
DORADO

MIDAS MANUAL

24 June 1983

by

Edward R. Fiala

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA. 94304

Filed on: [Indigo]<DoradoDocs>DoradoMidas.press
Sources on: [Indigo]<DoradoSource>DoradoMidasManual.dm

This manual describes a largely machine-independent loader/debugger for microprocessors originally developed
for the Maxc2 computer and since used for the Dorado, Dolphin, and M68 microprocessors. This manual is
specialized for the Dorado version of Midas.

This manual is the property of Xerox Corporation and is to be used solely for evaluative purposes. No part
thereof may be reproduced, stored in a retrieval system, transmited, disseminated, or disclosed to others in any
form or by any means without prior written permission of Xerox.

Dorado Midas Manual Edward R. Fiala 24 June 1983 2

TABLE OF CONTENTS

 l. Introduction . 4
 2. Storage Requirements . 4
 3. Starting and Exiting from Midas . 5
 4. Midas Display and the Mouse . 6
 5. Name-Value Menus . 7
 6. Command Menu . 9
 7. Keyboard . 11
 8. Command Files . 12
 9. Syntax of Command-file Actions . 16
10. Registers and Memories Known to Midas 19
11. The IM Memory and Virtual Addresses 21
12. Registers and Memories that Contain Microinstructions 21
13. Task-Specific Registers . 24
14. BR Addressing Kludge . 24
15. STKX Kludge . 24
16. Memory System Registers and Memories 24
17. Memories and Registers Associated With the DMux 26
18. Interface Registers . 27
19. Config . 27
20. SetClk . 27
21. Reset . 28
22. Loading Programs . 30
23. Dump and Cmpr . 31
24. Brk and Unbrk . 31
25. Go, SS, Proceed, OS, and Call . 32
26. When Registers are Read/Written

Restrictions on Continuing . 33
27. Hardware Failure Reporting . 35
28. Hardware Checkout Facilities . 36
29. Parity-Error Scanning . 36
30. Testing Directly From Midas . 36
31. LDRtest . 39
32. Scope Loop Actions: Fields, RepGo, RepSS, RepT2 40
33. HWChk . 40
34. DMux Consistency Checker . 41
35. Poking: T1, T2, and T3 . 43
36. Passive Mode . 43
37. MIRdebug Feature . 45
38. Failure Diagnosis . 45
39. Baseboard Microcomputer Stuff . 45
40. Command Files Used With "RdCmds" 49
41. DMux Signal Assignments . 50
42. Hardware Read/Write Methods . 70

Dorado Midas Manual Edward R. Fiala 24 June 1983 3

LIST OF TABLES

Table l: Command Menu Actions . 10
Table 2: Command File Name-Value Actions 15
Table 3: Command File Command Actions 16
Table 4: Memories . 19
Table 5: Registers . 20
Table 6: Test Data Pattern Actions . 37
Table 7: Test Items in the Name-Value Display 38
Table 8: Other Test Actions . 39
Table 9: Command Files . 49
Table 10: Control Section DMux Signals 50
Table 11: BaseBoard DMux Signals . 52
Table 12: Processor DMux Signals . 53
Table 13: MemC DMux Signals . 56
Table 14: MemD DMux Signals . 58
Table 15: MemX DMux Signals . 60
Table 16: Disk Controller DMux Signals 64
Table 17: Ethernet Controller DMux Signals 65
Table 18: IFU DMux Signals . 66
Table 19: Display Controller DMux Signals 68
Table 20: Other DMux Stuff . 69

Figure l: Midas Display

Dorado Midas Manual Edward R. Fiala 24 June 1983 4

l. Introduction

Midas is a loader/debugger that runs on an Alto and controls its target machine remotely. It can
load/dump microprograms assembled by Micro, examine and modify storage, and test hardware in
an assortment of ways. Versions exist for Maxc2, Dorado, Dolphin, and M68 microprocessors.

Midas is coded about 95% in Bcpl and 5% in assembly language. The Maxc2 version was
implemented by E. R. Fiala and H. E. Sturgis. The Dorado, Dolphin, and M68 versions consist of
machine-independent modules implemented by E. Fiala (Overlay and LoadRAM packages
implemented by L. Deutsch and Alto microcode by E. Taft are also used) and machine-dependent
sections implemented by E. Fiala for Dorado; D. Swinehart and P. Baudelaire for M68; and D.
Charnley, C. Thacker, B. Rosen, C. Hankins, and E. Fiala for Dolphin.

An internal description of Midas is available to anyone interested in adapting Midas to a new
hardware system (see [Indigo]<DoradoDocs>MidasInternal.Press).

2 Storage Requirements

Midas requires about 500 Alto disk pages, using the following files:

Midas.Run ~350 pages
Midas.Syms ~40 pages
Midas.Errors ~8 pages Error message strings for Midas swat calls
Midas.Programs ~2 pages (Discussed below)
Midas.UserPrograms ~2 pages (Discussed below)
*.Midas ~2 pages each Command files for "RunProg" and "RdCmds" actions
*.mb Assorted micro-binary files loaded by command files
Midas.RunProg ~31 pages Built by Midas/I
Midas.Dtach ~31 pages Built by Midas/I
Midas.FixUps ~2 pages Created by Midas/I (used when loading .MB files)
Midas.Compare ~2 pages Created by Midas/I, written when "Cmpr" action fails

Dorado Midas can be obtained by loading [Indigo]<Dorado>DoradoMidasRun.Dm and
retrieving <Dorado>Midas.Programs with Ftp. You must do Midas/I to initialize Midas on your
disk after retrieving these. Subsequently, new versions of Midas can be retrieved by executing the
D1NewMidas.cm command file from the Alto Executive. Midas runs only under Alto OS
versions 17 or later.

To setup an Alto disk for use in Dorado microcode development or hardware debugging, you can
install the Alto OS on a blank disk using the long installation dialog and erase the disk. When
this finishes, fetch [Indigo]<Dorado>DoradoUnbugDisk.cm and execute this command file from
the Alto Executive; it will retrieve Midas and a number of other files that are needed when using
an Alto to control Dorado.

Dorado Midas Manual Edward R. Fiala 24 June 1983 5

3. Starting and Exiting from Midas

Midas may be started from the Alto Executive in the following ways:

midas start Midas.
midas/i initialize and fire up Midas. This is about 8 seconds slower than a

normal start. /i must be used after any Midas files move or change
because Midas keeps the FP’s (File pointers) in its saved state.
Changing any files named in Midas.Programs or Midas.UserPrograms,
changing the Alto OS, and changing files named Midas.* all require
/i.);

midas debug starts Midas and immediately reads commands from the
"Debug.Midas" command file

Dorado Midas may attach to any of up to 20 machines accessible through its Diablo Printer
interface. If only one machine is accessible, it immediately connects to it; if more than one
machine is there, it first puts up a menu of accessible serial numbers, and then connects to the
one selected by the user. After connection, subsequent actions affect only the connected machine.

Although Midas itself can deal with up to 20 machines, the hardware is presently limited to less.
It was observed that ringing on the communication cable introduced extra clocks when too many
machines were connected, so Midas couldn’t communicate reliably with target machines. The
PARC technicians presently observe a limit of about 6 machines, which seems to work. No
hardware fix is likely to be made for this problem.

Midas will seize the hardware only if the connected machine is halted; if running, Midas waits for
the machine to halt or for you to execute "Abort" or "Dtach" actions. "Dtach", equivalent to
exiting to the Executive and restarting Midas, also appears in the main command menu and in the
submenu put up by "Go", so you can start a microprogram running with "Go" on one Dorado,
then "Dtach", connect Midas to another machine, and do something else (However, if you Dtach
and later reattach to a machine, you will have lost the display configuration and address symbols,
which might be inconvenient).

Note that there are two different arrangements for the initial Midas display. For both
arrangements the left-hand display column shows the principal Dorado registers, and the middle
column shows several other items. When you initially attach to a machine, the right-hand column
will show voltage, temperature, and current readings collected by the baseboard microcomputer;
after a "RunProg" action, the right-hand column will show items used by Midas hardware testing
actions.

To exit from Midas type SHIFT-SWAT (i.e., simultaneously depress the left-hand shift key and
the right-most, lowest unmarked key); this will close any open output files prior to exit and
disconnect the Alto from the Dorado it was controlling. Note that on "Dtach" or exit, if the
Dorado was running, it will not be disturbed, but if halted, Midas first restores the hardware state
as though it were about to continue, so it will be possible later to reattach and continue a program
that was stopped at a breakpoint.

Dorado Midas Manual Edward R. Fiala 24 June 1983 6

4. Midas Display and the Mouse

The Midas display is arranged as follows:

Blank area at the top (unused);
20 lines x 3 columns of name-value menus;
Blank line;
Program and elapsed time line;
Blank line;
Two command comment lines;
Blank line;
Three lines of command menu;
Blank line;
Input text line;
Blank area a the bottom (unused).

The program line will show the Midas release date or the name of the last program loaded. The
right-most part of this line will show elapsed time during long-running actions such as "Go" or
"Test"; it shows the execution time of Midas initialization, the last command file, or the last action
at other times.

Midas uses the two comment lines to report results of actions that it executes.

When you move the mouse over a name-value menu or the command menu, the selected item (if
any) inverts black and white. Mouse actions execute when you RELEASE all mouse buttons, so
you can move the mouse with buttons depressed without causing damage. If the mouse has
moved off of the menu that was selected when the first button went down, nothing will happen
when the buttons are released.

Some menus have additional actions "underneath" the ones normally displayed which will appear
when you depress appropriate button combinations, as discused below. In other words, when you
DEPRESS buttons, the menu may change; when you RELEASE ALL BUTTONS the selected
action will get executed. On Dorado Midas, only name-value menus have actions underneath the
ones normally displayed.

Since you can neither depress a button combination simultaneously nor release the buttons
simultaneously, Midas accumulates the union of all buttons that go down. This button-union
governs the "underneath" menu displayed, if any, and is the argument passed to the action
procedure when all buttons are finally released.

Dorado Midas Manual Edward R. Fiala 24 June 1983 7

5. Name-Value Menus

A name-value menu may contain a register or memory address in the name area and its contents in
the value area. A memory address may be specified as the memory name and word number, or as
the name of an address symbol defined in a microprogram you have loaded. The address symbol
may be followed by +/- displacement. If a number (default radix 8) is examined, the memory
name is defaulted to "VM," so examining "1234" will cause "VM 1234" to be displayed.

Name-value areas are of different sizes. Smaller menus on the left are already filled in when you
fire-up Midas; others are empty. Any item can be put in any menu, but larger menus on the
right are better for items with long names or values. If an item overflows its menu, the right-most
characters of its name get truncated, then the left-most characters of its value.

To display a new item, type its name (which will appear on the input text line), move the mouse
over the name field in a name-value menu, and push-and-release the left (top) mouse button.
Memory addresses in your microprogram may optionally be followed by a displacement "+n" or
"-n"; " n" is the same as "+n". Midas will obtain the value of the item from the hardware and
display it.

If the command line is empty, the selected menu will be cleared when the button is released.

The address and data items in a name-value menu are affected by the radix and display mode for
the item, initially defaulted from a table indexed by the register or memory number. The address
offset and value radices are always identical--Midas does not allow these to be independently
specified. On Dorado, octal radix is the default for everything except the microcomputer
memories ($ABSOLUTE and $ABS), where hexadecimal is used. The user may change the radix
with the actions discussed below.

The display mode for a value may be either numeric, search, or symbolic.

Numeric mode shows the value as a sequence of numbers (in the chosen radix) separated
by blanks; this is the default for almost all items.

Search mode shows the value as an address symbol plus offset; this is illegal except for
registers or memories that normally contain pointers into some other memory (e.g., on
Dorado, search mode for TPC, TLINK, etc. shows the nearest IM address symbol less-
than-or-equal to the value plus an offset; for MEMBASE, BR address symbols are
shown; for TIOA, DEVICE address symbols are shown.). Search mode is not the default
for any memory or register because it is slightly slower than numeric mode due to
symbol table access and because more screen area is required to accommodate long
address symbols; however, you may find search mode convenient for some of the items
mentioned above.

Symbolic mode results in a special procedure being called to print the value for the item.
Symbolic mode is illegal except for the MSTAT memory and the UPTIME and
TGLITCH registers on Dorado; for these it is the default; special procedures do not exist
for any other items.

Dorado Midas Manual Edward R. Fiala 24 June 1983 8

When Midas thinks that the value in a register may have changed, it reads its value from the
hardware and updates the display; the times when Midas does this are discussed later. Names are
sometimes preceded by *, indicating that the value has changed, or by ~, indicating that Midas
was unable to read the value for some reason (e.g., the machine was running). For an item
marked with ~, the old value, which might be wrong, is displayed.

Once some register or memory address has been put into a name-value menu, various mouse
button combinations over the name or value may be used to modify the way it is displayed,
sequence through words in a memory, pretty-print the value on the comment lines, or show
address equivalences. These are summarized in the table below:

Buttons Name-field Value-field

Left Examine Change value
Middle Alternate printout Pretty-print value on comment lines
Right A+1, A-1 menu Append value to input line
Left+Middle Radix menu Radix menu
Middle+Right Fill column menu Display mode menu

When a button combination selects an alternate menu, the alternate menu will replace the
standard menu while the mouse buttons are depressed; if you release the buttons over an alternate
menu item, it will be executed; if you are outside the menu when the buttons are released, the
standard menu will be restored and nothing will happen.

The "A+1", "A-1" menu appears for memory addresses, but not for registers; these increment or
decrement the memory address in the menu, displaying the successor or predecessor. The "FillC"
menu allows you to examine successors (A+1, A+2, etc.) in the menus below the selected one;
the whole column is filled with successors, if the input text line is blank; otherwise, the input text
line is evaluated to a number N, and N lines are filled in with successors. The last address
examined is left on the input text line, so you can iterate the examine and fill column actions to
achieve scrolling.

Releasing the left button over a value stores the value of the input text (or 0 if no text typed) in
the selected register. For memories and registers whose values are displayed as several fields, the
input text must also be divided into fields; omitted fields are zeroed. Each field may consist of
numbers or memory addresses separated by +/-; expressions are evaluated using the radix for the
item.

Note: On Dolphin and Dorado, IM memory words show an absolute address with each value; it is
impossible to modify this address from Midas--the correspondence between virtual and absolute addresses
can only be established by loading a microprogram. Several other items also have read-only fields that
cannot be written, as discussed later.

Provision is made for special input evaluation based upon the register or memory; whenever the
input text cannot be evaluated as a sequence of fields, the special input procedure (if any) is
called. At the present time, special input procedures are implemented for registers and memories
that contain microinstructions (MIR, IM, IMX, IMBD, and LDR on Dorado) and for 16-bit
registers. These are discussed later.

Dorado Midas Manual Edward R. Fiala 24 June 1983 9

Releasing the middle button over a value pretty-prints the value on the command comment lines.
The alternate for registers that normally hold IM addresses is the nearest IM address tag less-equal
to the value+offset. Registers and memories that contain microinstructions may also be printed
symbolically. Other pretty-print information is detailed later.

Releasing the right button over a value item appends the text of the value to the input text line.
This is primarily used in command files to move values from one register to another or to display
a memory address that is pointed to by the value in some other register.

6. Command Menu

The command menu holds a list of actions that Midas can execute. The basic menu is modified
under some conditions. For example, the "Dump" menu item only appears after you have done a
"Ld". During execution, some actions show alternate menus.

For almost all actions in the command menu, mouse buttons are equivalent. On Dorado, the
"Go" and "SS" actions are an exception; executing one of these with the right button is
interpreted as "proceed," left button as "new go." The "DMux" action is also an exception.

Many common actions may alternatively be initated by keyboard command characters, as given in
the action table below.

Dorado Midas Manual Edward R. Fiala 24 June 1983 10

Table 1: Command Menu Actions

Input Char Menu Item Comments

Actions (potentially) available on all implementations of Midas

[File] RunProg Reset symbol table and display, then do RdCmds.
[File] RdCmds Executes command file (def. ext. ".Midas") on input text line or from

submenu.
ShowCmds Shows command file text for selected menu items.

File WrtCmds Write subsequent commands on File.
Files ;L Ld Loads .MB files (names separated by ",").
Files LdSyms Loads only addresses from .MB files.
[File] ;D Dump # Dumps compacted .MB file using the .MB file(s) of the previous load

to control what’s dumped.
[File] ;C Cmpr # Compares hardware data to that in .MB file.
Addr = Prints value of an address (illegal in com-file)
IMaddr ;B Brk Inserts break point.
[IMaddr] ;K UnBrk Removes breakpoint (default address = last break).
[IMaddr] ;G Go * Start at address (continue if nothing typed).
[IMaddr] ;P Proceed * Start at address without IOReset or control section reset (continue from

break if nothing typed).
[IMaddr] : SS Single-step at address (continue-step if nothing typed).
IMaddr) -- Call subroutine with args (e.g., "FOO(A1,A2)").

Reset Reset the machine; assorted options from a submenu.
Test Test register, memory, or other test with data pattern and item selected

from submenus.
TestAll Test everything.

IMaddr ;R RepGo * Go at address, repeatedly restart after halts.
IMaddr ;S RepSS * Repeatedly SS at address.

PEscan Scan local memories for parity errors (IMX, IFUM, RM, STK,
CACHEA, and CACHED on Dorado).

Fields For scoping.
LDRaddr LDRtest * Manually-constructed test sequences.

Virt Changes IM address interpretation to be virtual.
Abs Changes IM address interpretation to be absolute.

Actions peculiar to Dorado Midas

SetClk Set the clock speed from a submenu.
T1 Clocks MIR through t1, reads the DMux, then clocks through t2 and

restores MIR (so display shows DMux values read after t1).
T2 Clocks MIR through t2, reads the DMux, and restores MIR (so display

shows DMux values read after t2).
T3 Clocks MIR through t3, reads the DMux, then clocks through t4 and

restores MIR (so display shows DMux values read after t3).
RepT2 * Repeatedly does t2 (for scope loops).
Dtach Disconnects Midas and repeats the connection procedure.
Config Modify board configuration, cache, map, storage, and IM parameters

from submenus and adapt Midas to these.
DMux Modify display of DMux items as discussed later.

[IMaddr] OS * "Opcode step" = SS program until a halt condition occurs or an
IFUJump has been executed.

[IMaddr] SimGo * Like "Go" invoking the DMux checker after each step.
SimTest * Random instruction test using MIR and the DMux checker.
HWChk Displays submenu of tests and scope loops for hardware checkout.
Active Active, PrePassive, and Passive modes discussed later.
Update Read registers and display new values (used while passive)

* = requires preceding "TimeOut" action in command file
= requires confirmation with <cr>, "Y", or "." (or by preceding "Confirm" command in com-file)
[...] = optional input text

Dorado Midas Manual Edward R. Fiala 24 June 1983 11

Some actions in the preceding table are replaced with complementary actions after execution;
these are ShowCmds by StopShow, WrtCmds by StopWrt, Virt by Abs. The Active, PrePassive,
and Passive actions are in a "ring"; the current hardware mode is shown in the menu; bugging it
will change to the next mode. The DMux action will be displayed as "DMux", "OldDMux",
"DWrong", or "DChk" according to which DMux table is currently displayed. All of these
actions are discussed later.

