup Source Socket
in the packet is the one on which the client will listen for all further
packets (i.e., the Client’s Port identifies the connection.) Unlike the
RTP protocol (which is not used with Sequin), the server does not
return a unique socket to the client. All packets from the client to the
server are directed to the server’s ��Well-known Socket.’’

6 = SequinBreak - Shuts down a connection immediately; intended to indicate that a
client is exiting now. This elicits a SequinBroken in response.

7 = SequinClose - Used to put a full-duplex connection into a ��closed’’ state, in
preparation for a SequinDestroy. [Note: obsolete].

8 = SequinClosed - Acknowledges a SequinClose.

9 = SequinDestroy - Sent to close a connection. The receiver of this should then send a
SequinDallying, and wait for a SequinQuit from the sender, or timeout
after a while.

10 = SequinDallying - Response to SequinDestroy.

11 = SequinQuit - Response to SequinDallying. Both parties go away after receiving or
sending one of these.

12 = SequinBroken - Sent to indicate that ��all is lost.’’ This is a courtesy, sent before the
world comes to an end.

Since Sequin packets contain the Allocate and Receive Sequence numbers ��piggybacked’’ on the
outgoing data, users need not send special acknowledgement packets if there is data going in the
other direction.

LEAF AND SEQUIN PROTOCOLS 3

Since the Send and Receive Sequence numbers are stored in bytes, they will wrap around fairly
often. For this reason, a heuristic of some sort is needed to determine the meaning of the
difference between sequence numbers. For an example, see Appendix A.

To avoid dire consequences related to crashed hosts, Sequin includes the notion of a timeout.
Unfortunately, this interacts somewhat with the Leaf protocol, because the Leaf protocol uses
Sequin timeouts to implement file locks. (See section 2 for more details.) If there is no activity on
a connection for a period (10 minutes for the IFS implementation), it enters the ��timed out’’ state.
In timeout out state, file locks can be broken, and, if the system is halting, connections can be
closed. (Note that Sequin locks are broken only on demand, i.e. if another user wants to use a file
while the connection is timed out.) After a further period (12 hours for the IFS), the connection is
broken and the locks are released. If the client resumes activity during the ��grace period’’,
unbroken locks are still secure.

For simple implementations of clients, the following rules help:

(1) if the Allocate byte is zero, it should be interpreted as if it were one (i.e., only one
unacknowledged packet at a time.)

(2) the receipt of ��the latest duplicate’’ is taken to be an implicit restart, thus allowing a simple
implementation to merely resend after a timeout.

2. Leaf

Leaf is based on a packet format known as a LeafOp. There may be one or many LeafOps sent in
one Sequin packet, but a LeafOp must be totally contained within one Sequin packet, and is
therefore limited by the conventional bounds on the size of the data portion of a Pup [532 bytes.]

The Well-Known Pup socket for Leaf servers is 43B. Leaf/Sequin packets are always of Pup Type
260B.

Each LeafOp begins with one word that contains a LeafOpCode, a flag indicating whether it is a
request or an answer, and the length (in bytes) of the LeafOp, inclusive of the header word. The
format is shown in figure 2. The Answer flag is set if the LeafOp is an answer, and clear if it is a
request.

File addresses within LeafOps are represented by LeafAddresses, whose format is shown in figure 3.
The fields are:

Mode - This field places some restrictions on the allowable addresses for a write operation.
It can take the values:

0 = Anywhere - No restrictions; any Leaf address is legal.

1 = NoHoles - Forbids any address such that after the completion of the write, there
will be a ��hole’’ in the resulting file, i.e., a section which has never been written.

2 = DontExtend - On a write operation which would necessitate the extension of the file,
write only as much as will fit into the unextended file. An error indication will not
be returned; however, the byte count returned in response to the write will reflect
the actual number of bytes written.

LEAF AND SEQUIN PROTOCOLS 4

When this mode is used for a read operation which attempts to read past the end
of a file, an error is not returned. For all other modes, an error is returned when
reading past the end of a file.

