
CSL Notebook Entry

To: DoradoUsers, CedarImplementors Date: January 19, 1981

From: Ed Taft Location: PARC/CSL

Subject: Mesa opcode execution times File: [Ivy]<CSL-Notebook>80CSLN-YYYY
on the Dorado

XEROX

Attributes: technical, Cedar, Dorado, Mesa

Abstract: This memo tabulates the execution time of all common Mesa opcodes on the Dorado.
Possible future changes likely to affect these timings are also summarized.

The execution time on the Dorado for all common Mesa opcodes is presented in the table below.
This information is intended to be useful to compiler writers in deciding about code sequences to be
generated by the Mesa compiler for Cedar. It may also be of interest to others, e.g., in assessing the
relative costs of operations on short versus long data values.

The information here is for the PrincOps (Pilot, as opposed to Alto) implementation of the Mesa
instruction set. At present, only Mesa 6.0 opcodes are described; this memo will be revised as
timing information becomes available on new opcodes implemented for Cedar.

Following the opcode table are some general comments on the timings, along with brief descriptions
of possible future changes that are likely to have important effects on performance.

Opcode timings

The timings are expressed in terms of microinstruction execution cycles; with current Dorado clock
settings, 1 cycle = 64 nanoseconds. (So, to convert to microseconds, divide the timings by 16.)

The timings include all unavoidable delays due to memory timing and IFU restart latency, but do
not include variable delays due to cache misses, IFU pipeline starvation, and the like; measurements
have shown that these degrade performance only a small amount [Clark, et al., 1981; Lampson, et
al., 1981]. Nor do the timings account for I/O overhead; but this is typically less than 10 percent
(including Alto-compatible display), and in any event will affect all opcodes proportionally.

In the opcode names, ��*’’ stands for a digit denoting an encoded constant; the name thereby refers
to a family of related opcodes. The comments generally specify the conditions under which the
timings apply.

Opcode(s) Timing Comments

ADD �2

ALLOC 10 Ordinary case (no trap, AV[fsi] non-empty).

AND �2

ASSOC 103 Minimum (more if many dirty cache entries)

BCAST 71 Typical minimum (assuming 1 process awakened, no process switch).

BITBLT 86+height*(35+5*(width/16)) (Typical case)

BLT, BLTC, BLTL 27+3*count Approximate.

Mesa opcode execution times on the Dorado 2

BNDCK �4 Ordinary case (in bounds).

CATCH �1

CKSUM �9+3.5*count

DADD �4

DBL �1

DCOMP �7 Approximate.

DESCB, DESCBS �4

DST 15 Minimum.

DUCOMP �6 Approximate.

DIV 42 Approximate; ordinary case (no overflow).

DSUB �4

DUP �1

DWDC �4 Ordinary case (no interrupts pending).

EFC*, EFCB 54 Ordinary case (no trap, external link is procedure)

EXCH �3

FADD 56 Typical for ��normal’’ operands.

FCOMP 27 Typical for ��normal’’ operands.

FDIV 156 Typical for ��normal’’ operands.

FIX 26 Typical for ��normal’’ operands.

FIXC 20 Typical for ��normal’’ operands.

FIXI 24 Typical for ��normal’’ operands.

FLOAT 41 Typical for ��normal’’ operands.

FMUL 104 Typical for ��normal’’ operands.

FREE �8

FSUB 57 Typical for ��normal’’ operands.

GADRB �3

GETF 101 Minimum (more if many dirty cache entries)

INC �1

IWDC �3

J*, JB �1

JEQ*, JEQB �9 if jump occurs;

�4 if jump does not occur. See general comments on conditional jumps.

JGB, JGEB 10 if jump occurs;

�5 if jump does not occur.

JIB 17 if jump index in range;

�5 if jump index out of range.

JIW 16 if jump index in range;

�5 if jump index out of range.

JLB, JLEB 10 if jump occurs;

�5 if jump does not occur.

JNE*, JNEB �9 if jump occurs;

�4 if jump does not occur.

JUGB, JUGEB �9 if jump occurs;

�4 if jump does not occur.

JULB, JULEB �9 if jump occurs;

�4 if jump does not occur.

JW 10

JZEQB, JZNEB �8 if jump occurs;

�3 if jump does not occur.