General philosophy on mixing keyboard and mouse button control is that, when possible, a
command involving some typing is carried out completely at the keyboard, whereas commands
involving mouse buttons are carried out completely with the mouse.

For example, to start a microprogram at some address, you normally type an address; then you
could bug "Go" in the command menu, but probably "address;G" is more convenient because
you won’t have to lift your hand from the keyboard; ";G" are the command characters equivalent
to bugging "Go".

Many commands are executed in overlays. When these get executed, the register display will turn
off (The code for overlays resides where the display bit buffers would otherwise be.). During
loading or execution of command files, the display is turned off to make the machine run faster.

Long-running commands normally display an "Abort" menu item. When this is bugged or when
control-C is typed, the action terminates.

7. Keyboard

"=", "+", "-", "#", and "!" are legal symbol constituents in microprograms but will cause
trouble for Midas if they appear in address symbols. "=" is an action character that will
prettyprint the memory name and offset and the nearest address symbol less-than-or-equal to the
value of the string on the input text line. "+" and "-" have their usual sum and difference
meanings in evaluating input expressions. "#" (octal), "!" (decimal), and "%" (hexadecimal) may
be inserted anywhere in a number to overrule the default radix; e.g., "#123" or "123#" will
force the evaluation of the number "123" to be in octal. The default input/output radix for
almost everything on Dorado Midas is 8 (octal).

Exceptions are UPTIME and TGLITCH, which show hr:min:sec in decimal and the $ABS and
$ABSOLUTE memories, which use hexadecimal for both the address and value.

Lower case typein is converted to upper case by Midas, so avoid lower case characters in
microprogram address symbols. You should either write microprograms with the shift-lock key
depressed or assemble them with the convert-to-upper-case assembly switch.

Typing ahead is legal until the character you type would cause execution of an action. After that,
Midas will flush input and blink at you until the current action finishes.

At the end of an action, input text typed for that action is displayed on the input text line. This
text remains valid and can be used as the arg for another mouse action. However, if you type any
character (except control-A or backspace), the old input will be flushed before inserting the new
character.

Dorado Midas Manual Edward R. Fiala 24 June 1983 12

Keyboard editing characters are as follows:

control-A delete last character
backspace delete last character
control-Q clear text line
del clear text line

Other special keyboard characters are as follows:

control-C abort the current action--equivalent to bugging the "Abort" command (only defined for
actions that display "Abort")

control-Z abort all command files in progress
escape repeat previous action (special for "Test" and "TestAll")
return special following "Test" or "TestAll"
control-D turns on the display (used during command files)
control-O turns off the display (used during command files)
shift-swat exit cleanly from Midas

The interrupt characters above are ineffective during loading, dumping, or comparing, which
typically take between 2 and 20 seconds. Indefinite duration commands, such as "Go", "Test",
etc. always monitor the keyboard, so control-C can be used to terminate them.

Control-Z, control-D, and control-O are intended for use during command files. However, these
characters do not take effect until the command file executes a command such as "Go" which
monitors the keyboard. There is no way to abort a command file and give control back to Midas
safely except during a "Go" or other long-running command. This is not expected to be a
problem because commands are executed quickly.

After interrupting a "Go" with control-C or control-Z, proceeding with ";P" or ";G" will succeed
except when you have smashed the machine state by writing a register or in some other way or
have interrupted an instruction from which continuation is impossible.

Although command menu items "SS", "Go", "Brk", "UnBrk", "RepSS", and "RepGo" are
provided, the keyboard characters equivalent to these are usually more convenient.

8. Command Files

Command files (default extension ".Midas") are normally executed either by typing "Midas
filename" to the Executive or by bugging a file name in the subsidiary menus put up by
"RunProg" or "RdCmds". Alternatively, you may type a file name first, then bug one of these
actions (If you type a file name after the subsidiary menu is put up and then bug "Abort", the
command file will also be executed; it is not clear whether this is a bug or a feature.).

File names in these sub-menus are contained in the files Midas.Programs and Midas.UserPrograms, each of
which has a list of file names separated by blanks, commas, or carriage-returns. Midas.Programs is part of
the standard Midas release; Midas.UserPrograms is an optional file that a user of Midas can prepare with
his own stuff. The names must be UPPER-CASE. These lists serve two purposes: building file FP’s to
speed OpenFile, and preparing the menu items for "RunProg" and "RdCmds".

If the file name contains no extension, then hint FP’s will be built for both name.MB and
name.MIDAS and name will be put in the "RunProg" menu. (However, the hint FP’s are not
built unless the file exists, and the file name will not be put in the "RunProg" menu unless
name.MIDAS exists).

Dorado Midas Manual Edward R. Fiala 24 June 1983 13

If the name ends in "*", a quick OpenFile table entry is made for name.midas and the name
will appear in the "RdCmds" menu.

If the file name contains an extension, then it will be put in the quick OpenFile table, but won’t
appear in the "RunProg" or "RdCmds" menus.

Since Midas builds a table of file FP’s during initialization, when you edit a command file or modify a .MB
file, you should reinitialize Midas by typing "Midas/I". When you add new command files or .MB files
you should update the "Midas.UserPrograms" file appropriately and do "Midas/I".

"RdCmds" executes the actions stored in the command file; it is frequently used to modify the
display in various ways by executing command files that show collections of items that are of
interest.

"RunProg" first clears the symbol table and restores the display to its initial arrangement; then it
executes the actions in the selected command file; "RunProg" is used to completely change
contexts--to run a new microprogram, for example.

Generally, there is one "RunProg" command file for each hardware diagnostic, with the same name as the
diagnostic, e.g.:

dgbasic.mb the diagnostic;
dgbasic.midas the command file.

A command file following this convention loads the diagnostic into the microprocessor and displays various
registers of interest when the microprogram is in use.

The command-file facility is actually a (awkward and limited) programming language. The
collection of actions discussed below is being developed so that command files can monitor
diagnostic microprograms, collect and report error information on an output file, or direct the
sequence of diagnostic microprograms according to hardware failures that are observed.

For system microcode, command-files can be used to control auto-restart and failure diagnosis.

Command files can be nested with "RunProg" and "RdCmds" subject to the following
RESTRICTIONS:

(1) [Maxc2 only] "AltIO" terminates command files (i.e., upon return to Midas from AltIO the
command file will not be continued).

(2) Nesting is limited to 8 levels (a parameter that could be increased if more levels are needed).

(3) Command file names appearing in the "RdCmds" or "RunProg" menus must not duplicate
any other action names used by Midas. If this happens inadvertently, command file interpretation
will be substituted for the intended action whenever that action is executed from a command file.
Fortunately, interactive execution of the duplicated action is unaffected. Midas does not detect
this.

(4) Midas is tight on storage when running the simulator (SimGo and SimTest actions), and
available space might become exhausted. Three separate storage resources are husbanded by
Midas: stack, sysZone, and other. Some sysZone is consumed by each open file, and the
simulator puts one overlay there. If command, output, and WrtCmds files are simultaneously
open when SimTest or SimGo is executed from a command file, I think sysZone will overflow,

Dorado Midas Manual Edward R. Fiala 24 June 1983 14

but there should be enough sysZone storage for two open files plus the overlay.

Note that even when command files are nested to several levels, Midas only keeps open the
current command file, so nesting command files does not affect the storage requirement.

The simulator also steals space from the stack for one overlay, and it is conceivable that running
SimGo from a command file and then aborting from the keyboard will exhaust the stack.
However, if Midas is properly checked out, then this should not happen.

Finally, unused storage and the name-value menu bit buffers are used for the rest of the
simulator. Since this storage is consumed by file handles and name strings which you add to
Midas.Programs and Midas.UserPrograms, this storage might become too small for the simulator.
If this happens, you will fall into Swat with an "Out of storage" message when you try to run the
simulator.

(5) There are other size limits you must observe. First, the number of RdCmds and RunProg
actions you may add to the ones already in Midas.Programs is limited to about 25 (on 24 June
1983). This limit is imposed by the table storage reserved for these actions when Midas is built.
If you exceed this limit, the submenu for the "Test" action cannot be shown, and Midas will fall
into Swat during Midas/i initialization with a message indicating the number of excess actions.
The limit applies not to the number of names in Midas.Programs and Midas.UserPrograms, but
rather to the number of these names which exist on your disk. So to recover from this overflow,
you can either prune the number of names in Midas.Programs or Midas.UserPrograms, or you can
delete some of the *.Midas files from your disk.

Secondly, the list of names in the RdCmds or in the RunProg menu must not overflow command
menu space. If one of these lists overflows, Midas will fall into Swat during its Midas/i
initialization with a message telling you by how many characters you have exceeded the limit.
Here again, you recover from the overflow by either pruning names or deleting *.Midas files. Or
you can continue from the Swat call; if you continue, Midas will simply truncate the names which
won’t fit when it displays the menu.

(6) Some actions occur in command overlays where a sequence of menu items must be bugged
before the action is specified. For example, on "Test", you must specify the data pattern (e.g.,
"Random"), then a "TimeOut", and finally the register or memory to be tested (e.g., "RM"). It is
illegal to start a nested command file before the subsidiary actions are specified; if you try to do
this, Midas will give an error message.

(7) Some actions require a preceding "TimeOut" action. The command file must have two actions
after the "TimeOut" before terminating.

Dorado Midas Manual Edward R. Fiala 24 June 1983 15

A number of actions, some of which cannot be given interactively, are useful in command files.
These, not given in the table earlier, are shown below. The first table is for actions that operate
on name-value menus (A0 ... C19); the second table for command menu (X) actions.

Table 2: Command File Name-Value Actions

Text Arg Action Comments

Address Addr Button actions as discussed earlier.
Value Val Button actions as discussed earlier.

A+1 Increment memory address, as discussed earlier.
A-1 Decrement memory address, as discussed earlier.

NCols FillC Fill name-value menus beneath the one selected with consecutive addresses starting at
the address contained in the selected menu.

Oct Display address offset and value in octal.
Dec Display address offset and value in decimal.
Hex Display address offset and value in hexadecimal.
Num Display value numerically.
Sym Display value symbolically.
Search Display value as an address symbol plus offset in the appropriate memory.

Value SkipE Skip the next command if the input text evaluates equal to the contents of the
register or memory word displayed. The input text is evaluated exactly as though it
were to be stored into the register displayed in that name-value menu, so if the
value displayed has several fields, the input text must also have several fields. The
command file must have at least one more action after the SkipE.

Value SkipG Skip if input text greater than the contents of the item in the name-value menu
(unsigned compare).

Value SkipL Skip if input text less than name-value item.
Value SkipNE Skip if input text unequal to name-value item.
Value SkipLE Skip if input text less than or equal name-value item.
Value SkipGE Skip if input text greater than or equal to name-value item.

Dorado Midas Manual Edward R. Fiala 24 June 1983 16

Table 3: Command File Command Actions

Text Arg Action Comments

Octal no. Skip Skip N following actions, where N is the value of the input text. An error occurs if
the command file does not specify at least N more actions after the Skip.

.Tag Skip Skip following actions until one is encountered with the label ".Tag". An error
occurs if ".Tag" is not found.

Octal no. BackSkip
.Tag BackSkip Reset to byte 1 of the command file, then skip.
Octal no. Return Return out of current command file, then skip (".Tag" form is illegal for Return.).

DisplayOn Turn on the display, so that effects of subsequent commands can be observed. The
display is initially off for a command file. This can also be done with control-D.

DisplayOff Turn off the display. This can also be done with control-O.
Octal no. TimeOut Input text is evaluated to a 32-bit octal number of msec at which to abort the

immediately following command, if it has not finished by then. This is intended for
use before "Go" and other commands which might hang indefinitely. If the timeout
occurs, Midas will skip the command after the "Go". TimeOut also turns on the
display, necessary because the machinery which checks for timeout is only active with
the display on. Note that TimeOut is required before the actions *’ed in the table
on page 4 and is illegal before other commands; Midas will complain if you do not
use TimeOut appropriately. The command file should include at least two more
actions after the TimeOut. Command files written by WrtCmds will include
necessary TimeOuts with a default of 30000 (~12 seconds); you will generally have
to replace this default value with something more appropriate.

Confirm Supplies confirmation for the command which follows (which should be one of the
commands requiring confirmation). If you omit a confirm in a command file, the
user is queried for confirmation.

File name OpenOutput Opens an output file (default extension ".Report") on which text can be written.
File name AppendOutput Append to an output file (default extension ".Report")

CloseOutput Closes the output file.
[text] WriteMessage Writes the contents of the input text buffer on the output file. Note that if any text

follows the WriteMessage, that text up to but not including the <cr> is what gets
written. However, if <cr> immediately follows WriteMessage, then the contents of
the input text buffer left by the previous command get written. "~" is translated
into <cr> and "\" into a blank.

WriteDT Appends the current date and time to the output file.
text ShowError Displays the text arg on the command line, turns on the display if it was off, and

queries with "Abort" and "Continue" menu items. Aborting will terminate all nested
command files back to the top level.

-- DumpDisplay Writes the current display image on the output file.
text PrettyPrint Evaluates text to a memory address, register name, or memory name; writes this

name on the output file; then pretty-prints the value on the output file exactly as it
would be pretty-printed on the comment lines if the item were displayed in one of
the name-value menus and middle-buttoned.

File name WriteState Used by Midas initialization to create the Midas.Dtach and Midas.RunProg files--
users shouldn’t use this action.

9. Syntax of Command-file Actions

The syntax of a command-file action is as follows:

[["."<tag>]$" "]<buttons>$" "<menu>$" "<action>[$" "<text>][";"<comment>]<cr>

where the "[]" denote that the ".tag", input text, and ";comment" are optional. $" " denotes a
sequence of one or more blanks or tabs (any characters with Ascii codes less than 408 except
carriage return are equivalent to blanks). The sequence of characters excluding the comment must
not exceed 99 characters.

Dorado Midas Manual Edward R. Fiala 24 June 1983 17

If the first character on the line is a ".", then the characters after that are a label or tag which may
be used as the argument for the "Skip" or "BackSkip" actions given in the table earlier.

<buttons> may be any combination of the letters "L" (left-button), "M" (middle-button), and
"R" (right-button); these are the buttons released to execute the action. These may appear in any
order.

<menu> is the menu name in which the action is executed ("X" for the command menu,
"A0"..."A19", "B0"..."B19", and "C0"..."C19" for name-value menus).

<action> is the text name for one of the actions (upper/lower case must match the definition).

<text> is the text typed on the command line, which may be anything except a ";".

Note that if a single blank terminates <action> and if no input text argument is given, then input text left-
over from the preceding action will be used. This allows text from a right-button action over a value to be
used in a following action (e.g., in WriteMessage or to store the value into another reigster). However, one
or more extra blanks will reset the input text, so the action is executed with null input text.

";" begins a comment, which may be omitted.

<cr> (carriage-return) terminates the action.

I think Midas will report all command file syntax errors intelligibly. Error handling works
approximately as follows: Whenever Midas is watching the keyboard (which only happens during
long-running actions such as "Go" or "Test"), control-Z will abort the current and all nested
command files; the ShowError action in a command file also aborts all command files. If Midas
detects an error while executing an action and queries, then "Continue" will abort the action in
progress and continue with the next command file action. "Abort" will terminate the current
command file, but not higher command files. However, a syntax error in the command file itself
always aborts the current command file.

To find out what text should be put in command files, you can bug "ShowCmds" in the
command menu. This will cause the command file text for each command to be displayed on the
command comment line as the mouse selects it (You don’t have to execute the command to see
the equivalent text.). This text is complete except that the mouse button which executes the
command isn’t shown unless you depress the mouse button. To terminate "ShowCmds", bug
"StopShow" (which appears only when "ShowCmds" is in progress.).

You can prepare a command file (default extension ".Midas") by typing a file name and bugging
"WrtCmds". This causes text for subsequent commands to be put on the file. When you are
done with this, bug "StopWrt" to close the file. ("StopWrt" is in the command menu only when
a command file is being written.). Exiting from Midas also closes the output file.

You will probably want to edit out your goofs with Bravo after the command file is written.

In addition, you will have to insert "Confirm" before actions which require confirmation and
modify the "TimeOut" stuff which Midas uses to surround actions which might hang indefinitely
(See the table given earlier for the actions that require this.).

Dorado Midas Manual Edward R. Fiala 24 June 1983 18

Here is a sample command file:

L X Ld dg1; Equivalent to typing "dg1" and bugging "Ld" in the command menu
L A0 Addr TASK; Examine the "TASK" register in name-value menu A0
L A0 Val 0; Change the value in TASK to 0
L A1 Addr RTEMP; Examine the address "RTEMP" in menu A1
L A1 SkipE FOO+3; Skip the next command if RTEMP contains the value FOO+3
L X ShowError RTEMP not loaded correctly
L A2 TLINK 0; Examine the Link register for task 0 in menu A2
L X TimeOut 2000; Abort the following command if it hasn’t finished in 1.024 sec.
L X Go START; Begin microprogram execution at address "START"
L X Skip 1; Skip the next command if "Go" halts before timeout
L X ShowError START;G failed; Show an error message

Dorado Midas Manual Edward R. Fiala 24 June 1983 19

10. Registers and Memories Known to Midas

Table 4: Memories

Memory Width Length Notes Comments
(octal) (octal)

IMBD 44 10000 4,5,6 Control store (via mufflers, manifold ops.--for
testing only)

IMX 44 10000 6,7 Control store (absolute).
IM 100 10000 Control store (virtual).
TPC 20 20 1,2,6,7 Shows CIA for current task.
TLINK 20 20 1,2,6,7 Shows Link for selected task.
OLINK 20 20 1,2,3,9 Shows address of last call (if any).

ALUFM 10 20 6,7 0 and 16 smashed and restored by Midas.
RM 20 400 6,7
STK 20 400 6,7
STKX 20 77 = STK[STKP-address]
T 20 20 1,6,7 Waystation for A or Mar registers.
RBASE 4 20 1,6,7 Used in read-write of RM.
TIOA 10 20 1,6,7
MEMBASE 5 20 1,6,7

MD 20 20 1,9
PIPE 40 20 8,9 Shows Pipe0 to Pipe5 (all signals high true)
BR 30 40 6,7,11
BRX 30 4 11 Shows 4 BR words pointed at by MemBX
ROW -- 100 11 Shows 4 cols and Victim/NextV of a cache row
CACHEA 23 400 6,7,11 Length is 2000 with 16k cache
CACHED 20 10000 6,7,11 Length is 40000 with 16k cache

MAP 20 216 6,11 Length is 216 or 218 with larger map ic’s

VM 20 228 6,11

IFUM 40 2000 6,7,10

DMUX 20 200 4,9
DHIST 54 40 3,4 Discussed in the "DMux" section.
VH 40 40 3,4,9 Discussed in the "DMux" section.

$ABSOLUTE 10 216 Includes all state of microcomputer.