3 = CheckExtend - If a write operation would necessitate the extension of the file, do not
start it, and report an error.

EOF - If present in a write operation, indicates that this write establishes a new end-of-file
position. In other words, the last byte of this write is the last byte of the file. This
is useful for truncation of files.

Address - The byte offset from the front of the file; the low 16 bits are in the second
word, and the high 13 bits are right-justified in the first word. The interpretation
of this 29-bit field is somewhat host-specific, for historical reasons:

Normal Host: treat the 29-bit field as an unsigned integer. This supports files up to 512
Mbytes long.

IFS: The IFS implementation of Leaf allows negative byte addresses in files, used for
accessing the ��Leader Page’’ of a file. [This is a kludge, and should be replaced by
LeafOps that manipulates file properties.] The IFS ignores the two high order
address bits (bits <3:4> of the first word). If the address is greater than 2**26, then
it is treated as a negative address. Note that write access is only permitted to
restricted fields of the leader page (CREATE-DATE and FILE-TYPE).

Strings within LeafOps are in IfsString format; an IfsString starts with one word containing the
string length in bytes, followed by characters representing the string. Odd length strings are
followed by a garbage byte to fill out the final word. (See figure 5.)

Open files are referred to by Filehandles, which are 16-bit objects.

The LeafOps are depicted in figures 6 � n:

1 = LeafOpen
This is used to open a file for further access. Note that one may have any number of open files
under one Leaf connection. The filehandle should be 0. The LeafOpenMode (shown in figure 4)
has a lot of subfields:

Read - Indicates that the file will be read from.

Write - Indicates that the file will be written to. It is legal for both Read and Write to be
set.

Extend - Indicates that the file will be extended. In general, Extend should be equivalent to
Write.

Multiple - If set, allows ��wild card’’ filename specifications. This should be zero, since it
is currently unimplemented.

Create - Indicates that the file should be created. Operations on non-existent files will
give appropriate errors, and it is not reasonable to try to Create and Read a file
without Writing it.

LEAF AND SEQUIN PROTOCOLS 5

Explicit Version Number - This is used with the filename part of the LeafOpen. It can
take on the values: [In general, use None or Any.]

0 = None - Consider it an error if there is a version number in the filename.

1 = Old - The version number must refer to an existing version; the usual case for a
read. [Not implemented in IFS/Leaf.]

2 = NextOrOld - The version number must be that of an existing file, or else the
next available version number; the usual case for a write. [Not implemented in
IFS/Leaf.]

3 = Any - Any legal filename, with or without a version number, is allowed.

Version Number Default - Controls rules for determining the file version nmber in the
absence of an explicit version number:

0 = DontDefault - Presumably, this means that there should have been an explicit
version number.

1 = Lowest - Use the lowest extant version.

2 = Highest - Use the highest extant version (the current file).

3 = Next - Use the next version number.

Multiple Writers - When set, opens the file in ��write-share’’ mode, allowing multiple
(simultaneous) writers to a file. The only correct setting of the mode bits for
opening a file in this mode is: ��extend’’ and ��create’’ clear; ��read’’, ��write’’, and
��multiple writers’’ set. Multiple write-share opens are allowed, but they may not be
mixed with non-write-share opens. The size of a file may not be changed while it
is open in write-share mode. User processes are responsible for insuring correctness
of sequences of writes.

Note: If ��create’’ is set or the version number default is ��Next’’ (thus requesting creation of a new
version), an error will result unless the LeafOpenMode specifies nromal writing; i.e., ��write’’ is set
and ��Multiple writers’’ is not.

The rest of the LeafOpen LeafOp consists of five IfsStrings, in order, the username and password
under which the file is to be accessed, the connect-directory and password, and the filename. The
filename is with respect to the connect-directory, in the usual manner.

The answer to a LeafOpen contains the filehandle to be used for further access to the open file, and
a LeafAddress that represents the length of the file. There is one further word, which should be
ignored.

2 = LeafClose
Both LeafClose, and its expected answer, contain the filehandle of the file to be closed.