KFCB 49 Ordinary case (no trap, SD entry is procedure).

LADRB �3

LDIV 42 Approximate; ordinary case (no overflow).

Mesa opcode execution times on the Dorado 3

LFC*, LFCB 35 Ordinary case (no trap).

LG*, LGB �2

LGDB �3

LI*, LIB �1

LIN1, LINB, LINI �2

LINKB �4

LIW �3

LL*, LLB �2

LLDB �3

LLKB �7

LP �3

LST 37 Ordinary case (no trap, control link is frame).

LSTF 45 Ordinary case (no trap, control link is frame).

ME 12 Ordinary case (monitor not already locked).

MISC See description of individual MISC opcodes (ASSOC, CKSUM, FADD,
FCOMP, FDIV, FIX, FIXC, FIXI, FLOAT, FMUL, FSUB, GETF,
ROUND, ROUNDC, ROUNDI, SETF).

MRE 32 Ordinary case (monitor not already locked).

MUL 24

MXD 15 Ordinary case (no process waiting on monitor).

MXW 145 Minimum (includes one process switch).

NEG �1

NILCK �3 Ordinary case (not NIL).

NILCKL �4 Ordinary case (not NIL).

NOOP �2 Reduced to 1 if post-XFER interrupt restriction is eliminated.

NOTIFY 71 Minimum (assuming no process switch).

OR �2

PL* �2

POP �1

PORTI �6

PORTO 34 Ordinary case (no trap, control link is frame).

PUSH �1

R*, RB �2

RBL �4

RD*, RDB �4

RDBL �6

REQUEUE 63 Minimum (assuming no process switch).

RET 34 Ordinary case (no trap, return link is frame).

RF �3

RFC �4

RFL �5

RFS �6

RFSL �7

RIGP �5

RIGPL �9

RIL* �4

RILP �5

RILPL �9

ROUND 35 Typical for ��normal’’ operands.

ROUNDC 28 Typical for ��normal’’ operands.

ROUNDI 33 Typical for ��normal’’ operands.

RR �6 Typical.

Mesa opcode execution times on the Dorado 4

RSTR �5

RSTRL �6

RXGPL �9

RXLP �6

RXLPL �9

SHIFT �6 Ordinary case (ABS[shiftCount] < 16)

SETF 122 Minimum (more if many dirty cache entries)

SFC 49 Ordinary case (no trap, control link is procedure).

SG*, SGB �2

SGDB �4

SL*, SLB �2

SLDB �4

SUB �2

W*, WB �3

WBL �4

WD*, WDB �4

WDBL �5

WF �5

WFL �7

WFS �7

WFSL �9

WIGPL �9

WILP �6

WILPL �9

WR �5 Typical.

WS*, WSB �4

WSDB �5

WSF �6

WSTR �7

WSTRL �8

WXGPL �9

WXLP �6

WXLPL �9

XOR �2

General comments on timings

Simple instructions

For the most part, except for conditional jumps the simple opcodes (those with timings less than
about 10) are presently implemented as efficiently as is possible. The microcode for these opcodes
has remained relatively stable for some time.

The only potential improvement will come from use of the Dorado IFU’s instruction forwarding
feature. At the expense of control store (somewhat over 200 microinstructions), a number of
opcodes can be made one cycle faster by deferring their final operations into the next opcode, where
those operations can sometimes be overlapped with other work. In particular, all instructions whose
final operation is to fetch from memory (LL*, R*, etc.) or store into memory (SL*, W*, etc.) can be
speeded up by one cycle, though it is not always the case that the deferred operation can actually be
overlapped with other work by the next instruction.

Until recently, the Alto-Mesa emulator actually did use the instruction forwarding feature, resulting
in measured improvements of up to 8 percent. Unfortunately, instruction forwarding cannot be used
in the Pilot microcode and still remain faithful to the PrincOps. This is because the PrincOps
requires faults and traps to abort the instruction that causes them; with instruction forwarding, such

Mesa opcode execution times on the Dorado 5

exceptions are frequently not detected until emulation of the next instruction has begun. (There are
some more subtle technical problems as well.)

Most likely we will stretch the PrincOps to permit instructions to be suspended in mid-execution
and later resumed. We believe it is possible to save and restore the necessary machine-dependent
state; of course, Pilot modifications will be required to remember this state when suspending a
process that has faulted.