$ABS 20 215 $ABSOLUTE shown in 20 bit units
MSTAT 40 24 9 Low words of $ABSOLUTE shown symbolically

LDR 44 200 3 Holds microinstructions used by Midas.
MDATA und. 10 3 BITS-CHECKED etc. for testing.
MADDR 40 14 3 LOOP-COUNT etc. for testing.
TASKN 0 20 3 Symbolic task definitions
DEVICE 0 400 3 Symbolic device address definitions

1. Task-specific
2. Virtual/absolute stuff applies
3. Fake memory--artifact of stuff in Midas
4. Readout via DMux, so value shown is correct in passive mode.
5. Resets the control section, so "Continue" from b.p. illegal.
6. Appears in Test menu.
7. Appears in TestAll menu.
8. SRN addressed.
9. Read-only to Midas.
10. Resets the IFU, so "Continue" from b.p. illegal.
11. Smashes the fault task pipe entry to access the item, so "Continue" from task 17 b.p. illegal.

Dorado Midas Manual Edward R. Fiala 24 June 1983 20

Table 5: Registers

Register Width Notes Comments
(octal)

CPREG 20 2,3 Alto-baseboard interface register, freely smashed by Midas except in
passive mode.

MIR 44 2,3,6 Microinstruction register, used ubiquitously by Midas.
IMOUT 44 1,6 Direct IM outputs
TASK 4 5 Discussed in the "Task-Specific Register" section.
Q 20 2,3 Waystation for write of registers on external BMux.
CNT 20 2,3
SHC 20 2,3 Special tests for RF_, WF_, and FF-controlled shifts.
MEMBX 2 2,3
STKP 10 2,3
PROCSRN 4 2,3,6 Must be 0 on a "Go" to operate memory system normally.
MCR 20 2,3,6 Several bits are not testable; smashed and restored for memory stuff.
CONFIG 20 1
TESTSYN 10 7 Must be 200 (error correction on) or 0 (error correction off) to operate

storage normally
PCX 20 1,2,3
INSSET 5 2,3 Shows the _Id count and instruction set (only the instruction set is

writeable)
UPTIME 60 1 Time since boot-button pushed from microcomputer
TGLITCH 60 1 Time of worst power glitch seen by microcomputer
STROBE 20 5,7 Discussed in the "Passive Mode" section.
D1OUT 20 5,7 Discussed in the "Passive Mode" section.
EVCNTA 20 1 EventCntA register
EVCNTB 20 2,3 EventCntB register
ESTAT 20 2,6 Read-write error halt enables, read error conditions
AATOVA 20 5 Translate absolute address to virtual

1. Read-only to Midas.
2. Appears in Test menu.
3. Appears in TestAll menu.
4. Virtual/absolute stuff applies
5. Fake register--artifact of stuff in Midas
6. Readout via DMux, so value shown is correct in passive mode.
7. Write-only

Most registers and memories listed above correspond to ones discussed in the "Dorado Hardware
Manual". Others are discussed in the sections which follow.

MDATA and MADDR memories contain words used to report or control the activity of the
"Test" and "TestAll" actions discussed later. MADDR also contains DWATCH (used to control
the DMux address for scoping), MIR-PES (error-reporting), and COM-ERRS (error-reporting),
which will be discussed later.

TASKN and DEVICE are fake memories used to pass symbolic information from the assembler to
Midas in the .mb file, as discussed in the "Dorado Microassembler" document. Their only
purpose is to provide symbolic equivalents to task and device numbers for ease of debugging.

For approximately all registers and memories that contain 16-bit quantities, Midas will evaluate
input of the form "m,,n", storing the value of "m" into bits 0:7 of the word and the value of "n"
into bits 8:15.

On Dorado, the items that accept "m,,n" are RM, Q, CNT, SHC, EVCNTB, T, STK, STKX, CACHED,
VM, DMUX, and $ABS.

Dorado Midas Manual Edward R. Fiala 24 June 1983 21

11. The IM Memory and Virtual Addresses

Because the placement transformations performed by MicroD make it difficult to correlate
microstore locations with positions in microprogram source files, the Dorado and Dolphin Midas
implementations use a map to transform virtual addresses produced by Micro into absolute
microstore locations produced by MicroD.

Two memories, IMX and IM, each show the microstore. IMX is absolutely addressed; IM,
virtually addressed. When you fire up Midas, IM is "empty"; when you load a microprogram, IM
is filled with consecutive instructions from your source file, irrespective of where MicroD decides
to place these; the value displayed for an IM address includes both the absolute address assigned
to it, the microinstruction, and some other information discussed in the next section.

In other words, if your microprogram is 10 words long, the meaningful part of IM is only 10 words long.
In this case, if you examine IM addresses greater than 7, the printout will show an absolute address of 7777
and zeroes for the rest of the value.

Midas will not allow you to modify the mapping between virtual and absolute addresses interactively--you
can only do this by loading a microprogram.

To facilitate dealing with virtual/absolute correspondences, Midas has a mode switch that controls
the way in which registers and memories that normally contain microstore addresses are handled.
When you fire up Midas, the display is in absolute mode and the "Abs" action appears in the
command menu; when you load a microprogram, the display switches to virtual mode and the
"Virt" action appears in the command menu. Test actions will switch to absolute mode. The
current mode always appears in the command menu.

In virtual mode, the display shows the virtual equivalent for the value in any register that
normally contains a microstore address. When the value is outside the virtual memory, it prints as
7777. To find the absolute value in this case, you have to switch to absolute mode.

On Dorado the registers affected by this are CIA, CIAINC, TNIA, BNPC, TPC, TLINK, and OLINK.

A fake register called AATOVA converts absolute addresses to virtual. For example, copying the
value in some RM word into AATOVA will show the virtual equivalent; this is useful when
return links are saved in RM words.

The general idea is that, if you suspect a hardware problem in the control section, you might work
in absolute mode, but in all other situations when a program is loaded you will work in virtual
mode, and the complications created by scrambled instruction placement will be concealed.

12. Registers and Memories that Contain Microinstructions

The MIR and IMOUT registers and the IMBD, IMX, IM, and LDR memories all contain
microinstructions. A middle-button action over the value will print these symbolically on the
comment lines.

The value for an IM address is shown as five fields on the display:

two PE bits (PE020 and PE2141);

Undef and Emu bits;

Dorado Midas Manual Edward R. Fiala 24 June 1983 22

148-bit absolute address;

bits 0-218 of microinstruction (RSTK, ALUF, BSEL, LC, ASEL);

bits 228-418 of microinstruction (BLOCK, FF, JCN).

A "1" in PE020 indicates a parity error in bits 08-208 of the value; a "1" in the second bit means
PE in 218-418. Both bits "1" normally indicates a breakpoint. Midas will store the data with bad
parity, if you request it. Note that these are parity-bad bits; on a write, Midas will compute
correct parity for each half of the microinstruction and xor that with the parity-bad bit; on a read,
Midas will determine whether or not the location has correct parity and report accordingly.

The "Undef" bit is set when no absolute address is assigned to this virtual address--in this case the
absolute address should print as 7777. The "Emu" bit tells the pretty-print routine to show the
instruction as though it were being executed by the emulator (task 0).

IMX, IMBD, MIR, IMOUT, and LDR have a three-field printout in which the two PE bits are
left-most followed by the left and right halves of the microinstruction.

IMX and IMBD each address the microstore absolutely and differ only in the way data is read
and written. IMX is read and written by executing multi-cycle microinstructions that write the
microstore from the BMux and read the data into Link. This requires that both ContA and
ContB boards be present (plus ProcH and ProcL to compute parity). IMBD uses manifold
operations to address and directly write the microstore and uses the muffler system to read out the
microstore; this requires only ContB; however, the addressing method for IMBD makes
continuation from a break impossible, so users should normally display IMX in preference to
IMBD.

The IMOUT register contains the 448 DMux signals which are the direct outputs of the
microstore, as addressed by the complicated stuff in the control section. At a breakpoint (t0)
IMOUT shows the bits that will be loaded into MIR at t2, provided that the state of the branch
condition does not change at t1.

The LDR memory is an array in Alto core that contains microinstructions used by Midas when
operating the hardware; it should ordinarily be of no interest to users, although the "LDRtest"
action allows use of instructions stored in this memory for low-level hardware debugging.

Note that a bit pattern in LDR identical to one in IMX, IM, or IMOUT in general is not the same
instruction because the ALUFM memory may contain different contents when the LDR
instruction is executed. The pretty-print procedures account for this difference and show different
stuff for these two cases. However, if you copy an LDR instruction into IM or IMX, watch out!
In debugging regular microcode (i.e., any microcode that doesn’t test ALUFM itself), this
incompatibility is usually avoided because ALUFM 0 and 16 are assembled with the "B" and
"NOT A" alu operations, which are identical to the operations used by Midas.

Also note that the microinstruction pretty-print procedure does not have available all of the
information that the microassembler had when you assembled your program, so the printout is not
always beautiful. The following are deficiencies you should be aware of:

From the hardware manual, you will remember that the interpretation of the BLOCK bit
depends upon whether or not the task executing the instruction is the emulator, and
memory references are interpreted differently for the fault and emulator tasks than for io

Dorado Midas Manual Edward R. Fiala 24 June 1983 23

tasks, so Midas will disassemble this stuff correctly only when it is able to deduce the
task that executes the microinstruction. Midas does have available the Emu bit for
instructions in IM, and if you pretty-print an IM address or an IMX or IMBD address
that also appears in IM, Midas will be able to distinguish between emulator and non-
emulator instructions; however, Midas cannot distinguish fault task microinstructions
from other non-emulator instructions, so fault-task memory references will be pretty-
printed erroneously. However, Midas very cleverly deduces the task for microinstructions
in MIR and IMOUT in most cases, so the pretty-print will usually be correct for these.

Midas is not clever enough to figure out what will be in RBASE when an instruction is
executed, so RM addresses from your program are not normally pretty-printed; Midas
instead uses the generated names R0 to R17 for RM references.

There are many possible assembler macros that you might use to generate constants to
control the shifter; for an instruction that does this, Midas will pick one of the forms,
probably not the one you used in the source file.

Midas sometimes pretty-prints control clauses differently from the assembler. IFUJump’s
and IM/TPC read-write clauses are the same; the decision to print Return or CoReturn,
LocBr or LocCall, LongBr or LongCall, GBr or GCall is dependent upon Midas
deducing the virtual location for the instruction being printed and finding .+1 in the
virtual space at .+1 in the absolute space, so this might be wrong sometimes.
Conditional branches are always printed like "LocBr[addr1,addr2,BC]".

Modifying IM words in octal is inconvenient, so you will normally want to use the symbolic
method below for patching IM.

Writeable registers and memories that contain microinstructions (MIR, IM, IMX, IMBD, and
LDR) evaluate a special form of input as follows: The first character on the input text line should
be "(" to change the values of several fields in the instruction without clobbering other fields, or
"[" to reconstruct the value beginning with a no-op microinstruction. This is followed by a
number of clauses of the form "Field_integer" separated by blanks and/or commas. The legal
field names are RSTK, ALUF, BSEL, LC, ASEL, BLOCK, FF, JCN, PE020, PE2141, and
EMUL. EMUL, the emulator mode bit affecting pretty-printing of the microinstruction is only
defined for IM.

In addition to "field_value" clauses, Midas interprets the standalone clause RETURN, and several
other items with "[]" enclosing a following argument. GO[va] (local branch), LONGGO[va] (long
branch), and GCALL[va] (global branch) evaluate the argument enclosed in brackets and treat this
as a virtual address in virtual mode or an absolute address in absolute mode; then they store a
branch of the selected type in the JCN field of the microinstruction; IFUJUMP[n] evaluates n
which should result a number in the range 0 to 3, and stores an IFUJump instruction in JCN.
When you modify a microstore word (IM, IMX, or IMBD memories), Midas will error-check that
the target for GO is, in fact, on the same page; Midas will always error-check that the argument
of a GCALL is at a global address. Arguments to GO, LONGGO, and GCALL will usually be
simple integers in absolute mode but may be expressions such as FOO+3, where FOO is an IM
address, in virtual mode.

Dorado Midas Manual Edward R. Fiala 24 June 1983 24

13. Task-Specific Registers

Midas treats all task-specific registers (T, RBASE, TLINK, OLINK, TPC, TIOA, MEMBASE, and
MD) as 20-word memories. In other words, "T 6" is the T-register for task 6.

In addition, a special kludge allows you to display the 21st word (i.e., "T 20", "RBASE 20", etc.)
and have that be interpreted as the register for the currently selected task. The currently selected
task is the value in TASK; the TASK register is an artifact of Midas that is initialized to CTASK
(i.e., to the "current task") at breakpoints.

In other words, when a microprogram halts at a breakpoint or because of a mouse-abort, CTASK
is read from the DMux--suppose that it contains 6. This value is copied into TASK. If "T 20",
"TLINK 20", etc. appear on the display, these will show values for task 6. The idea is that you
can change the display for all eight task-specific registers by storing a new value into TASK. The
task selected by TASK is also the one started by "Go", "SS", etc. as discussed later.

The hardware’s LINK register, suppressed by Midas, is shown as the current task’s TLINK word.
The OLINK memory shows the absolute value in TLINK less 1. When microstore addresses are
displayed in absolute mode, this is useless. However, in virtual mode OLINK will usually show
the location that last did a CALL. This is useful in diagnostics which do BRANCH[ERROR],
where ERROR is at a global call location. After one of these branches, OLINK shows the
location that made the error branch, while TLINK shows an unrelated location.

14. BR Addressing Kludges

BR 40 is another addressing kludge used to represent the "currently selected" base register, or BR
MEMBASE[TASK] (i.e., the BR location pointed at by MEMBASE for the currently selected
task).

The BRX memory is another addressing kludge that allows the 4 BR words pointed at by MemBX
to be displayed.

15. STKX Kludge

In debugging emulators, it is frequently desirable to view the STK entries relative to STKP rather
than relative to STK 0 (i.e., relative to the top-of-stack rather than the bottom-of-stack). To aid in
this, Midas defines STKX as an alternate memory for STK. STKX[n] shows STK[STKP-n], where
valid values for n are 0 to STKP-1; hence, the top stack entries are STKX 0, STKX 1, etc.

STKX does not allow you to view entries on the wrong side of the stack pointer, and the display
will preface those names with "~", indicating unreadable, if they appear on the display.

16. Memory System Registers and Memories

The cache, map, and storage arrangement may vary from one Dorado to another but Midas can
deduce the configuration by reading the mufflers and looking at the CONFIG register; Midas
does this automatically when you attach to a new machine or when you execute the "Config"
action. Midas adjusts to the configuration by varying the lengths of its ROW, CACHEA,
CACHED, and MAP memories and adapting its algorithms for reading and writing these.

Dorado Midas Manual Edward R. Fiala 24 June 1983 25

Midas always uses task 17 (the fault task) and srn 1 (the fault task srn) to access BR, ROW,
CACHEA, CACHED, MAP, and VM. Consequently, pipe entry 1 is smashed and (for CACHED
and VM) MD is smashed, which may prevent continuing from a breakpoint, as discussed later.

ROW shows the cache flags and address bits in each of the four columns of a cache row and the
victim and next-victim for the row on five consecutive lines of a display column. The length of
the ROW memory is adjusted to the number of rows in the cache. Displaying an address in
ROW is normally the most convenient way to view the cache; you can prettyprint the cache flags
and address bits for each column independently, and this also shows the 16 data words in the
associated munch (if any).

CACHEA is a memory of length equal to 4 times the number of cache rows; it shows the cache
flags and address bits for a single entry in the cache. In a 100-row cache, the entries for the four
columns in row i are CACHEA i, CACHEA i+100, CACHEA i+200, and CACHEA i+300.
CACHEA is intended primarily for the "Test" and "TestAll" actions; on the display, it will
usually be more convenient to look at ROW.

CACHED is a memory containing all the data words in the cache; word m in the munch for row
r and column c is at CACHED 208*nrows*c + 208*r + m. CACHED is intended primarily for
"Test" and "TestAll".

Addresses in the MAP memory are displayed with the MapPE and PgFault bits in a 2-bit field
followed by wp, dirty, and ref bits in a 3-bit field followed by the 16-bit ra field on the display.
When a MAP address is written, ref is zeroed and map parity is always written correctly; dirtyb
(the copy of dirty) and MapParity are not readable (they appear in CONFIG in other situations).

VM accesses the virtual memory using Fetch_ and Store_ with the current contents of the map
and cache; map and data error faults are not detected or indicated in any way, and the
"RunRefresh" and "EnRefreshPeriod" clock enables must be true for storage to work properly.
Midas sets the length of VM to the largest limit imposed by the map and cache geometries.
Although VM appears in the "Test" menu, the user must setup the cache and map reasonably and
select a suitably small sub-range of addresses in LOW-ADDR, HIGH-ADDR, and ADDR-INC
before attempting to test VM. Midas uses a user-settable base register called VMBASE, initially 0,
to offset the address specified by the user. VMBASE is an address in the fake MADDR memory.

In looking at VM, it is sometimes desirable to determine the MAP and ROW entries through
which a VM word is accessed; if you middle-button any VM address, these will be displayed on
the comment lines.

Midas does not provide any direct method of accessing storage; the user has to setup CACHEA
and MAP with appropriate values and then use VM to do this.

Note: The code for accessing CACHEA and CACHED is complicated and unlikely to work
unless the memory system is functional; these can be tested with "Test" and "TestAll" but the
more basic "ProcVA" test, which exercises VA paths in the memory system, may be more helpful
in isolating problems.

Dorado Midas Manual Edward R. Fiala 24 June 1983 26

17. Memories and Registers Associated With the DMux

At those times discussed later, the 40008 DMux signals (or mufflers) are read from the hardware

and stored in the first 2008 words of a table. These are arranged so that hardware DMux address

0 corresponds to bit 0 of word 0 in Midas’ DMUX memory, hardware address 178 to bit 178 of

word 0, .., up to hardware address 37778 in bit 178 of word 1778. Then the value on the BMux

and the error status, which can also be read passively, are appended to the table. Finally, table
data is rearranged, so that the DMUX memory looks as shown in the tables later.

Inside Midas associated with the DMUX memory are four separate tables, named as follows:

DMuxTab current DMux readout
OldDMuxTab previous DMux readout when running the simulator
DCheck signals checked by the simulator
DWrong errors detected during simulation

The last three tables are only significant when the DMux simulator is used by the "SimGo" and
"SimTest" actions, as discussed later. In other words, when one of these actions halts,
OldDMuxTab holds the t0 DMux readout, DMuxTab the t2 readout, and DWrong the errors that
were detected in DMuxTab. DCheck is initialized by Midas to values that are reasonable for the
boards that are plugged in, and the "Config" action also initializes DCheck to reasonable values;
the user may manually modify DCheck, as discussed below, in order to disable checking of signals
that are incorrectly simulated (This won’t be particularly useful after the simulator is thoroughly
debugged).

Normally, DMux addresses and registers derived directly from DMux readout (i.e., MIR,
IMOUT, MCR, IMBD, DHIST, VH) show values taken from DMuxTab. However, the user may
execute the "DMux" action with various button combinations to view the other three tables; the
name printed for this action in the command menu will be "DMux", "DWrong", "DChk", or
"OldDTab" according to which table is currently viewed. When the action is executed with the
right (bottom) mouse button, OldDMuxTab values are viewed; both left and right buttons shows
DCheck; middle button shows DWrong. The symbolic names of the first 11 errors in DWrong
will also be printed on the comment lines when the middle button is released.