3 = LeafDelete
LeafDelete allows a file open in ��Write’’ mode (not ��Write-share’’ mode) to be deleted. The
LeafDelete LeafOp contains the filehandle of the file to be deleted; the Answer is identical, but has
the Answer bit set. [Warning: Do not try to delete a file open only for reading.]

LEAF AND SEQUIN PROTOCOLS 6

4 = LeafCloseTransaction
This is similar in all respects to LeafClose except that the specified file handle is not destroyed (and
may thus be used in further operations). In particular, the request/answer format is identical to that
for LeafCLose, except for the LeafOpCode. The effect of LeafCloseTransaction is to cause the
server to write to disk all buffered information relevant to the specified file handle, including all
outstanding writes and changes in file length. Thus, it is useful when a client wishes to insure that
changes to a file have been committed to stable storage; this is not, however, a true ��atomic
transaction.’’

LeafCloseTransaction has no effect on files opened for reading only. However, excessive use of this
operation may lead to inefficiency, since it causes cached data to be flushed.

5 = LeafTruncate
This is an obsolete operation. A file can be truncated by doing a zero-length write with the EOF
bit set in the LeafAddress.

6 = LeafRead
This is used to read from a file. The LeafOp contains the relevant filehandle, the LeafAddress of
the first byte to read, and the length (in bytes) of the data to be read. If the length of a read
cannot be contained in one LeafOp, several LeafRead answers may be returned. Each answer to a
LeafRead contains the filehandle, the LeafAddress of the first byte returned in this packet, the
number of bytes remaining to be read inclusive of those in this packet, and the data itself (filled, if
necessary, with a garbage byte.) (E.g., for a 2400(8) byte LeafRead, the lengths returned would be
2400, 1400, and 400. The maximum number of data bytes in a LeafRead Answer is 1000(8).)

7 = LeafWrite
This is used to write to a file. The LeafOp contains the filehandle, starting LeafAddress, the length
in bytes, and the data. The answer contains the filehandle, starting address, and the length (the
length actually written, in the case of DontExtend LeafAddresses). A LeafWrite must be contained
within a single Sequin packet.

8 = LeafReset
If a Leaf connection is ��Broken’’ (i.e., a lock has been broken), it must be Reset before any further
operations can take place (otherwise, these operations will return the ��BrokenLeaf’’ error code.)
The LeafReset contains a ResetHosts word which should be one of three values:

0 - Reset the connections from this host; this should not be used lightly from a multi-user
system.

1 - Reset a ��broken’’ Leaf connection. Once an error occurs on a connection, it cannot be
used until it is reset.

�1 - Reset connections from all hosts under this username; this should not be used lightly!

The rest of the LeafReset LeafOp contains two IfsStrings, the username and the password under
which the connection is to be opened. The expected response is a LeafReset Answer, whose second
word is meaningless. A LeafReset with ResetHosts = 1 on an unbroken connection is a No-op.

9 = LeafNoOp
This is obsolete.

LEAF AND SEQUIN PROTOCOLS 7

11 = LeafParams
This is used to set varous parameters for the Sequin connection; as such, it violates the ideal of a
clean separation of layers. It is a variable-length request, containing one to three data words:

MaxPupData - Sets the maximum Pup data size (in bytes) for all future Pups on this
connection; the default (and maximum) is 532; the minimum is 10.

FileTimeout - Sets the ��file lock’’ timeout in units of 5 seconds; the default is 10 minutes.
The server need not allow the lock timeout to be raised above the default value; if
this is attempted, the timeout will be set to the default, and no error will result.

ConnectionTimeout - Sets the Sequin connection timeout in units of 5 seconds; the
default is 12 hours.

A zero value for any of the parameters implies that the system default should be used.

The response to a LeafParams includes one word of data, whose purpose is currently undefined.