Conditional jumps

For the conditional jumps, the jump case is typically at least twice as costly as the non-jump case;
the costlier case is the one in which the IFU has to be restarted. The two cases can trivially be
interchanged (on a per-opcode basis) to favor the non-jump case, if dynamic execution frequency
seems to warrant this. Alternatively, two opcodes can be provided, one favoring each case; there are
undoubtedly situations (e.g., the jump that closes a FOR loop) in which the compiler could easily
decide which case is likely to be dynamically more frequent.

Additionally, the favored case of each conditional jump can be made one cycle faster, through use of
the instruction forwarding and conditional exit features of the Dorado IFU. The cost of this is
additional control store (somewhat over 100 microinstructions) and, in some cases, a restriction on
whether the jump or non-jump case is to be favored.

Process/monitor opcodes

The ME and MXD opcodes are invoked upon every entry to and exit from a monitor. Approximately
half their execution time is spent deciding whether their pointer arguments are short or long, by
inspecting the stack depth. This would be eliminated if separate short and long versions of these
opcodes were introduced (as has long been specified in the PrincOps but has never been
implemented).

Control transfers

Substantial improvements are possible in the control transfer (XFER) primitives, which are presently
rather expensive. These improvements will derive from various forms of caching of execution
contexts, for which there is some Dorado hardware support that is not presently used.

To take advantage of this will require rewriting nearly all the microcode for the control transfer
opcodes. Additionally, we will have to identify those places in Pilot that reference the cached
information (e.g., frame overhead words) and add code to dump or invalidate the cache at
appropriate times.

To gain an idea of what improvements are possible, it is worth examining the workings of the
control transfer primitives in some detail. The two most important cases are transfers to procedures
as typified by EFC*, and transfers to frames as typified by RET.

Operation Timing

EFC* (procedure transfer)

P1. Save PC in local frame, and obtain local frame pointer. �5

P2. Fetch external control link from code segment. �5

P3. Dispatch on control link tag. �3

P4. Decode procedure descriptor to obtain global frame and entry index. �8

P5. Load global frame and code base registers. �5

P6. Obtain PC for entry point and restart IFU. �5

Mesa opcode execution times on the Dorado 6

P7. Allocate new local frame. 11

P8. Set up overhead words in new local frame. �5

P9. Dispatch on exit actions, and load local frame base register. �3

P10. Push source and destination control links onto stack. �3

RET (frame transfer)

F1. Fetch return link from local frame. �2

F2. Dispatch on control link tag. �3

F3. Load global frame and code base registers. �5

F4. Obtain PC from destination frame and restart IFU. �4

F5. Dispatch on exit actions, and load local frame base register. �3

F6. Push source and destination control links onto stack. �5

F7. Free old local frame. �8

The caching strategy comes in two parts. First, the base registers and local frame overhead words
are cached in the hardware, eliminating most of P1, P8, and F1�F4, for a total of 24 cycles per
EFC*/RET pair. Second, up to four local frames are kept in the cache rather than being allocated
and freed, eliminating most of P7 and F7, for a total of 19 cycles. Of course, there are some
compensating costs arising from the need to check for cache over/underflow and other conditions
that require the cache to be invalidated.

It is worth mentioning some architectural changes that would also speed things up. First, the
compact encoding of procedure descriptors has a substantial cost (P4); a simpler encoding (probably
requiring 32 bits) would speed up procedure transfers. Second, the control links pushed onto the
stack (P10 and F6) are saved for the benefit of coroutines and nested local procedures, which are
used relatively infrequently; some way of obtaining this information only when it is needed would
be better.

Other observations

The operations performed by NILCK and BNDCK could be provided nearly free if performed as part
of the dereferencing and array access opcodes rather than as distinct opcodes.

References

[Clark, et al., 1981]
Douglas W. Clark, Butler W. Lampson, and Kenneth A. Pier, ��The Memory System of a High-
Performance Personal Computer,’’ IEEE Transactions on Computers, to appear; CSL report 81-
1.

[Lampson, et al., 1981]
Butler W. Lampson, Gene A. McDaniel, and Severo M. Ornstein, ��An Instruction Fetch Unit
for a High-Performance Personal Computer,’’ submitted for publication; CSL report 81-1.