DMUX prettyprinting (middle button over value) of regular (DMuxTab or OldDMuxTab) values
works differently from DWrong and DCheck pretty-printing. Regular printout of single-bit items
shows symbolic names of "true" signals; "false" signals are not printed. In other words, low-true
signals are printed when 0, high-true when 1. Multi-bit items (e.g., foo.0, foo.1, foo.2) are always
printed (e.g., foo=3).

You should note that modified printout of DMUX also affects registers whose values are obtained
by reading the DMux; this includes MIR, MCR, and IMOUT (but not IMBD). The DMUX
memory itself and IMOUT are read-only except when DCheck is being shown. MIR and MCR
are writeable when DMuxTab is viewed but read-only when OldDMuxTab or DWrong is viewed;
writing modifies DCheck when DCheck is viewed.

The DHIST memory contains a DMUX bit address in bits 408 to 538 (displayed left-most by

Midas) and a history of the last 408 values read from the DMux in bits 0 to 378 (displayed as the

two right-hand fields by Midas). This memory may be useful in checkout of multi-state stuff in
the memory and IFU sections of the machine when the DMux simulator is unable to detect

Dorado Midas Manual Edward R. Fiala 24 June 1983 27

problems. Each time the DMux is read the 408-bit data field of each word in DHIST is left-

shifted 1 and the new value brought into the low bit.

The VH memory provides another view of DHIST. Word 0 in VHIST shows the 408 DHIST

signals at t0, word 1 at t-1, word 2 at t-2, etc.

When it is done reading the mufflers or done with a manifold operation, Midas loads the DMux
address register with the value contained in DWATCH, an address in the MADDR memory. This
means that during a "Go" or when Midas is not reading the mufflers, a scope probe attached to
the DMux data line on the backpanel will show the DMux signal selected by the low-order 11 bits
of DWATCH. However, if DWATCH contains 0, Midas will be turning control of the
muffler/manifold system over to the baseboard at regular intervals, and the microcomputer will
smash the DMux address.

18. Interface Registers

CPREG is one of the central interface registers used by the Alto in loading information into
Dorado. It can be tested, but should not otherwise be of interest except in passive mode. Midas
freely smashes the value in this register.

MIR is also special. It is loaded directly from the Alto and read via the DMux; Midas faithfully
restores MIR after executing instructions.

19. Config

Midas automatically determines the hardware configuration when it connects to a particular
dorado by means of DMux signals that it can read from each board. The configuration consists of
the following parameters:

which boards are plugged in--debugging is frequently carried out with some boards disconnected;
Map ic size;
storage ic size;
cache size (4K words or 16K words);
whether the 16th bit in a cache entry is used as a parity bit or an address bit;
number of storage modules.

Midas automatically adjusts its length parameters for VM, CACHEA, CACHED, ROW, MAP,
etc., enables and disables various tests in the Test and TestAll actions, and modifies the behavior
of SimTest and SimGo according to which boards are plugged in.

The automatic determination of the hardware configuration should not fail, but if it does, the
Config action can be executed to manually set the configuration by means of actions in a
subsidiary menu. Manually controlling the configuration may also be useful when testing with
SimTest or SimGo.

20. SetClk

The baseboard microcomputer presently initializes the clock to a 30 nsec period (= 60 nsec
instruction cycle) when the boot button is pushed. The current clock period can be determined by
pretty-printing the value of the CLKRUN DMux word which normally appears on the Midas

Dorado Midas Manual Edward R. Fiala 24 June 1983 28

display.

The "SetClk" action allows the clock period of the mainframe to be specified from a subsidiary
menu. You will probably be able to continue from a break after changing the clock speed, but
Midas warns you that continuation is impossible.

21. Reset

The "Reset" action shows an elaborate subsidiary menu with many options. The options are: run
enables for different stuff; parity-error enables for the different data paths that are parity-checked;
and initialization of memories.

The general ideas that determined exactly how "Reset" is implemented are as follows: First,
memories and registers should be reset only if they have to be for some reason. For example,
memories that are parity-checked, such as T, RM, and STK, have to be reset to prevent parity
errors when you start running a program; TIOA has to be reset in case some io device has variant
behavior when TIOA contains its device number (building an io device that did this would be a
poor idea); it is desirable to reset IMX and IFUM before loading a program, so that run-away
branches and out-of-control programs will be trapped. However, other memories and registers
such as RBASE, MEMBASE, Q, CNT, etc. need not be reset--your microprogram should contain
code to initialize these, so Midas doesn’t have to.

Next, memories that require a long time to initialize, such as MAP (9 seconds now, 35 or 140
seconds with larger ic’s in the Map), should be optionally reset so that you won’t have to wait for
their initialization unnecessarily.

Also, memories loaded by a microprogram (IM, IFUM, RM, ALUFM, and STK) should be
optionally reset, if at all; if they are optional, you will be able to reset other parts of the machine
without smashing your program. However, there does not seem to be any advantage in initializing
ALUFM, so this memory is never initialized.

Each option is of an on-off form. The current state of the option is shown on the comment lines,
while the other state appears in the command menu. The options as originally chosen are
reasonable for a total reset, such as you would carry out at the onset of a "RunProg" command
file; you may also want to turn on MAP initialization.

To carry out a reset, you bug the sequence of options you want, then bug the "Do-It" menu item.

When you bug "Do-It", initialization is carried out as follows (not exactly in this sequence since
some initialization is done twice):

Run enables (RunRefresh and EnRefreshPeriod) are set as chosen;

Parity-error halt enables and MIRDebug are set as chosen; Midas remembers the halt enable settings so that
they can be simulated for "SimGO" (discussed later) and remembers the setting of MIRDebug, so that it
can warn against continue after breaks with MIRDebug true;

Manifold stuff used for testing IMBD is cleared;

Midas error counters MIR-PES and COMM-ERRS are cleared;

Hold and task simulators are cleared;

ALUFM 0 and ALUFM 16 are loaded with the "B" and "NOT A" alu controls needed by Midas;

Dorado Midas Manual Edward R. Fiala 24 June 1983 29

The IFU is reset;

TestSyndrome is loaded for normal error-correction;

Several IOFetch_’es are done in task 2 to make sure that Asrn is .ge. 2 after power up;

Tasking is turned on;

Junk io, the fault task, and io devices are reset;

If MAP initialization is selected, each MAP address is loaded with Dirty and a pointer to the corresponding
absolute page;

If MD initialization is selected, then CACHEA is loaded to map the first 4k (or 16k) of virtual memory, BR
and CACHED are zeroed, and, for each task, the MD tag is reset, T and TIOA are zeroed, TLINK and
TPC are loaded with 7777;

RM and STK are optionally zeroed;

If IM initialization is selected, then absolute mode is selected, IM is made empty, and every IMX address is
loaded with "Branch[.], Breakpoint" except that 7776 is loaded with "Return, FreezeBC, Breakpoint" for the
"Call" action;

If IFUM initialization is selected, then the Reschedule condition is turned off, and each IFUM address is
loaded with the descriptor for a two-byte regular opcode with no operand, using MemBase 0 and RBase 1,
starting at IMX 0.

MCR is loaded with NoRef and ProcSRN with 0;

The test control stuff BITS-CHECKED, LOW-ADDR, HIGH-ADDR, ADDR-INC are reinitialized;

After the reset is complete, Midas reads the DMux and checks the run-enable initialization, most
of the control section initialization, and halt-enable initialization; if any failures are found, the
errors are reported on the comment lines.

The "Go" action performs a subset of "Reset" prior to starting at a new address, as discussed
later; parity-error halt enables can be modified without resetting anything else by writing an octal
number into the ESTAT register.

Dorado Midas Manual Edward R. Fiala 24 June 1983 30

22. Loading Programs

The "Ld", "LdSyms", and "LdData" actions are used to load micro-binary files into the machine.
These actions are executed by first typing a list of file names (default extension ".mb") separated
by commas, then bugging "Ld" or "LdSyms" (typing ";L" is equivalent to bugging "Ld"). These
actions require confirmation by <cr>, "Y", or "." iff a previously-loaded program is being
overwritten; in a command file where it is not known whether or not another program is being
overwritten, a "Confirm" action should precede the load action, as discussed earlier.

"Ld" loads the entire .mb file--symbols into the Midas symbol table and data into the hardware.

"LdSyms" loads only the address symbols and IM mapping table from the .mb file. This may be
useful when reattaching Midas to a machine that is already running a microprogram.

"LdData", (in command files but not available interactively), loads only the data blocks from the
.mb file. "LdData" is provided so that a microprogram can be loaded without cluttering the
symbol table--this is primarily for Midas initialization and should not be of frequent use to users.

On Dorado, the DMUX, MADDR, MDATA, $ABSOLUTE, $ABS, and MSTAT memories are treated as
exceptions by "LdData"--symbols for these are loaded anyway.

Midas uses several 1024-word core buffers (about 8 on Dorado Midas) and the Swatee file to
manage its symbol table and virtual memory mapping information; the largest existing programs
use 10 buffers for VM information and about 25 more (out of 64 available on Swatee) for
symbols. For nearly all symbol and VM accesses, Midas will reference only one or two symbol
blocks, so there should be no appreciable slow down when handling large programs.

The symbol table management algorithm used by Midas is an extremely fast merge that works well when
the symbol table is nearly empty at the onset of a load but suffers somewhat from block fragmentation
when the initial symbol table has many items.

To avoid fragmentation, don’t load one microprogram on top of another--use "RunProg" to reset the symbol
table, then do the "Ld". It is also a good idea to assemble microprograms as a single .MB file. Although
Midas can load multiple .MB files (typed as a list separated by commas), this will fragment the symbol table
and cause extra thrashing.

These recommendations follow because Midas takes advantage of alphabetical address ordering in .MB files
to pack its symbol buffers nearly full. But when subsequent files are loaded, the symbol buffers will
fragment to about half-full, symbol buffer swapping will result, and symbol searches will be longer.

Midas uses the symbol table in two ways: looking up the value of a symbol, requiring at most one disk
access; and searching for the symbol in a particular memory which best matches a value, requiring at most
one access for RM, BR, DEVICE, and TASK address symbols, or at most two accesses for IM address
symbols; the best matching value for addresses in all other memories is determined by scanning every block.
Searching every block requires about (.22 seconds * no. symbol blocks) - (.15 seconds * no. blocks in core)
or about 4.7 seconds for the largest program thus far. However, since best matches for the five most
important memories are obtained quickly, it will rarely be necessary to wait for a search.

In most situations where a "Ld" is going to be done, many other actions will also be carried out
to setup the display appropriately for the program and to initialize the hardware by doing "Reset"
or whatever. For this reason, you will ordinarily want to define a command file that does all these
other actions as well as the "Ld" and you will ordinarily do "RunProg" on this command file;
direct use of "Ld" in the command menu will be rare.

Dorado Midas Manual Edward R. Fiala 24 June 1983 31

23. Dump and Cmpr

Both "Dump" and "Cmpr" require confimation by <cr>, Y, or "." They accept the name of a
microprogram (default extension ".mb") on the input text line. If the input text line is empty,
then the file name is defaulted to the name of the program last loaded.

"Dump" deletes forward reference fixups left by Micro (which never occur on Dorado or Dolphin
because MicroD does these) and compacts both data and addresses to use less disk space and load
more quickly later.

Also, if undumped .MB files contain forward references, they cannot be used with "Cmpr" (no
problem on Dorado or Dolphin).

Note that only memory words loaded by Load are dumped--you cannot patch unused locations,
dump the program, and expect the patches to survive. (Suggestion: assemble extra locations as a
patch area with your microprogram, so that you can patch and dump during debugging.)

"Cmpr" compares data currently in storage against data in the file and reports differences on the
Midas.Compare file.

In microprograms, avoid loading initial values into memory words modified during execution. The
usefulness of "Cmpr" is enhanced when programs are clean, because no fictitious errors will be reported.

For diagnostics, "Cmpr" can report what has been smashed when something goes off the deep end--this has
frequently been helpful.

Following system microcode crashes, "Cmpr" may provide the only clue about the nature of an intermittent
storage failure.

24. Brk and UnBrk

On Dorado breakpoints are created by deliberately storing bad parity in both halves of a
microinstruction. Since double parity failures are highly unlikely, there is usually no ambiguity
between deliberately set breakpoints and hardware failures.

Since Dorado does not halt until t2 of the instruction containing a parity failure, the break will
occur after the instruction containing it has been executed.

Since the two parity-bad bits are part of the value displayed for an instruction, it would be
possible to insert or remove a breakpoint by examining an instruction and storing 3 or 0 into the
parity-bad field; however breakpoints are inserted and removed often enough to warrant an easier
method for doing this. The "Brk" and "UnBrk" actions are provided for this purpose.

"Brk" inserts a breakpoint in the IM or IMX address typed on the input text line. The address
must be typed--there is no default break address. You will normally find it faster to type
"address;B" to insert a breakpoint.

"UnBrk" removes a breakpoint. If no text is typed, the address defaults to the breakpoint that
caused the last program halt or to the address of the last breakpoint inserted. You will normally
find it faster to type "address;K" or ";K" to remove a breakpoint.

Dorado Midas Manual Edward R. Fiala 24 June 1983 32

25. Go, SS, Proceed, OS, and Call

These are actions that result in the microprocessor executing instructions from the control store
starting at the selected address; "SimGo", which will be discussed later, also does this. Each of
these accepts an input argument (optional except on "Call") that must evaluate to an IM or IMX
address; a simple number is defaulted to an IMX address in absolute mode or an IM address in
virtual mode. If the optional argument is omitted, Midas will continue from the last break.

When you start at a new address, the value in TASK (lower left-hand corner of the normal
display) is the task activated. TASK is initialized to the value in CTASK (i.e., to the task for
which an instruction was about to be executed) when Dorado halts or when you abort. You must
change TASK on the display to initiate execution for a different task.

The distinctions among these actions are as follows:

"Go" and "Proceed" will start the machine running and wait either for it to halt or for
you execute the "Abort" or "Dtach" actions which are displayed during the "Go".
When going or proceeding at a new address (as opposed to continuing from the last
break), "Go" will reset io devices and the control section, while "Proceed" does not do
this; in other respects these actions are identical.

"SS" (single-step) executes one microinstruction.

Although "Go" and "SS" (single-step) appear in the command menu, you will probably discover
that it is faster to type "address;G" to Midas, an alternative to "Go", or "address:", an
alternative to "SS"; "Proceed" is only executable by typing "address;P." Similarly, ":" is
equivalent to a continue-"SS" and ";G" or ";P" (proceed) to a continue-"Go".

"OS" (opcode-step) keeps single-stepping the machine until either you execute the
"Abort" action, a halt condition occurs, or an IFUJump has been executed. In other
words, it simulates a "Go" with repeated single-steps, but stops after the next IFUJump.
This is intended to facilitate debugging emulators that use the IFU.

There are some hardware restrictions on single-stepping discussed in the next section. The most
serious of these is that it is illegal to single-step across an instruction that does Fetch_ and _Md.
Since this is expected to be common in emulators, there will be many times when OS doesn’t
work.

"Call" allows a microprogrammed subroutine to be called with an optional argument
passed in T. By convention both the microassembler and the "Reset" action plant a
"FreezeBC, Breakpoint, Return" microinstruction at IMX 7776. A call is initiated by
typing "SUBR(ARG)" or "SUBR()". This causes ARG (if any) to be evaluated and
stored in T; LINK is loaded with 7776; then "SUBR;G" is done. If the subroutine
returns (to 7776) Midas prints an appropriate message.

Note that subroutines called this way need not start at "call" locations in the microstore because
Link is loaded prior to jumping to the starting address.

"SimGo" (simulated-go) is a variation of single-step that keeps single-stepping the
machine until either a halt condition occurs or the DMux consistency checker finds an
error, as discussed later.

Before stepping or going at a new address (as opposed to continuing or proceeding), Midas carries

Dorado Midas Manual Edward R. Fiala 24 June 1983 33

out an extensive reset sequence, as follows:

IO devices and fault task are reset.

Ready flipflops, CTASK, CTD, etc. are cleared by executing "TaskingOn", "No-op", and
then "Goto[7777], Block" for each task. Your microprogram should probably load IMX
7777 with some instruction to handle bogus task wakeups.

TPC is set to 7777 for every task except the one being started.

Memory "tag" mechanism is NOT reset.

The IFU and Reschedule condition are NOT reset.

When the microprocessor halts after a breakpoint, due to an error, or because you aborted, Midas
prints the location of and reason for the halt and saves the information that it needs to continue.
The form of the printout is "task:address". Subsequently, if you attempt to continue, Midas
restores the hardware as nearly as possible to its state at the break before continuing.

The primary error indicators for a break are in ESTAT; Midas analyzes these and other DMux
signals such as "Task2Back", "Task3Back", "_MDSaved", etc. and pretty-prints a message about
the reason for halting and the task that executed the instruction that caused the halt.

There are many complications surrounding Midas’ ability to restore the state of the program, after
doing other things, so that continuation is possible. These are discussed in the next section.
When these complications are insurmountable, "passive mode" may be used as discussed later.

26. When Registers are Read/Written--Restrictions on Continuing

When a microprogram halts at a breakpoint or due to a mouse-halt, Midas has two objectives: to
read the contents of registers and memory addresses so that they may be shown to the user, and to
be able to continue from the interrupt or breakpoint. The methods for reading machine state are
detailed in the "Dorado Debugging Interface" document and outlined here.

Midas first reads the DMux (which includes MIR, MCR, and some other items), BMUX, and
ESTAT (error status); these are read first to capture their values before they change. Since all of
these items are readable without issuing any clocks to the Dorado microprocessor, Midas can still
continue execution of the microprogram in ordinary situations. In passive mode (discussed later),
these are the only items which Midas reads from the hardware.

In active (i.e., normal) mode, Midas next executes a no-op, clears the hold and task simulator,
does 30 no-op’s, and then saves values of (current task) registers as follows: LINK, T, Q, TIOA,
STKP, ALUFM 0, ALUFM 16, RBASE, MEMBASE, PROCSRN, and RM 0; these might get
smashed while reading registers that the user has put or will put on the display.

Finally, Midas reads all registers displayed going top-to-bottom through the name-value menu
lines and left-to-right through the columns within each line. In passive mode, only those items
whose values were obtained passively will be updated; others will be marked with a "~"
indicating that Midas couldn’t obtain the current value. In active mode, many microinstructions
will be executed to correctly address each item, route its value onto BMux, where Midas can read
it, and then restore registers smashed while doing this.

Dorado Midas Manual Edward R. Fiala 24 June 1983 34

When Dorado is not running, Midas loads ALUFM 0 and 16 with the "B" and "NOT A" alu
operations, and TPC (i.e., CIA) is always in a smashed state. If one of these three items is
displayed, the value in the Alto static is read; if written, the static is written. The value in the
static is not written into the hardware until either a "Go", "SS", "OS", etc. action occurs or the
"Dtach" or "RunProg" actions are executed. ALUFM 0 and 16 are effectively untestable from
Midas (sorry). TPC will get read for the new task and restored for the old task whenever Midas
has to do a SelectTask, as discussed in the "Dorado Debugging Interface" document. Midas has
no trouble testing TPC, but if you examine a particular TPC register several times on the display,
there is no guarantee that the values displayed will be ones independently read from the hardware.