0 = LeafError
This LeafOp indicates that an error has occured. The LeafError LeafOp contains an error sub-code,
and echos the LeafOpCode and filehandle from the offending LeafOp. The error subcodes are:

116 IllegalLookupControl ��Multiple’’ bit set in LeafOpen mode
201 NameMalformed illegal filename
202 IllegalChar illegal character in filename
203 IllegalStar illegal use of ��*’’
204 IllegalVersion illegal version number
205 NameTooLong
206 IllegalDIFAccess not allowed to access Directory Information File
207 FileNotFound
208 AccessDenied file protection violation
209 FileBusy file already open in a conflicting way
210 DirNotFound no such directory
211 AllocExceeded disk page allocation exceeded
212 FileSystemFull
213 CreateStreamFailed probably disk error in file
214 FileAlreadyExists rename ��to’’ file already exists
215 FileUndeletable
216 Username failures from login or connect
217 Userpassword " "
218 FilesOnly " "
219 ConnectName " "
220 ConnectPassword " "
1001 BrokenLeaf file lock timeout has occured
1010 BuddingLeaf unimplemented Leaf Op
1011 BadHandle bad file handle presented
1012 LeafFileTooLong
1013 IllegalLeafTruncate
1014 AllocLeafVMem semi-fatal IFS filesystem error
1015 IllegalLeafRead
1016 IllegalLeafWrite

LEAF AND SEQUIN PROTOCOLS 8

Leaf Timeouts and Locks

Normally, Leaf allows one writer or (optionally, and) multiple readers of any given file. A file is
locked against conflicting access when it is opened, and access locks are checked upon subsequent
opens. Similarly, locks are released when files are closed, or Leaf connections are reset.

Since a locked file cannot be accessed over other connections, if a host crashes, it might be difficult
to recover. For this reason, all locks are subject to timeouts. Basically, a timeout occurs if there is
no Sequin activity over a connection during a specified period. This means, among other things,
that if more than one file is open under one connection, and if even one file is being accessed often
enough to prevent a Sequin timeout, then the locks on all of the open files will remain secure, even
if no activity occurs on the other open files. On the other hand, if a connection enters the timed-
out state, and subsequently another connection opens a file open under this connection, the locks on
all files wll be broken. The timeouts are meant to protect against crashed connections, but not
necessarily against crashed user processes communicating via these connections.

Since a Leaf server never sends unprompted packets to a client, the client must periodically send
something to the server to indicate that it is still alive (a SequinNop will suffice.) For the same
reason, if a client accidentally times out a connection, but comes back to life after a lock has been
broken, it will receive a LeafError (code = BrokenLeaf) when it tries to do any operation; it must
do a LeafReset to clear this condition.

There is no notion in Leaf of a per-file lock; the locks are maintained on a per-Sequin connection
basis. However, it is not unreasonable to maintain just one open Leaf file on each of several
Sequin connections; this effectively gives per-file locking.

Acknowledgements

This paper is largely based on information provided by Ted Wobber, of Xerox SDD. He has
patiently answered questions and made comments on drafts of this paper, but the responsibility for
errors is entirely mine. Other people who have contributed their efforts to this paper, and
especially to its accuracy, are Brian Reid, Eric Schoen, and Mark Roberts.

LEAF AND SEQUIN PROTOCOLS 9

Appendix A: Filters on Sequin Sequence Numbers

When a Sequin packet is received, the receiver must compare the Send Sequence number in the
packet to its own Receive Sequence number, to determine if the packet is in the proper order. If
the numbers are equal, this test has an obvious form. Unfortunately, since the sequence numbers
are stored in a byte, they wrap around, and if the two numbers differ by much, it is hard to tell
what this signifies.