With the exception of these three items and the DMux, Midas always reads values from the
hardware--other saved values are only used for restoration purposes. In other words, if "SHC" is
displayed 10 times, it will be read 10 times from the hardware.

MIR, MCR, Q, T, RBASE, MEMBASE, TLINK, STKP, RM 0, and PROCSRN are smashed and
restored while reading other stuff; these are read from the hardware independently each time they
appear on the display, but Midas might rewrite these registers from the saved values, so if one of
these isn’t working correctly, the exact nature of the failure may be obscured.

Several memories and registers are "always updated" when they appear on the display, which
means that they will be reread at frequent intervals by the Midas main loop, and if the value has
changed the display will be updated. The UPTIME and TGLITCH registers and the MSTAT
memory, which show items continuously recomputed by the baseboard microcomputer, are treated
this way; and COMM-ERRS and MIR-PES (in the fake MADDR memory), which report errors
detected by the Midas hardware interface, are always updated.

Values in other registers and memories are only reexamined when you do some "dirty" action.
When you write a value into some register on the display, for example, Midas tries to restore any
other registers and memories that were clobbered as a side effect; then it rereads the DMux and
all registers on the display.

There are a number of situations that may prevent continuation from a breakpoint or interrupt;
Midas warns you about some of these when you try to continue but does not warn you about
others. Some of the ones that Midas does not warn you about are as follows:

The machine stopped at t2 of an instruction that both started a new fetch and either read Md onto A or B

or used Md in a shift-and-mask operation; the value of Md for the new fetch will be erroneously used in
completing the Md read.

The break occurred at t2 of an instruction doing a dispatch.

The break occurred immediately after an IM or TPC read instruction--the value read will be garbage if you
continue;

You were using the hold simulator--Midas resets the hold simulator at breakpoints;

Your microprogram was using the muffler/manifold system--Midas smashes the DMux address and resets
some of the manifold stuff at breakpoints;

Input/output tasks were not serviced properly due to the delay at the breakpoint, so these are not continued
correctly;

Your microprogram is relying upon the exact timing of the memory system to write the cache flags for a
reference--the moment will have passed when continuation occurs (There are probably other situations when
the memory system is operated in unusual ways that will prevent continuation.).

Dorado Midas Manual Edward R. Fiala 24 June 1983 35

Some situations that Midas does warn you about are as follows:

You have displayed some address in BR, BRX, ROW, CACHEA, CACHED, MAP, or VM; Midas will use
task 17 and pipe entry 1 to access these, and if the break occurred in task 17, Midas will warn you that
continuation is impossible because Pipe entry 1 and (for CACHED and VM) task 17 MD are smashed.

Some address in IFUM is displayed; Midas has to reset the IFU to read IFUM and will warn you that
continuation from a breakpoint is impossible.

Some address in IMBD is displayed; Midas has to reset some of the control section to access IMBD.

You broke on or single-stepped across an instruction that did both a Fetch_ and either a T_Md or
RM/Stk_Md; if you continue, data from the new fetch rather than data from the preceding fetch will be
used to complete the T_Md or RM/Stk_Md operation.

A breakpoint on or single-step through an instruction that does NewPC_ is illegal (??).

27. Hardware Failure Reporting

Midas checks for several kinds of hardware errors and reports them in MIR-PES and COMM-
ERRS, which are addresses in the MADDR memory; these are shown in the upper right-hand
name-value menus by the normal Midas display. MIR-PES is shown on the display as two 16-bit
fields; the first field counts parity errors detected in MIR[0:20] and the second, parity errors in
MIR[21:41]. MIR-PE’s is zeroed when you start Midas, "Dtach", or "Reset", or when you start a
"Ld". Whenever Midas loads a microinstruction into MIR, it checks for good parity in MIR
before executing it and counts MIR-PES if the parity is no good; however, even if the parity is
bad, Midas goes ahead and executes the microinstruction. If any MIR parity errors occur during a
load, the message "**MIR-PE’s occurred**" is printed on the comment lines after the load;
however, except for that message, Midas does not print any special messages after these errors--the
user will have to notice when MIR-PES changes at other times.

COMM-ERRS is also shown as two 16-bit fields. The first field counts glitches in the "Stopped"
line, which Midas samples repeatedly during "Go" (The serial 1 Dorado seemed to report
"Stopped" when the microprocessor did not have any reason for stopping, so some glitch detection
software was added to Midas to detect this situation.); the second field counts microcomputer
timeouts. Midas initializes these error counters to 0 after initially connecting to a Dorado, during
"Reset", and during "Dtach". Midas allows about 2 msec for the baseboard microcomputer to
service interrupt requests; if this timeout is exceeded, the right-hand field of COMM-ERRS is
counted.

Midas also shows a number of hardware conditions collected by the baseboard microcomputer;
these include power supply information summarized in PROBLEMS, OUTOFSPEC,
BADSUPPLYSPEC, and TGLITCH as discussed later.

Dorado Midas Manual Edward R. Fiala 24 June 1983 36

28. Hardware Checkout Facilities

Midas checkout facilities fall into the following categories:

Observation Observe registers and signals invisible to the microprogrammer (DMux
stuff, print routines, passive mode).

Poking Trying out elementary actions to observe what happens (T1, T2, T3,
Poke stuff).

Testing Exercise various hardware sections, verifying that they work correctly or
reporting the nature of failures (Test, TestAll, SimGo, SimTest,
LDRtest).

Scope loops Repeatedly do something to observe failures with the scope (RepGo,
RepSS, RepT2, Fields, HWChk, test actions).

Diagnosis Relate failures to particular hardware components (SimGo, SimTest).

The LDRtest action must be preceded by the "Debug" command file (in the "RunProg"
submenu), which loads the LDR memory addresses needed for LDRtest. The "Debug" command
file should not be needed in any other cases.

With diagnostic microprograms, you can use the PROC, CONTROL, MMC, MMD, MMX,
IFUD, DSKETH, and DSP command files (in the submenu put up by RdCmds) to display DMux
addresses for various hardware sections.

29. Parity-Error Scanning

The "PEscan" action scans memories and reports parity errors. It presents a submenu consisting
of "Scan-and-report" and "Scan-for-totals" actions followed by the names of the memories that
can be scanned for errors. The user interacts with the submenu, selecting and deselecting
memories to be scanned; then he bugs either "Scan-and-report" or "Scan-for-totals".

On Dorado, the memories that can be parity scanned are IMX, RM, STK, IFUM, CACHEA, CACHED,
and MAP.

"Scan-and-report" will sequence through all the words in the selected memories, reporting on the
comment lines the first 20 addresses that have parity errors and the total number of parity errors
for each memory. "Scan-for-totals" reports only the parity error count for each memory.

In general, very long memories such as main storage are not included in the "PEscan" submenu
because Midas cannot scan them fast enough to report results in a reasonable time.

30. Testing Directly From Midas

"Test" and "TestAll" allow the target machine to be tested directly from Midas. Although
diagnostic firmware can test faster and more thoroughly than is practical from Midas, Midas direct
testing permits the hardware to be checked out well enough to get basic diagnostics loaded and
started. On Maxc1, which had no direct testing in Midas, many hardware failures of the "nothing
works" variety were harder to fix than on Maxc2 and Dorado, where Midas test software is

Dorado Midas Manual Edward R. Fiala 24 June 1983 37

available. However, on Dolphin and M68 implementations of Midas, the test features in Midas
are of doubtful usefulness because the hardware is accessed through communication with a small
"kernel" microprogram that only works when most of the hardware is functional.

Data patterns for test actions are determined from the first subsidiary menu, as follows:

Table 6: Test Data Pattern Actions

ZEROES All-zeroes data
ONES All-ones data
SHOULD-BE Constant test pattern equal to value in SHOULD-BE
CYC1 Vector of the same size as the register containing zeroes with a single one-bit cycled left

one position each iteration
CYC0 Cycled zero in vector of ones
RANDOM Random numbers
SEQUENTIAL 0, 1, ..., sequential numbers
ALTZO Alternating all-ones and all-zeroes patterns
ALT-SHOULD-BE Alternating contents of SHOULD-BE with its ones-complement

The CYC0, CYC1, and SEQUENTIAL patterns vary according to the size and arrangement of the
data vector for the item being tested. CYC0, for example, starts off with leading 1’s and a 0 in
the right-most bit of the data vector. The 0 is shifted left (bringing in 1’s to its right) each
iteration; when the 0 is shifted out of the left-most bit in the data vector, the vector is reinitialized
to leading 1’s and a 0 in the right-most bit. The CYC1 pattern is like CYC0 with 1’s and 0’s
interchanged. The SEQUENTIAL pattern is initialized to 0 and is incremented by 1 in the right-
most bit of the data vector each iteration.

This treatment of CYC0, CYC1, and SEQUENTIAL patterns is conceptually correct for items that
are described inside Midas by dense, left-justified data vectors whose bits are displayed left-to-
right on the screen. Most, but not all, items are handled this way.

On Dorado, the exceptions are as follows: IMX, IMBD, and MIR have the parity-bad bits displayed left-
most but stored internally right-most in the data vectors. The parity bits do not participate in determining
the data pattern for CYC0, CYC1, and SEQUENTIAL patterns; i.e., the two parity-bad bits will always be
tested with 1’s (i.e., bad parity) for CYC0 or always with 0’s (i.e., good parity) for CYC1 and
SEQUENTIAL patterns.

ALUFM, CACHEA, MAP, BR, and MCR have holes between bit 0 and the right-most bit of the data
vector. The CYC0, CYC1, and SEQUENTIAL patterns for these are generated as though these holes didn’t
exist. I.e., ALUFM has an 8-bit data vector in which bits 1:2 are unused; CACHEA has flags in bits 0:3
and VA[4:n] in subsequent bits, but the leading bits of VA are not actually stored in the address section for
most cache configurations, so the unstored bits are a hole; MAP has RP in bits 16:31 of the data vector and
various flags in bits 12:15, so bits 0:11 are a hole; BR uses 4:31 of the data vector, so bits 0:3 are a hole;
and MCR uses 0:15 with several unused bits in its interior.

Testing is controlled/described by 12 addresses on the display as follows:

Dorado Midas Manual Edward R. Fiala 24 June 1983 38

Table 7: Test Items in the Name-Value Display

SHOULD-BE On a failure, the correct data; after control-C or Abort, the next pattern.
DATA-WAS On a failure, what the data was; after control-C or Abort, the data read last time.
BITS-CHECKED Mask of bits checked (see below).
BITS-PICKED Union of bits that should have been 0 but were erroneously 1 during testing. This

accumulates failure information when you continue a Test using <escape> or <cr>.
BITS-DROPPED Union of bits that should have been 1 but were erroneously 0.

LOOP-COUNT 32-bit iteration count at which failure occurred or after which the test was aborted.
NFAILURES 32-bit count of test failures.

Memory tests only

LOW-ADDR
HIGH-ADDR
CURRENT-ADDR
ADDR-INC 32-bit addresses: If ADDR-INC (normally 1) is positive, the test starts at LOW-ADDR

and advances through the memory in steps of ADDR-INC until CURRENT-ADDR is
greater than HIGH-ADDR. If ADDR-INC is negative, the test starts at HIGH-ADDR
and goes by steps of ADDR-INC until CURRENT-ADDR is below LOW-ADDR.
CURRENT-ADDR contains the last address tested.

ADDR-INTERS Intersection of address bits where failures were detected.
ADDR-UNION Union of address bits where failures were detected.

SHOULD-BE, DATA-WAS, BITS-CHECKED, BITS-PICKED, and BITS-DROPPED are
addresses in the MDATA memory; LOOP-COUNT, NFAILURES, LOW-ADDR, etc. are
addresses in the MADDR memory. These two memories (which are tables in Alto storage) exist
on all versions of Midas that implement the test actions.

The handling of the MDATA memory is complicated by the fact that items in this memory have
to be shown in the same format as the memory or register being tested. This is accomplished as
follows: When the selected test item is different from the last, the width and print-format of
MDATA are set to be identical to the new item; in this case BITS-CHECKED is initialized to test
all bits in the new item. Then when the test is aborted or halts due to a failure, the display of
BITS-CHECKED, etc. is identical to that of the item tested. The user may then modify BITS-
CHECKED and continue, restart, or free-run the test, as discussed below; in this case the item
tested is identical to the last item tested, so BITS-CHECKED is not reset.

The handling of MADDR is also tricky. ADDR-INC is allowed to be any value except 0; if it is
0, Midas will reset it to 1 before testing. When HIGH-ADDR is initially greater than the largest
legal address in the memory, it is reset to memlength-1 prior to testing. Then if LOW-ADDR is
greater than HIGH-ADDR, it is reset to 0 before testing. When the selected memory differs from
the last item tested, and when the length of the memory is less-than-or-equal to 100008 words
long, Midas will reset LOW-ADDR to 0 and HIGH-ADDR to memlength-1 prior to testing. This
is done because a common operational error is failure to reset the address range when switching
from one memory test to another. However, Midas does not reset the address range for very long
memories because they are normally tested with small address ranges that cannot be predicted in
advance--full-length testing of long memories from the Alto is so slow as to be impractical.

"Test", after showing the data-pattern menu, shows a menu of register and memory names and
other test names, and executes a test of the one you select until the test fails or you halt the test
from the keyboard.

The testable registers and memories appear in the second sub-menu for the "Test" action. This

Dorado Midas Manual Edward R. Fiala 24 June 1983 39

menu also includes several other machine-dependent test programs.

On Dorado, the additional tests are as follows:

Table 8: Other Test Actions

Shmv Tests the output of the shift-control ROM’s on the ProcH and ProcL boards against
correct values.

WF Tests loading ShC via WF_
RF Tests loading ShC via RF_
ProcVA Tests BR+Mar via DummyRef_

<esc> will continue a register or memory test that has halted; it restarts an OtherTest that has
halted.

<cr> will continue a register or memory test that has halted but will free-run the test rather than
halting on the next failure. While free-running, LOOP-COUNT and NFAILURES are reported
continuously on the display, and BITS-DROPPED, BITS-PICKED, ADDR-INTERS, and ADDR-
UNION accumulate failure information. When you stop the test by bugging "Abort" or typing
control-C, the accumulated failure information is displayed in these registers.

"TestAll" automatically loads BITS-CHECKED with a full-sized comparison mask prior to testing
each item; memories are tested with LOW-ADDR = 0, HIGH-ADDR = memory length-1, and
ADDR-INC = 1. It tests each register 200 times and makes 4 passes through each memory and
each OtherTest. It is a good idea to run "TestAll" whenever the hardware is in a suspicious state.

31. LDRtest

On Dorado and Maxc2, the "LDRtest" action should only be used when the "DEBUG" command
file has been executed. This requires a sophisticated understanding of the hardware and of the
innards of Midas and is not recommended for novices.

Dorado Midas stores many microinstructions in a fake memory called LDR (see LOADER.MC). These are
used by various actions to operate the hardware. "LDRtest" allows these to be executed in non-standard
sequences to beat on particular hardware problems.

"LDRtest" accepts a list of LDR addresses separated by commas as input text. If only one LDR address is
typed, the CPREG register is loaded once with the selected data pattern, then the LDR instruction is
repeatedly executed with UseCPReg true for a scope loop.

When two, three, etc., up to five LDR addresses are typed, a test loop occurs whereby CPREG is loaded
with the next data pattern, the first instruction is executed with UseCPReg true, then the rest of the
instructions are executed, and then the BMux is read back and compared against the original data under
control of BITS-CHECKED. The loop stops when (data-read-back xor data-sent-out) & BITS-CHECKED is
non-zero.

Dorado Midas Manual Edward R. Fiala 24 June 1983 40

32. Scope Loop Actions: Fields, RepGo, RepSS, RepT2

The "Fields" action exercises signal decoding for particular fields of the microinstruction for scope
loops. A microinstruction is fabricated from a no-op microinstruction in which the field selected
from the first sub-menu is replaced by various values. The second subsidiary menu allows the
value in the selected field to be incremented, decremented, and shifted.

"RepGo" starts the microprocessor at the address typed on the command line, waits for it to halt
at a breakpoint or parity error, then restarts it at the original address.

"RepSS" repeatedly single-steps the microprocessor at the address typed on the command line.

On Dorado, the task for the original Go or SS is taken from the TASK register; subsequent restarts do not
reselect the task. The control section’s Ready register is reset before the first Go or SS, but is not reset
each time through the loop.

On Dorado, "RepT2" endlessly executes the instruction in MIR and reloads that value into MIR.
Unlike "RepSS", "RepT2" doesn’t issue extraneous clocks while looping, so it is ordinarily more
convenient for scoping.

33. HWChk

The "HWChk" action puts up a submenu that contains several test and scope loop actions. Once
started, one of these actions runs until you abort it; the iteration count will be in LOOP-COUNT
when the test is aborted. The HWChk submenu currently contains the following actions:

"Read-DMux-Signal" requires a non-zero value in DWATCH; a scope loop is generated in which
the DMux address selected by DWATCH is strobed out to the hardware and then the value read.
A count of the number of times the value is 0 and the number of times it is 1 are showed on the
comment lines. Microcomputer DMux reading is disabled during this action.

"Read-All-DMux" repeats the following sequence indefinitely: (1) Execute an almost-random
microinstruction as in SimTest; (2) Read all 40008 DMux signals three times, accumulating in
DWrong the union of signals which had inconsistent readout. A count of the number of
inconsistent signals is displayed. Microcomputer DMux reading is disabled during this action.
Also, signals which legitimately may change value (primarily Ethernet and Disk signals) are not
reported as inconsistencies. This action can be used to test the reliability of the DMux and strobe
data paths, which are known to become unreliable for sufficiently long Midas cables. It can also
be used as a scope loop for observing DMux data paths. If this action reports no inconsistencies,
then one can be fairly confident that the simulator will report Dorado hardware failures rather
than failures in the Midas communication data paths.

"Connect-Disconnect" first evaluates the input text line, which must contain a valid Dorado serial
number (0 to 3778). A scope loop is generated in which Midas alternately connects to the selected
serial number and to that serial number xor 3778 (= disconnects). A count of successful and
unsuccessful connects is displayed on the comment lines.

"Alto/MC-control" generates a scope loop in which the Alto and the microcomputer alternately
are given control of the muffler/manifold system.

Dorado Midas Manual Edward R. Fiala 24 June 1983 41

34. DMux Consistency Checker

The DMux consistency checker, or simulator, used with the "SimGo" and "SimTest" actions
examines all of the DMux signals (or mufflers), checking for inconsistencies. The simulation
verifies consistency of signals from the previous readout (call this "t0") to the current readout (call
this "t2").

In all cases, only passively-accessible DMux signals and BMUX and ESTAT are involved in the
simulation--registers that can be read only by issuing clocks to the hardware are not checked.

The simulation subroutine behaves differently based upon the time at which the DMux was read
(t even or t odd) and upon whether or not the DMux readout at tn-2 is available. Currently, the

simulator is only called by "SimGo" and "SimTest", and for these the simulation subroutine is
always called with the t0 and t2 DMux tables.

The operation of the simulator is reported in and controlled by five tables, each containing one bit
for every DMux signal:

OldDMuxTab DMux readout for t0.

DMuxTab DMux readout for t2.

DCheck mask of bits whose simulated values are to be checked for errors.

DWrong mask of signals whose DMuxTab values do not agree with the
simulation and whose mask in DCheck is 1.

Setup for the simulator begins during initialization, when the "Config" action is executed. At that
time, DCheck is initialized to reasonable values for the hardware configuration. In other words, if
a particular section of the machine is not in the chasis, then the signals in that section cannot be
checked, so they are zeroed in DCheck. In addition, other signals whose simulated values depend
upon signals from the missing section cannot be checked. "Config" sets up DCheck so that only
signals which can be checked will be examined for error. Finally, "Config" also zeroes the
DCheck bits for signals known to be simulated incorrectly.

A simulation step consists of the following parts:

1) Copy DMuxTab into OldDMuxTab.

2) Single-step the Dorado; then read the DMux into DMuxTab.

3) Copy DMuxTab into DWrong.

4) Execute the simulation program which will predict many signals as functions of values
in OldDMuxTab and DMuxTab. The predicted values overwrite values in DWrong.
Unsimulated signals are not modified in DWrong.

5) DWrong _ (DWrong xor DMuxTab) & DCheck.

6) Stop and report failures if any bits in DWrong .ne. 0.

"SimTest" is executed with IOReset, RunRefresh, and EnRefreshPeriod false. It loads MIR with
a randomly chosen microinstruction (except that some illegal microinstructions are weeded out--
presently, the Output_, UseDMD, MidasStrobe_, and IFUTest_ functions are illegal; also, the
Block bit in the next microinstruction is chosen to equal whatever was coming from IMX just

Dorado Midas Manual Edward R. Fiala 24 June 1983 42

before t2 of the last microinstruction to avoid screwing up the control section); then it reads the
DMux and steps the microinstruction through t2. This is repeated, and after each repetition the
previous and current DMux readout are checked for consistency.

"SimGo" is similar, but a microprogram stored in IM is executed one step at-a-time rather than
random microinstructions; there are no illegal microinstructions for SimGo. When a diagnostic or
other microprogram is known to fail, it can be run full speed up to a breakpoint a little before the
sequence that fails; then the program can be continued with "SimGo" which might pinpoint the
hardware failure. However, since RunRefresh and EnRefreshPeriod are false during "SimGo",
any microprogram that uses Storage or the Map might not run correctly. "SimGo" continues until
either a simulation error is detected or ESTAT contains a halt condition; the halt conditions for
"SimGo" are identical to those for "Go" (The halt conditions can be modified by the user with
the "Reset" action.).

For the most part, mufflered signals in the different hardware sections relate to control paths
rather than to data paths, so the consistency checker will be less effective in finding failures in
data paths. However, Midas register and memory tests and diagnostic firmware can usually
pinpoint data failures, so this limitation is not too serious.

The ContA/B, ProcH/L, MemC/D/X, and IFU sections are presently simulated.

How to Interpret Simulator Failures

When the simulator detects one or more failures, it reports a message like "2 DMux errors". You
can find out which signals are believed inconsistent by executing the "DMux" action in the
command menu with the middle button. When the middle button is released, the names of the
first 11 signals that were incorrect are printed on the comment lines; each name is followed by a
suffix such as "/A" indicating the section in which the error was detected; possible suffices are:

/B Baseboard No signals are currently simulated.
/A ContA
/B ContB
/L ProcL
/H ProcH
/I IFU
/C MemC
/D MemD
/X MemX
/K Disk controller No signals are currently simulated.
/E Ethernet controller No signals are currently simulated.
/V Display controller No signals are currently simulated.

The next step is to display the DMux words associated with one of the hardware sections that
failed; this is done by executing the "RdCmds" action and selecting the command file that
displays that section (PROC, CONTROL, MMC, MMD, MMX, IFUD, DSKETH, or DSP).

Then find the source for a signal that failed in the hardware drawings; you will probably be able
to deduce its dependency upon other DMux signals and can then determine where the failure
occurred. You can view the signals relevant to the simulation by viewing the OldDMuxTab or
DMuxTab signals on the display, as was discussed in the "Memories and Registers Associated

Dorado Midas Manual Edward R. Fiala 24 June 1983 43

With the DMux" section.

Normally, DMux addresses and registers derived directly from DMux readout (i.e., MIR, IMOUT,
MCR, IMBD, DHIST, VH) show values taken from DMuxTab. However, the user may execute
the "DMux" action with various button combinations to view the other three tables; the name
printed for this action in the command menu will then show the selected memory. The button
combinations for this are as follows:

DWrong middle button
DCheck left and right buttons
OldDMux right button
DMux left button

Only when DCheck is displayed is it legal to write words in the DMux memory; the other forms
are read-only. DCheck can be modified to remove signals from the checking process (or to add
them back).

35. Poking: T1, T2, and T3

The "T1", "T2", and "T3" actions allow the instruction currently in MIR to be executed exactly as
though it were spliced into the execution flow of the program. The DMux is read after t1, t2, or
t3 of the instruction, then, for "t1" and "t3", the machine is clocked once more (to t2 or t4). MIR
is restored after execution.

36. Passive Mode

Passive mode suppresses automatic readout of registers that require clocks to be issued by Midas.
This allows scope observation without interference from automatic parts of Midas.

Midas implements three "states" called active, prepassive, and passive. The command menu
always prints the current state; bugging "active" will change the state to "prepassive"; bugging
"prepassive" will change to "passive"; and bugging "passive" will change to "active"--in other
words, these three states are sequenced through in a "ring."

In active mode, Midas will jam instructions into MIR and execute them to obtain the contents of
various Dorado register or memory words or to restore registers incidentally smashed while doing
something else; as discussed earlier, there are some situations when continuation is impossible
after doing this, and some hardware problems are difficult to observe when Midas is interfering to
this extent.

PrePassive mode is identical to active mode, but if you start the machine with "Go," "SS,",
"SimGo", "SimTest", or whatever, then Midas will automatically flip into passive mode the next
time the machine halts.

When you enter passive mode from the keyboard action, the state of the hardware is restored as
though it were about to continue from a step or breakpoint and TASK is restored to its value at
the last step or breakpoint. After this, no further clocks are given to the hardware except those
explicitly initiated by the user.

Dorado Midas Manual Edward R. Fiala 24 June 1983 44

After becoming passive, Midas doesn’t update registers on the display unless their values can be
read without issuing clocks. Since only DMux locations (includes MIR, IMOUT, IMBD, MCR,
TESTSYN, PROCSRN, TASK) can be read without clocks, only their values change while
passive.

Further, if you display a new non-passive register on the display, its value will not be read from
the hardware and garbage will be displayed as the value.

Items on the display for which the displayed value is doubtful will be flagged with a "~" as
discussed earlier.

Similarly, only registers whose values can be modified without issuing clocks may be written while
passive--these are MIR, CPREG, STROBE, and D1OUT (plus the artificial registers and
memories). Midas rejects attempts to modify other registers on the display. Of the writable
registers, only MIR, CPREG, and IMBD can be read, and only MIR can be read passively.
Consequently, if you write into CPREG, STROBE, or D1OUT by clicking the mouse over its
value, it will be written but the display will show the contents of a static, not something read from
the hardware--since other parts of Midas don’t update the statics, the value displayed only means
something immediately after the write.

The command menu is drastically altered while passive; only actions which can be executed while
passive are shown.

"Update" reads the machine state actively and then becomes passive again.

While passive, "SS" and "Go" at new addresses work as usual, so extra clocks are issued to do
these. However, "SS" and "Go" to continue a program do not issue any extraneous clocks--all of
the setup to continue took place at the time passive mode was entered; or after a step or
breakpoint, no clocks are issued to readout the machine state, so it is possible to continue simply
by modifying Stop, SetRun, and SetSS.

To do the most primitive kind of debugging while passive, it is expected that users will work as
follows: First, the POKE command file will be executed to become prepassive and display
STROBE, D1OUT, and CPREG, not ordinarily on the display. The user will then either do a Go
or SS, becoming passive at the break, or will bug prepassive to become passive immediately.
Next, MIR and CPREG will be written by modifying the displayed value. Then the Clock and
Control registers and Strobe can be manipulated by storing values into STROBE and D1OUT.

STROBE is displayed as two fields and D1OUT as three fields; when storing into these, you must
partition the input into fields as well. For STROBE the two fields are the address field (3 bits)
and data field (9 bits). Storing into STROBE will give a three-step strobing sequence using the
value of address and data you have selected. For D1OUT the three fields are the Strobe bit,
address, and data. (Note: The DMux will be read after writing MIR, but it is not read after
writing CPREG, STROBE, or D1OUT, used for lowest level debugging of the Midas
communication interface.).

Dorado Midas Manual Edward R. Fiala 24 June 1983 45

37. MIRdebug Feature

During ordinary operation, an IMX parity error or breakpoint halts Dorado after t2 of the
instruction affected by the parity error. Since MIR is loaded at t2, the MIR value with bad parity
has been overwritten when the machine stops, so if the path between the microstore and MIR is
experiencing intermittent failures, it will be difficult to diagnose what has gone wrong.

To aid checkout in this case, the control section has a debugging aid called MIRdebug, which will
disable the clock to MIR at t2 of an instruction with bad parity. When this aid is enabled, MIR
will still contain the bad data after the error-halt. This feature can be invoked by enabling
"MIRdebug" in the sub-menu put up by the "Reset" action. If a parity error halt occurs while
MIRdebug is enabled, then Midas will print the value read from IMX[CIA] so that you can
compare this with the value in MIR on the display to find out which bits are not propagating
from IMX into MIR.

The liability of this debugging aid is that you will not be able to continue from a breakpoint or
IMX parity error halt, so you should not enable MIRdebug unless you are searching for this type
of hardware failure.

38. Failure Diagnosis

Some actions to analyze test failures and report the hardware components involved have been
considered, and are likely to be implemented for IMBD, IMX, IFUM, RM, and STK.

Storage, Map, and cache failure analysis programs are essential, but should be provided outside
Midas.

39. Baseboard Microcomputer Stuff

The Alto can communicate directly with the Baseboard section of any Dorado connected to it
through its Diablo Printer interface as detailed in the "Dorado Debugging Interface" document.
It can:

(a) Select any one of the connected Dorados;
(b) Control the muffler/manifold system or give control to the baseboard microcomputer
(c) Interrupt the baseboard microcomputer;
(d) Pass information to the microcomputer through CPREG; and
(e) Read 8 bits of information from the microcomputer through the DoradoIn
mechanism.

Midas does (a) and (b) during initialization and during the "Dtach" action, as discussed in the
"Starting Midas" section; Midas uses (c), (d), and (e) together with a large set of communication
conventions to exchange information with a program running on the baseboard microcomputer.

$ABSOLUTE is the fundamental microcomputer memory, 8 bits wide. It contains all information
other than mufflers which Midas can access on the baseboard. This memory is divided into a
RAM (addresses 0 to 7778 or 0 to 1FF16) and a ROM (addresses 1000008 to 1777778 or 800016 to
FFFF16). The amount of ROM is adjustable; current Dorados have storage only for addresses
1400008 to 1777778. The microcomputer stores its internal registers and other information of

Dorado Midas Manual Edward R. Fiala 24 June 1983 46

interest in the lowest approximately 2008 bytes of $ABSOLUTE.

The $ABS memory is identical to $ABSOLUTE except that it shows the information 16 bits wide
rather than 8 bits wide. The MSTAT memory and the UPTIME and TGLITCH registers present
special information from $ABSOLUTE in human-readable form. The initial Midas display shows
this information. The information in the main display is easily interpretable once you get used to
it, or you can pretty-print the values in expanded form.

UPTIME is a six-byte counter that counts time in 102.4 msec ticks, starting at 0 after a boot.
TGLITCH holds the value that was in UPTIME at the end of the last power transient in which
some voltage or current was outside its specified range. Midas prints these items like "1 day
2:23:32", i.e., in standard day hours:minutes:seconds form, when they appear on the display.

MSTAT contains the current, maximum, minimum, and first values for each of the four power
supply voltages and currents and for temperatures on each of the 12 boards in the main frame.
The "first" items are recorded at completion of the power-up sequence; the maximum (minimum)
items are initialized to 0 (infinity) and then increased (decreased) when the current values exceed
(are less than) the previous maximum (minimum); the current values are updated repetitively by
the microcomputer main program. Each word in MSTAT contains four one-byte items: Voltage
and Current items have one byte for each of the four power supplies, and the printout is in volts
or amperes; temperature items are shown in degrees centigrade, and there is one of these for each
of the 12 boards in the main frame, arranged four-per-word in MSTAT.

Midas repetitively updates displayed values for UPTIME, TGLITCH, MSTAT, and the
PROBLEMS, OUTOFSPEC, and BADSUPPLYSPEC addresses in $ABSOLUTE that appear on
the display.

The microcomputer can update power supply information and temperatures for itself and for
ContB irrespective of whether or not it controls the muffler/manifold system, but other board
temperatures can only be determined when the microcomputer controls the muffler/manifold
system. Board temperatures can only be read when the -5 volt power supply is up.

When Dorado is running (i.e., SetRun is true), Dorado controls the muffler/manifold system and
neither Midas nor the microcomputer can access it; when the boot button is pushed or when
Midas detaches from a particular Dorado, the microcomputer controls the muffler/manifold
system, so its main program can read temperatures unless that Dorado is running. Finally, when
Midas is attached to a machine, it controls the muffler/manifold system but releases control to the
baseboard at regular intervals unless DWATCH is non-zero; when DWATCH (an address in the
fake MADDR memory) is non-zero, Midas will retain control of the muffler/manifold system and
arrange to select the muffler signal whose number is in DWATCH whenever possible.

The main breaker switch on the Dorado environmental carrier (near the floor) will turn on the 5
volt supply and one fan. The baseboard microcomputer automatically boots itself from ROM
whenever this main breaker is turned on, and then follows (approximately) the sequence discussed
below to bootstrap the rest of Dorado into operation:

turn on disk logic power and wait 20 seconds;
turn on disk spindle motor and wait 20 seconds;
turn on fans and +12, -5, and -2 volt supplies and wait 20 seconds;
initialize machine status information (discussed below);

Dorado Midas Manual Edward R. Fiala 24 June 1983 47

load and execute Dorado boot microcode, which loads and starts the system microcode.

During this sequence and afterwards, the microcomputer reports what is happening on its status
light, which will repeat a sequence of blinks followed by a pause during any problem condition.
The light sequences are interpreted as follows (the light blink information is also in PROBLEMS
on the Midas display):

1 blink boot in progress Wait for disk, power supplies, stable clock, etc. This is
normal during a power-on or 3-push boot sequence, as
discussed below.

2 blinks boot failed Tried to boot Dorado microcode but didn’t get the
appropriate handshake.

3 blinks transient power problem Power supply voltages went bad, now good again (details in
BADSUPPLYSPEC on display; TGLITCH shows the time
when this transient ended; MAXVOLTS or MINVOLTS
reveals the magnitude of the transient). Presently, only
voltage variations cause this condition, but eventually
amperage variations may also cause it (MAXAMPS and
MINAMPS on the display).

4 blinks power problem Voltages are now out-of-spec (details in OUTOFSPEC and
VOLTS on the display); eventually amperages may also
cause this condition (AMPS on the display).

5 blinks powered down Get this after powering down with a seven button-push
sequence (see below).

6 blinks over temperature Powered down because the temperature on some board went

over 60o C (MAXTEMP, MAXTEMP+1, and
MAXTEMP+2 show details).

7 blinks can’t get CP control Can’t get muffler/manifold control because Midas is hogging
it.

solid green AOK Bootstrap sequence is believed to have completed
successfully, there have been no occurrences of the error
conditions indicated by 3 through 6 blinks., and the
baseboard microcomputer gets regular CP control.

light off microcomputer down power is off, the microcomputer crashed, or the light burned
out (unlikely because LED’s are long-lasting)

As mentioned above, the main breaker switch on the Dorado turns on only the +5 volt supply
and one fan. The basic "on" state minimizes power consumption, and enables the baseboard
microcomputer to turn on other power supplies and fans.

When the user depresses the boot button on the back of the keyboard for at least 0.2 seconds and
not more than 2.5 seconds, the microcomputer records an event called a "button push"; depressing
for less than 0.2 seconds or longer than 2.5 seconds is ignored; depressing for longer than 2.5
seconds will nullify the entire boot sequence. The microcomputer will count button pushes until
1.5 seconds has elapsed with the button up; then it will carry out an action as follows:

1 push--ignored; standard emulators also monitor the raw boot button and may take
some action. Currently, they go through a software bootstrap sequence under the
assumption that currently loaded microcode is correct and running normally.

2 pushes--stops and resets the microprocessor and starts it in task 0 with tasking turned

Dorado Midas Manual Edward R. Fiala 24 June 1983 48

off at location 10678 (which is "InitMap" for the Alto emulator). This is intended to be
a forcible restart of currently-loaded microcode.

3 pushes--load IM from the Dorado boot loader and start it running as for 2 pushes.
This initiates a complete microcode bootstrap sequence, similar to the automatic power-
on boot. It assumes nothing about the current state of the machine.

4, 5, or 6 pushes--same as 3 pushes.

7 pushes--power down; all of the supplies and fans except the 5 volt supply and 1 fan are
powered down in a safe sequence, taking about 30 seconds. The 5 volt supply can then
be shut down from the main breaker switch; avoid turning off the main breaker switch
until the microcomputer has completed shutting down the disk and other supplies because
you will invoke the power failure safety circuits in the disk drives.

8 or more pushes--ignored; the user does this when he makes a mistake and wants to
start over.

Under normal conditions, in response to the boot button being pushed or the main breaker being
turned on, the microcomputer will show 1 blink for about 60 seconds and then show solid green;
if Midas attaches to the machine, the status light will usually show solid green, but will show 7
blinks (Midas hogging CP bus) during long-running Midas actions.

Note: if the Dorado was powered down at the onset of a button push sequence, any number of
pushes from 1 to 3 will do a total (3 push) boot.

Note: it is unsafe to turn on disk power when the -5 volt, -2 volt and +12 volt supplies are on
because, the resulting power surge will blow breakers in the building wall circuits. For this
reason, be sure to power down the Dorado logic supplies (7 push sequence discussed above)
before turning on the disks; then go through the complete power up sequence with a normal boot
sequence (1 to 3 pushes).

Note: Since the microcomputer uses the +5 volt supply itself, it will crash if that supply fails and
might subsequently auto-boot itself if the +5 volt supply starts working again. An over-
temperature shutdown never turns off the +5 volt supply.

Note: If the Dorado is alreay powered-on, the full bootstrap sequence can also be initiated by
pressing the reset button on the front panel of the Dorado chassis (inside the cabinet, if the
Dorado is cabinet-mounted). However, if the Dorado is in the shut down state, pushing the reset
button has no effect.