In the IFS implementation of Sequin, the method used is as shown below (the code is a pseudo-
Pascal that allows for sub-ranges in case statements.):

const SequenceMax =377B;

type SequenceStatus = (equal, previous, ahead, duplicate, outofrange);
SequenceNumber = 0..SequenceMax;

function SequenceCompare(x,y:SequenceNumber):SequenceStatus;
begin

case (x-y) of
0: return(equal);
-1: return(previous);
-100B..-2: return(duplicate);
1..100B: return(ahead);
else: return(outofrange);

end;
end;

begin
case SequenceCompare(IncomingSendSeq, ExpectedSendSeq) of

outofrange: (* Sequin is broken, abort connection *);
ahead: (* Request retransmission of unacked packets *);
duplicate: (* Drop packet *);
previous: (* Change Incoming control to SequinRestart,

then fall through *);
equal: (* fall through *)

end;
case SequenceCompare(IncomingRecSeq, AckedSeq) of

outofrange: (* Sequin is broken, abort connection *);
previous: (* Drop packet *);
duplicate: (* Drop packet *);
ahead: (* Release packets awaiting retransmission, fall through *);
equal: (* fall through *);

end;

AckedSeq := IncomingRecSeq;

(* process packet received *);
end.

Appendix B: Enabling the IFS Leaf Server

There are 2 steps in this process. The first is to invoke IFS with the /L switch. This does not
enable Leaf, but an IFS started in this manner should display an ��L’’ after its version number. The
second step is to chat to the IFS and issue an ��Enable’’ command for Leaf. If Leaf is enabled, the
��statistics (for) servers’’ command will show statistics for it.

Two 8-bit bytes

< >

Destination

Port

Source

Port

Pup

Header

(20 bytes)

Pup Length

Transport Control Pup Type

Destination Network Destination Host

Destination Socket

Source Network Source Host

Source Socket

Contents

Possible
Garbage Byte

Pup Checksum

(0 to 532 bytes)

Allocate

Control

Recieve Sequence

Send Sequence

Sequin
Overhead

(PupID field)

Figure 1: The format of a Sequin Packet

Length in bytes

Possible Garbage Byte

Data bytes

AnswerLeaf OpCode Length of LeafOp in bytes

0 4 5 6 15

15 011 10 9

Figure 2: Format of first word of a LeafOp

First word

Second word

Mode EOF High bits of byte address in file

Low bits of byte address in file

15

14 13 12 0

0

0

15

1 2 3 15

15

Figure 3: Format of LeafAddress

Read Write Extend Multiple Create
Explicit
Version
Number

Version
Number
Default

Not
Used

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 15

Figure 4: Format of LeafOpenMode

UnusedMultiple
Writers

Figure 5: Format of an IFSstring

Length in bytes

Possible Garbage Byte

Data bytes

Figure 5: format of an IfsString

LeafReset = 8

ResetHosts

UserName

Password

Figure 6: Format of a LeafReset

0 LeafReset = 8 1

Not Used

Figure 6a: Format of a LeafReset Answer

LeafOpen = 1

FileHandle = 0

LeafOpenMode

UserName

UserPassword

ConnectName

ConnectPassword

Figure 7: Format of a LeafOpen

0 LeafOpen = 1 1

FileHandle

File Length

Ignore

Figure 8: Format of a LeafOpen Answer

LeafClose = 2 0

FileHandle FileHandle

LeafClose = 2 1

Figure 9: Format of a LeafClose Figure 10: Format of a LeafClose Answer

LeafError = 0

Error Subcode

Error LeafOpCode

Error FileHandle

Figure 11: Format of a LeafError

File Name

0LeafRead = 6

FileHandle

LeafAddress

Length in bytes Length in bytes

LeafAddress

FileHandle

LeafRead = 6 1

Data

Possible Garbage
Byte

Figure 13: Format of a LeafRead AnswerFigure 12: Format of a LeafRead

Byte
Possible Garbage

Data

FileHandle

LeafAddress

Length in bytes Length in bytes

LeafAddress

FileHandle

LeafWrite = 7 0 LeafWrite = 7 1b

Figure 14: Format of a LeafWrite Figure 15: Format of a LeafWrite Answer

LeafParams = 11

FileLockTimeout (opt.)

ConnectionTimeout (opt.)

LeafParams = 11 1

(Undefined)

0

MaxPupDataLength

Figure 16: Format of a LeafParams

Figure 17: Format of a LeafParams Answer