For full user-level details on booting, consult "Dorado Booting" by Ed Taft
([Indigo]<DoradoDocs>DoradoBooting.press) and "Dorado Booting--Implementation" by Ed
Taft ([Indigo]<DoradoDocs>DoradoBootingImple.press).

Dorado Midas Manual Edward R. Fiala 24 June 1983 49

40. Command Files Used With "RdCmds"

At the time this was written, the following command files were in use:

Table 9: Command Files

poke show CPREG, STROBE, and D1OUT in the right column and become passive for manual hardware
poking.

normal restore "normal" Midas display with the baseboard voltages, temperature, and currents in the right
display column.

tests restore "normal" Midas display with the hardware testing items in the right display column.
svcrash write the Midas display followed by a pretty-print of all DMux registers on the file Crash.Report.

proc show ProcH/L DMux signals in middle column.
control show ContA and ContB DMux signals in middle column.
mmc show MemC DMux and other signals in middle column.
mmd show MemD DMux signals in middle column.
mmx show MemX DMux signals in middle column.
ifud show IFU DMux signals in middle column.
dsketh show disk and ethernet controller DMux signals in middle column.
dsp show display controller DMux signals in middle column.

tpc show 208 TPC registers in middle column.

tlink show 208 TLINK registers in middle column.

alufm show 208 ALUFM locations in the middle column.

t show 208 T registers in middle column.

rbase show 208 RBASE registers in middle column.

membase show 208 MEMBASE registers in middle column.

tioa show 208 TIOA registers in middle column.

md show 208 MD registers in middle column.

brlo show BR 0 to BR 17 in middle column.
brhi show BR 20 to BR 37 in middle column.
hist show first 208 DMux histories in right column.

vh show first 208 DMux vertical histories in middle column.

Dorado Midas Manual Edward R. Fiala 24 June 1983 50

41. DMux Signal Assignments

Table 10A: Control Section DMux Signals

*Original addresses 0-77 and 260-377 are from ContA, 100-257 from ContB. Midas rearranges
many signals for convenient viewing. The second column shows the way Midas displays them.

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

 0 Stop CJNK0 0 0 Stop Always
 1 preStartCyclea 1 preStartCyclea Always
 2 dStartCycle 2 dStartCycle Always
 3 Phase0 3 Phase0 Always
 4 Phase4 4 Phase4 Always
 5 RWTPCorRWIM 5 RWTPCorRWIM Always
 6 BigBDispatch 6 BigBDispatch Tn ge 2 & switch’
 7 Dispatch 7 Dispatch Tn ge 2 & switch’
 10 WIM’ 10 WIM’ Always
 11 RIM’ 11 RIM’ Always
 12 WTPC’ 12 WTPC’ Always
 13 RTPC’ 13 RTPC’ Always
 14 FF=Notify’ 14:17 0
 15 FF=MulStep
 16 FF=BDispatch
 17 FF=BigBDispatch

 20:37 CIAInc[0:15] CIAINC 1 20:37 CIAInc[0:15] Tn ge 1

 40:57 CIA[0:15] CIA 2 40:57 CIA[0:15] Tn ge 2

 60 * CABlock BNT 3 60:73 0
 61:70 * bFF[0:7] 74:77 Bnt[0:3] Tn ge 2
 71:74 * JCN[0:3]
 75:77 * bJCN[4:6]

100:117 * MIR[1:16] PENC 4 100:113 0
114:117 bPEnc[0:3] Always

120:121 -- TNIA 5 120:121 --
122:137 TNIA[2:15] 122:137 TNIA[2:15] Unless return or IFUJump

140:141 -- BNPC 6 140:141 --
142:157 BNPC[2:15] 142:157 BNPC[2:15] Never

 160 CBTempSense CTASK 7 160:173 0
 161 bSWd’ 174:177 CTASK[0:3] Tn ge 2
 162 * IMLH
 163 * bRSTK.0
 164 * bdRSTK.0
 165 * bdIMLH
 166 * bdIMRH
 167 * bdJCN.7
170:173 CTASK[0:3]
174:177 CTD[0:3]

* Midas extracts the 44 MIR and 44 bdIM signals and arranges these as registers (MIR and IMOUT). This information
resides in DMuxTab in the peculiar MIR-loading format discussed in the "Dorado Debugging Interface" document, but is
viewed by users in the standard IM format.

Dorado Midas Manual Edward R. Fiala 24 June 1983 51

Table 10B: Control Section DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

200:217 * bdxx for IM[1:16] NEXT 10 200:203 0
214:217 Next[0:3] Always

220:237 * bdxx for IM[17:32] CTD 11 220:233 0
234:237 CTD[0:3] Tn ge 1

240:243 CS[0:3]’BDb RA 12 240:243 CS[0:3]’BDb Always
244:245 RAQuad[0:1]i 244:245 RAQuad[0:1]i Never
246:257 RA[1:10] 246:257 RA[1:10] Always

 260 Call TOPE 13 260 0
261:277 ToPE[1:15] 261:277 ToPE[1:15] Always

 300 * bJCN.7 CJNK1 14 300 Call Usually
 301 * IMRH 301 bSWd’ Always
 302 GND 302 GND Always
 303 LocalBr’a 303 LocalBr’a Always
 304 IFUNext’a 304 IFUNext’a Always
 305 LongJump’a 305 LongJump’a Always
 306 Return’a 306 Return’a Always
 307 CondBr’a 307 CondBr’a Always
 310 bFFok’c 310 bFFok’c Always
 311 FA=0’ 311 FA=0’ Always
 312 FA=1’ 312 FA=1’ Always
 313 bDoCBr 313 bDoCBr Never
 314 FF=UseDMD 314 Link_BMuxa Tn ge 1
 315 FF=TOffIsOK 315 B_Link’ Tn ge 1
 316 RIMorRTPCdly 316 RIMorRTPCdly Tn ge 2
 317 MulStep 317 MulStep Tn ge 2 & no switch

 320 FF=TaskingOn FFEQ 15 320 FF=TaskingOn Always
 321 FF=TaskingOff 321 FF=TaskingOff Always
 322 FF=MidasOn 322 FF=MidasOn Always
 323 Link_BMuxa 323 0
 324 FF=WriteLink 324 FF=WriteLink Always
 325 FF=Link_CPReg 325 FF=Link_CPReg Always
 326 FF=ReadLink 326 FF=ReadLink Always
 327 B_Link’ 327:331 0
330:333 Bnt[0:3] 332 FF=UseDMD Always
334:337 bPEnc[0:3] 333 FF=TOffIsOk Always

 334 FF=Notify’ Always
 335 FF=MulStep Always
 336 FF=BDispatch Always
 337 FF=BigBDispatch Always

* Midas extracts the 44 MIR and 44 bdIM signals and arranges these as registers (MIR and IMOUT). This information
resides in DMuxTab in the peculiar MIR-loading format discussed in the "Dorado Debugging Interface" document, but is
viewed by users in the standard IM format.

Dorado Midas Manual Edward R. Fiala 24 June 1983 52

Table 10C: Control Section DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

340:343 pNext[0:3] CJNK3 16 340:343 0
 344 Next=0 344 Next=0 Always
 345 CTask=0 345 CTask=0 Always
 346 PEncGtTrueNext’ 346 PEncGtTrueNext’ Always
 347 PEncLtTrueNext’ 347 PEncLtTrueNext’ Always
 350 StopTasks 350 StopTasks Tn ge 2
 351 PEnc=CT’ 351 PEnc=CT’ Always
 352 TPCBypass 352 TPCBypass Tn ge 2
 353 PreEmpting’ 353 PreEmpting’ Always
 354 bHoldA 354 bHoldA Always
 355 RepeatCurz 355 RepeatCurz Always
 356 bSwitch’a 356 bSwitch’a Tn ge 2
 357 bSwitchUp’ 357 bSwitchUp’ Tn ge 2

 360 -- READY 17 360 --
361:377 Ready[1:15] 361:377 Ready[1:15]

MIR 166:171 -- MIR[0:35] in MIR format

IMOUT 172:175 -- bdIM[0:35] in MIR format

Table 11: BaseBoard DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

2200:2207 ClkRate CLKRUN 110 2200:2207 ClkRate Never
 2210 ECLup 2210 ECLup Never
 2211 EnRefreshPeriod’ 2211 EnRefreshPeriod’ Never
 2212 IOReset’ 2212 IOReset’ Never
 2213 RunRefresh 2213 RunRefresh Never
 2214 MASync 2214 MASync Never
 2215 TBaseTempSense 2215 0
2216:2217 -- 2216:2217 --

Dorado Midas Manual Edward R. Fiala 24 June 1983 53

Table 12A: Processor Section DMux Signals

*Processor DMux addresses (400 to 777) are arranged so that the first 108 in each group of 208 are
from ProcH, the last 108 from ProcL. Signals are frequently duplicated (one from each board).
Midas does not rearrange any signals from the processor section.

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

ALUB 20 400:417 alub if driven from BMux or from constant

ALUA 21 420:437 alua Tn ge 1 driven from small constant & not shift

ABCON 22 440 MarMuxAEn’ Tn ge 1
 441 AmuxEn’ Tn ge 1
442:443 Amux0 to 1 Tn ge 1
 444 IOBout Tn ge 1
 445 BmuxEn’ Tn ge 1
446:447 Bmux0 to 1 Tn ge 1
450:457 =440:447 Tn ge 1

PERR 23 460 EMU’ Always
 461 CkMdParity’ Tn ge 2
462:463 --
 464 IOPerr Never
 465 MdPerr Never
 466 RmPerr Never
 467 TmPerr Never
 470 StkSela Always
 471 StkSelSaved Never
 472 IOBoutSaved Tn ge 2
 473 _MDSaved Never
474:477 =464:467 Never

SHMV 24 500:517 shmv Pmux odd or shift’

MAR 25 520:537 MAR.0’ to MAR.15’ Tn ge 1 driven from processor, no shift,
Tn eq 2 bits 8:15 when driven by IFU,
Tn eq 2 when not driven

-- 26 540:557 --

PRFA 27 560 Last=Curr’ Tn ge 2
 561 Curr=Next’ Always
 562 Shift’ Always
 563 IOBin’ Tn ge 1
564:566 FA=0’a to FA=2’a Always
 567 FA=3’ Always
570:577 =560:567 As above

Dorado Midas Manual Edward R. Fiala 24 June 1983 54

Table 12B: Processor Section DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

SCCON 30 600 --
 601 RepeatCurrC Always
 602 Holda Always
 603 LdTaskSim’ Always
 604 FFshift’ Always
 605 ShcWriteEn’ Tn ge 1
 606 LoadCnt’ Always
 607 PropCnt’ if DecCnt is false
 610 --
611:612 = 601:602 Always

 613 LdHoldSim’ Tn ge 1
614:616 =604:606 As above
 617 DecCnt’ Always

QPDCON 31 620 QshiftL’ Tn ge 1
 621 QshiftR’ Tn ge 1
 622 RmaskEn’ Tn ge 1
 623 LmaskEn’ Tn ge 1
 624 ShiftBitsEn’ Tn ge 1
625:627 Pmux0 to 2 Tn ge 1
630:633 =620:623 Tn ge 1

 634 ALUFWriteEn’ Always
635:637 = 625:627 Tn ge 1

ALUCON 32 640 Pdata.00 Tn ge 1 if source is ALU barring shifter
 641 Pdata.04 Tn ge 1 if source is ALU
 642 TIOAWriteEn’ Tn ge 1
 643 TIOABypass Always
 644 MBWriteEn’ Tn ge 2
 645 MBBypass Always
646:647 MBMux0 to 1 Tn ge 1
 650 aluCin Never
 651 Pdata.08 Tn ge 1 if source is ALU
 652 Pdata.12 Tn ge 1 if source is ALU
653:656 aluF0 to 3 Never
 657 aluM Never

NEXTCL 33 660:663 LastNext.0’ to .3’ Tn ne 1
664:667 CurrLast.0’ to .3’ Tn ne 1
670:677 =660:667 Tn ne 1

RADDR 34 700:703 Task2Back.0’ to 3’ Tn ge 2
704:707 Task3Back.0’ to 3’ Tn ge 2
710:713 RbWadr.0’ to 3’ Sometimes Tn ge 2
714:717 RbWadr.4 to 7 Tn ge 2

Dorado Midas Manual Edward R. Fiala 24 June 1983 55

Table 12C: Processor Section DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

STKRB 35 720 BCWriteEn’ Tn ge 2
 721 Cnt=Zero’ Never**
 722 Ioatta Never**
 723 ResEqZero’ Never**
 724 ResLtZero’ Never**
 725 ALUCarry Never**
 726 Overflow’ Never**
 727 RmLtZero’ Never**
 730 RBaseBypass’ Tn ge 1
 731 SelRBaseWadr’ Always
 732 RBaseWriteEn’ Tn ge 1
 733 BumpRBase Always
 734 BumpRSTK Always
 735 StkPMux1 Always
 736 StkPWriteEn’ Always
 737 RmOdd’ Never**

RTSB 36 740 ReSchedWrEn’ Always
 741 NextMacro Always
 742 RbWriteEn’ Tn ge 2
 743 RbSelMd Tn ge 2
 744 RbBypassDly Never**
 745 TbWriteEn’ Tn ge 2
 746 TbSelMd Tn ge 2
 747 TbBypass Tn ne 1
 750 StkPSaveEn’ Tn ge 1
 751 StkError Never**
752:757 = 742:747 As above

PJUNK 37 760 FFok’a Always
 761 --
 762 NextData’ Always
 763 B_Ext Always
 764 FF.0mem Always
 765 FF.1mem Always
 766 RisIFdata Always
 767 TisIFdata Always
 770 FFok’b Always
 771 _MD Always
 772 _MDI Always
 773 B_Ext Always
774:775 SbTskDly.0’ to 1’ Never
 776 RisIFdata Always
 777 TisIFdata Always

Dorado Midas Manual Edward R. Fiala 24 June 1983 56

Table 13A: MemC DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

 1000 ProcVA.04 PVAH 40 1000:1003 0
 1001 true 1004:1017 ProcVA.04 to 15 Tn ge 2 & no clk
 1002 WantCHdly’
1003:1017 ProcVA.07 to 19

 1020 MemB.0 PVAL 41 1020:1037 ProcVA.16 to 31 Tn ge 2 & no clk
1021:1022 ProcVA.05 to 06
 1023 MemB.1
1024:1037 ProcVA.20 to 31

1040:1047 Aad.0a to 7a MAPAD 42 1040:1046 0
1050:1057 MapAd.1 to 8 1047:1057 MapAd.0 to 8 Never**

 1060 dVA_Vic
 1061 ForceDirtyMiss
 1062 UseMcrV
 1063 DisBR
 1064 DisCflags
 1065 DisHold
 1066 NoRef HIT 43 1060:1066 0
 1067 MiscPCHP’ 1067 MiscPCHP’ Tn ge 2
1070:1071 ColVic.0 to 1 1070:1071 ColVic.0 to 1 Sometimes
 1072 HitColVA.par 1072 HitColVA.par 0 on miss
 1073 HitColDirty 1073 HitColDirty 0 on miss
 1074 Hita 1074 Hita 0 on ForceMiss if Tn ge 2
1075:1077 MemB.2 to 4 1075:1077 0

1100:1101 Victim.0’ to 1’ HOLD 44 1100:1101 0
1102:1103 NextV.0’ to 1’ 1102 true
 1104 MiscHold’ 1103 WantCHdly’ Tn ge 1
 1105 MDhold’ 1104 MiscHold’ Tn ge 2
 1106 RefHold’ 1105 MDhold’ Tn ge 2
 1107 BLretry 1106 RefHold’ Tn ge 2 & not ForceMiss
 1110 AwasFree’ 1107 BLretry If forced to 0
 1111 Dbusy 1110 AwasFree’ Tn ge 2
 1112 DbufBusy 1111 Dbusy Tn ge 2
 1113 AtookST 1112 DbufBusy Tn ge 2
 1114 SomeExtHold’ 1113 AtookST Tn ge 2
 1115 Afree’ 1114 SomeExtHold’ On StkError % CHoldReq
 1116 StartMap’ 1115 Afree’ if EcHasA
 1117 AwantsMapFS’ 1116 StartMap’ Always

 1117 AwantsMapFS’ Always

Dorado Midas Manual Edward R. Fiala 24 June 1983 57

Table 13B: MemC DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

 1120 Store_InA PAIR 45 1120 Store_InA Tn ge 2 % EcHasA
 1121 IoStoreInA 1121 IoStoreInA Tn ge 2 % EcHasA
 1122 Map_InPair’ 1122 Map_InPair’ Tn ge 2
 1123 FlushInA 1123 FlushInA Tn ge 2 % EcHasA
 1124 PrefetchInA 1124 PrefetchInA Tn ge 2 % EcHasA
 1125 IfuRefInA 1125 IfuRefInA Tn eq 2 % EcHasA
 1126 IoRefInA’ 1126 IoRefInA’ Tn ge 2 % EcHasA
 1127 CacheRefInA 1127 CacheRefInA Tn ge 2 % EcHasA
 1130 MapAd.0 1130 0
 1131 PrivRefInPair 1131 PrivRefInPair Tn ge 2
 1132 VicInPair’ 1132 VicInPair’ Tn ge 2 sometimes
 1133 FSinPair’ 1133 FSinPair’ Tn ge 2 sometimes
 1134 bEcHasA 1134 bEcHasA Tn ge 2
 1135 KillIfuRef 1135 KillIfuRef Always
 1136 _PrVArow 1136 _PrVArow Tn eq 2
 1137 PairFull’ 1137 PairFull’ Tn ge 2

1140:1143 PipeAd.0 to 3 PIPEAD 46 1140:1143 PipeAd.0 to 3 Tn eq 2
1144:1145 CacheConfig[0:1] 1144:1145 CacheConfig[0:1] Never
1146:1147 PageConfig[0:1] 1146:1147 PageConfig[0:1] Never
1150:1157 -- 1150:1157 --

MCR 57 3760 dVA_Vic Never
 3761 ForceDirtyMiss Never
 3762 UseMcrV Never
3763:3764 Victim[0:1] Never
3765:3766 NextV[0:1] Never
 3767 DisBR Never
 3770 DisCflags Never
 3771 DisHold Never
 3772 NoRef Never
3773:3774 0
 3775 WakeOnCL Never
 3776 ReportSE’ Never
 3777 NoWakeups Never

AAD 161 3660:3663 0
3664:3673 Aad.0a to 7a Never
3674:3677 0

MEMB 162 3700:3712 0
3713:3717 MemB.0 to 5 Never

Dorado Midas Manual Edward R. Fiala 24 June 1983 58

Table 14A: MemD DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

 1200 SinD.00 MEMD0 50 1200 SinD.00 Never
 1201 CD.00 1201 CD.00 Never
 1202 D0in.00 1202 D0in.00
 1203 D1in.00 1203 D1in.00
 1204 EcSout.00’ 1204 EcSout.00’
 1205 EcInD.0 1205:1206 0
 1206 Dbuf_’
 1207 -- 1207 --
 1210 D.00 1210 D.00
 1211 dMD.00 1211 dMD.00
 1212 D1BCE’c 1212 Fout.00
 1213 WriteD1’d 1213:1217 0
 1214 DontWriteMDM
1215:1217 Dad1.10b to 12b

 1220 D0BCE’c
1221:1222 Dad.00f to 01f DAD 51 1220:1221 Dad.00f to 01f
1223:1231 Dad.02’c to 08’c 1222:1230 Dad.02’c to 08’c
 1232 Dad.09’ 1231 Dad.09’
1233:1235 Dad0.10c to 12c 1232:1234 Dad0.10c to 12c
 1236 D0ACE’c 1235:1237 Dad1.10b to 12b
 1237 WriteD0’e

 1240 F_D FD 52 1240 F_D Tn ge 2
 1241 D_Dbuf 1241 D_Dbuf Tn ge 1
 1242 Sout_D 1242 Sout_D Tn ge 1
 1243 Fout_D 1243 Fout_D Tn ge 1
 1244 D_CD 1244 D_CD Tn ge 1
 1245 Md_D 1245 Md_D Tn ge 1
 1246 MakeMDM_D’ 1246 MakeMDM_D’ Always
 1247 bFastD_Dbuf 1247 bFastD_Dbuf Always
 1250 Fout.00 1250 Dbuf_’ Tn ge 1
 1251 DadH_’ 1251 DadH_’ Tn ge 2
 1252 DontLoad1 1252 DontLoad1 Always
 1253 GenPh1 1253 GenPh1 Tn ge 2 & EnEcGen
1254:1257 -- 1254 DontWriteMDM Tn eq 2

1255:1257 --

Dorado Midas Manual Edward R. Fiala 24 June 1983 59

Table 14B: MemD DMux Signals

DMux Signal Midas Midas Midas Signal Simulation
Address Name Word Word DMux Name Condition
(Octal) Name Number Address

1260:1263 MDMad.0’ to 3’ EC 53 1260:1263 0
 1264 StartEcChk’ 1264 StartEcChk’ Always
 1265 StartEcGen’ 1265 StartEcGen’ Always
 1266 D1ACE’c 1266 0
 1267 --
 1270 EcInD.1 1267:1270 EcInD.0 to 1 Never
 1271 WordInError’ 1271 WordInError’ When DisableEc true
 1272 DisableEc’ 1272 DisableEc’ Never**
 1273 ChkPh1 1273 ChkPh1 Tn ge 2 & preEcEn
 1274 ChkPh4’ 1274 ChkPH4’
 1275 ChkLastPh6’ 1275 ChkLastPh6’
 1276 DoubleError’ 1276 DoubleError’
 1277 ChkErrEn’ 1277 ChkErrEn’

1300:1306 tSyn0 to 6 TSYN 54 1300:1306 tSyn0 to 6
 1307 tSyn7x 1307 tSyn7x
1310:1317 -- 1310:1317 --

MDMAD 55 3540:3553 0
3554:3557 MDMad.0’ to 3’ Tn ge 2

DADE 56 3560 D0ACE’c Two chip enables always
 3561 D0BCE’c predicted false, other two
 3562 D1ACE’c if (T1Transport & (Tn ge 2))
 3563 D1BCE’c
 3564 WriteD0’e Tn ge 2
 3565 WriteD1’d Tn ge 1
3566:3577 0

Dorado Midas Manual Edward R. Fiala 24 June 1983 60

Table 15A: MemX DMux Signals

* = moved elsewhere (ProcSrn[0:3] and 3 bits for Mcr_ are moved)

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

MAPBUF 60 1400:1417 Mapbuf[0:15] Tn ge 2

P34INEC 61 1420:1421 Mapbuf.16 to 17 Tn ge 2
 1422 ProcTagInA Tn ge 2
 1423 PrivRefInPair Always
1424:1427 Pipe34Ad.0 to 3 Tn ge 2
 1430 WPinEc1 Tn ge 2
 1431 MapTroubleInEc1 Tn ge 2
 1432 TagInEc2 Never
 1433 CacheRefInEc2 Never
 1434 Store_InEc2’ Never
 1435 IFURefInEc2 Never
 1436 MapPEInEc2 Never
 1437 MapTroubleInEc2 Tn ge 2

MCDTSK 62 1440:1443 MDMtagAd.0 to 3 Always
1444:1447 CurTask.0 to 3 Always
 1450 ProcTag Always
 1451 MDMtag’ If CacheRefInPair & (Atask eq CurTask)
 1452 At=Curt’ Always
 1453 Dt=Curt’ Always
1454:1457 Dtask[0:3] Never

STA 63 1460 VictimInST Tn ge 2
 1461 STIdle’ Always
 1462 StartST Always
 1463 STWait-Mem’ Tn ge 2
1464:1467 STState[0:3] Tn ge 2
 1470 STfree’ Tn ge 2
 1471 VictimInA Always
 1472 MapRfshDly Tn ge 1
 1473 RefUsesDInEc1 Tn ge 2 & StartEc1
 1474 AWordRefToD Always
 1475 MapWantsPipe Tn ge 2
 1476 MapFree Tn ge 2
 1477 UseAsrn Tn ge 2

APESRN 64 1500:1503 Asrn.0 to 3 Tn ge 2
1504:1507 ProcSrn.0 to 3 Tn ge 2
 1510 MapIs16K Never
 1511 MapIs64K Never
 1512 MapIs256K Never
 1513 RfshAd.0 Never
1514:1517 Ec2Srn[0:3] Tn ge 2

Dorado Midas Manual Edward R. Fiala 24 June 1983 61

Table 15B: MemX DMux Signals

* = moved elsewhere (3 bits for Mcr_ are moved)

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

STOUT 65 1520 LoadEn’ Never
 1521 EcLoadEn’ Never
 1522 ShiftEn’ Tn ge 2
 1523 EnEcGen’ Tn ge 2
 1524 MapWait-ST’ Tn ge 2
 1525 STPerrNow’ Never
 1526 EnableAllMods Never
 1527 StartEc1 Never
 1530 PairFull Always
 1531 Transporta Always
 1532 EcFault’ Never
 1533 MemError’ Never
 1534 --
 1535 ChipsAre256/16K Never
 1536 ChipsAre64K Never
 1537 VicSTPerr-. Never

TAGAT 66 1540 MemColSela Never
 1541 EcHasA Tn ge 2
 1542 Ptag Never
 1543 MapWait-Ec2 Tn ge 2
 1544 Dtag’ Tn ge 2
 1545 sHold Always
 1546 MapWait-MemState’ Always
 1547 MapRfsh Always
 1550 AcanHaveD Tn ge 2
 1551 CacheRefInPair’ Tn ge 2
 1552 EcWordRefToD Always
 1553 ChkLastPh6 Tn ge 2
1554:1557 Atask.0 to .3 Tn ge 2

MEMST 67 1560 MapWait-MemD Never
 1561 MapWait-MemIO Always
 1562 MemIdle’ Always
 1563 MemFree Tn ge 2
1564:1567 MemState.0 to 3 Tn ge 2
 1570 FinNext Tn ge 2
 1571 MemRfsh Tn ge 2
 1572 StopFinTaskLoad Tn ge 2
 1573 DdataGood’ Tn ge 2
 1574 MakeSout_D Tn ge 2
1575:1577 MakeTransport[0:2] Never**

-- 70 1600:1607 --

Dorado Midas Manual Edward R. Fiala 24 June 1983 62

Table 15C: MemX DMux Signals

* = moved elsewhere (ProcSrn[0:3] and 3 bits for Mcr_ are moved)

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

FLTMEM 71 * 1620 WakeOnCL
* 1621 ReportSE’
* 1622 NoWakeups
 1623 ProcSrn_’ Tn ge 1
 1624 Faults Never
 1625 LoadFltSrn If independent of FaultSrn eq 0
 1626 ReportFault Always
 1627 MapPEInMem Never
 1630 MapTroubleInMem Never
 1631 RfshInMem Tn ge 2
 1632 WriteInMem’ Tn ge 2
 1633 MemWP Never
 1634 IOFetchInMem’ Tn ge 2
 1635 RefUsesD10InMem’ Tn ge 2
 1636 RefUsesDInMem Tn ge 2
 1637 DirtyIOFetchInMem Tn ge 2

RFSSRN 72 1640 STPerr Never
 1641 MapPerr Never
 1642 HitPerr Never
 1643 WantRfsh Tn ge 2
 1644 NeedRfsh Always
 1645 StartMema Tn ge 2
 1646 StkWake Never
 1647 _FaultInfoDly’ Never
1650:1653 MapSrn.0 to 3 Tn ge 2
654:1657 MemSrn.0 to 3 Tn ge 2

EC1MAKE 73 1660 StartEc2’ Tn ge 2
 1661 Ec1Free’ Tn ge 2
 1662 Ec1Idle Always
1663:1664 Ec1Func.0 to 1 Tn ge 2
1665:1667 Ec1State.0 to 2 Tn ge 2
 1670 EcWantsAa Tn ge 2
 1671 FoutNext Tn ge 2 usually
 1672 MakeFout_D Tn ge 2 usually
 1673 MakeD_CD Tn ge 2 usually
 1674 MakeD_Dbuf Always
 1675 MakeF_D Always
 1676 MakeMD_D Always
 1677 MakeMDM_D’ Tn ge 2

MAPCTRL 74 1700:1701 MapbufHi.0 to 1 Never
 1702 MapRAS’ Tn ge 2 when forced high
 1703 MapCAS’ Tn ge 2 when forced high
 1704 MapWE’ Tn ge 2 % StartMap
 1705 RefWE’ Tn ge 2
 1706 DirtyWE’ Tn ge 2 % StartMap
 1707 0
 1710 MapWait Always
 1711 WantMapWait’ Always
 1712 ValidMapFltInEc2’ Tn ge 2
1713:1714 MapFnc.0’ to 1’ Tn ge 2
1715:1717 MapState.0 to 2 Tn ge 2

Dorado Midas Manual Edward R. Fiala 24 June 1983 63

Table 15D: MemX DMux Signals

* = moved elsewhere (ProcSrn[0:3] and 3 bits for Mcr_ are moved)

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

PEEC 75 1720:1723 PEsrn.0 to 3 Always
1724:1727 Ec1Srn.0 to 3 Tn ge 2
 1730 CacheLoad’ Always
 1731 Ec2Free Tn ge 2
 1732 Ec2Idle Always
1733:1734 Ec2Func.0 to 1 Tn ge 2
1735:1737 Ec2State.0 to 2 Tn ge 2

INMAP 76 1740 RefUsesDInMap’ DirtyIOFetchInMap % ((Tn ge 2) & StartMap)
 1741 RefUsesD10InMap’ Tn ge 2
 1742 DirtyIOFetchInMap’ Never
 1743 WriteInMap’ Tn ge 2
 1744 IOFetchInMap’ Tn ge 2
 1745 _MapInMap Never
 1746 Store_InMap’ Tn ge 2
 1747 EcWantsPipe4’ Tn ge 2
1750:1757 --

Dorado Midas Manual Edward R. Fiala 24 June 1983 64

Table 16: Disk Controller DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

KSTATE 100 2000 0
 2001 IndexTW
 2002 SectorTW
 2003 SeekTagTW
 2004 RdFifoTW
 2005 WrFifoTW
 2006 ReadData
 2007 WriteData
 2010 EnableRun
 2011 DebugMode
 2012 RdOnlyBlock’
 2013 WriteBlock’
 2014 CheckBlock’
 2015 Active
2016:2017 Select[0:1]

KSTAT 101 2020 SeekInc
 2021 HeadOvfl
 2022 DevCheck
 2023 NotSelected
 2024 NotOnLine
 2025 NotReady
 2026 SectorOvfl
 2027 FifoUnderflow
 2030 FifoOverflow
 2031 ReadDataErr
 2032 ReadOnly
 2033 CylOffset
 2034 IOBParityErr
 2035 FifoParityErr
 2036 WriteError
 2037 ReadError

KRAM 102 2040:2043 RamAddr[0:3]
2044:2057 Ram[4:15]

KTAG 103 2060 DriveTag
 2061 CylinderTag
 2062 HeadTag
 2063 ControlTag
 2064 Tag.000
 2065 Tag.00
2066:2077 Tag[0:9]

KFIFO 104 2100 ShiftIn
 2101 ShiftOut
 2102 ComputeECC
 2103 NextBlock
 2104 LoadTag
 2105 CntDone’
 2106 OutRegFull
 2107 InRegFull
2110:1113 FifoWaddr[0:3]
2114:2117 FifoRaddr[0:3]

Dorado Midas Manual Edward R. Fiala 24 June 1983 65

Table 17: Ethernet Controller DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

ERX0 105 2120 PDNew
 2121 PDOld
2122:2125 PDCnt[0:3]
 2126 PDCntCtrl
 2127 ReportCollisions
 2130 RxWakeupsOn
 2131 EthData.18
 2132 RxCRCError
 2133 --
 2134 RxDataLate
 2135 RxBusRegFull
 2136 RxFifoFull
 2137 RxFifoEmpty

ETX 106 2140:2142 TxState[0:2]
 2143 TxEOP
 2144 TxBusRegFull’
 2145 TxGone
 2146 TxSREmpty’
 2147 TxCntDwn’
 2150 TxCRCEnbl
 2151 TxGo
 2152 TxData
2153:2154 TxSRCtrl[0:1]
 2155 PEOutput
 2156 TxFifoFull
 2157 TxFifoEmpty

ERX1 107 2160:2162 RxState[0:2]
 2163 RxCollision
 2164 PDCarrier
2165:2166 PDEvent[0:1]
 2167 RxSRFull’
 2170 RxEOP
 2171 RxSync’
 2172 RxIncTrans
 2173 RxCRCReset
 2174 RxCRCClk
 2175 RxData
2176:2177 RxSRCtrl[0:1]

Dorado Midas Manual Edward R. Fiala 24 June 1983 66

Table 18A: IFU DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

MEMRQ 120 2400:2407 PcF[8:15] Tn eq 2 & Testing’
 2410 NewF Tn eq 2 & Testing’
 2411 KillResponse Tn ge 1 & Testing’
 2412 Pause Tn ge 2 & Testing’ unless IFUM write
 2413 RefOutstanding Never
 2414 IncPcF Never
 2415 IncPcFG’ Always
 2416 WantIfuRef’ Always
 2417 ThreeOutOfFive Always

LOADS 121 2420 ValidRam Always
 2421 J_OddF Always
 2422 RealPcFG.15 Tn eq 2 & Testing’ unless IFUM write
 2423 FDv Tn eq 2 & Testing’ unless IFUM write
 2424 GDv Tn eq 2 & Testing’ unless IFUM write
 2425 HDv Tn eq 2 & Testing’ unless IFUM write
 2426 JDv Tn eq 2 & Testing’ unless IFUM write
 2427 MDv’ Tn eq 2 & Testing’ unless IFUM write
 2430 EnableFG’ Always
 2431 XLd Always
 2432 AlphaXLd Always
 2433 BrkLd Tn ne 1
 2434 MLd Always
 2435 InstrAddrLd Tn ge 2
 2436 JLda Always
 2437 GLd’ Always

HJ 122 2440:2447 H[0:7] Never
2450:2457 J[0:7]b Tn ge 2 & Testing’ unless IFUM write when no clock or

on J_H the 1’s are checked

MX 123 2460 TwoAlphaX Tn ge 2 & Testing’
 2461 JFault Tn ge 2 & Testing’ unless IFUM write
 2462 HFault’ Tn eq 2 & Testing’
 2463 NM=17 Tn ge 2 & Testing’
 2464 TwoAlphaM Tn ge 2 & Testing’
 2465 TypeJumpM’ Tn ge 2 & Testing’
2466:2467 LengthM[0:1] Tn ge 2 & Testing’
2470:2471 DSel[0:1] Tn ge 2 & Testing’ unless XShift with DSel eq 0
2472:2473 LengthX[0:1] Tn ge 2 & Testing’
2474:2477 NX[0:3] Tn ge 2 & Testing’ when unclocked or NM eq 17

Dorado Midas Manual Edward R. Fiala 24 June 1983 67

Table 18B: IFU DMux Signals

Midas Midas DMux Signal Simulation
Word Word Address Name Condition
Name Number

JMPEXC 124 2500 Exception Always
 2501 SayNotReady Always
 2502 WantResched Tn ge 2 & Testing’
 2503 SawRamParityErr Only during Reset
 2504 SawFGParityErr Only during Reset or when testing
 2505 ReschedPending Tn ge 2 & Testing’
 2506 KReady Always
 2507 --
 2510 ZapFGH Always
 2511 ZapJ Always
 2512 NewJ Tn ge 2 & Testing’ unless IFUM write
 2513 DoJump Tn ge 2 & Testing’ unless IFUM write
 2514 TurnOffAlu Tn even
 2515 NewGo Always
 2516 BMuxEnable Tn even
 2517 FGFault Never

PCJ 125 2520:2527 PcJ[8:15] Tn eq 2 & Testing’ unless IFUM write
 2530 MLdDly’ Tn ge 2 & Testing’
 2531 BetaInM Tn ge 2 & Testing’
 2532 FGErrDly Tn ge 2
 2533 RamErrDly Tn ge 1
2534:2535 InstrSet Never**
 2536 OneByteJumpInJ Tn ge 2 & Testing’
 2537 OneByteJumpInJd Tn ge 2 & Testing’

FFK 126 2540 Test_ Tn ge 1
 2541 GenOut_’ Tn ge 1
 2542 NewPC_ Tn ge 2 & Testing’
 2543 IfuReset Tn ge 2
 2544 BrkIns_ Tn ge 2 & Testing’
 2545 Testing Tn ge 2
 2546 SignX’ Never
 2547 BrkPending Tn eq 2 & Testing’
2550:2552 --
 2553 TypeJumpK’ Never
 2554 TypePauseK’ Never
2555:2556 LengthK[0:1] Never
 2557 SignK Never

Dorado Midas Manual Edward R. Fiala 24 June 1983 68

Table 19: Display Controller DMux Signals

Midas Midas Midas Signal Simulation
Word Word DMux Name Condition
Name Number Address

APTRS 140 3000 ACurrentWCBFlag Never
3001:3007 AReaderPtr.1 to 7 Never
 3010 ANextWCBFlag Never
3011:3017 AWriterPtr.1 to 7 Never

BPTRS 141 3020 BCurrentWCBFlag Never
3021:3027 BReaderPtr.1 to 7 Never
 3030 BNextWCBFlag Never
3031:3037 BWriterPtr.1 to 7 Never

ITEMS 142 3040:3047 AItem.0 to 7 Never
3050:3057 BItem.0 to 7 Never

SPSIZE 143 3060:3063 AServicePtr.1 to 4 Never
3064:3067 BServicePtr.1 to 4 Never
 3070 AFifoFull Never
 3071 BFifoFull Never
 3072 ASize8 Never
 3073 ASize8-4 Never
 3074 ASize8-4-2 Never
 3075 BSize8 Never
 3076 BSize8-4 Never
 3077 BSize8-4-2 Never

RESON 144 3100 AOn Never
 3102 BOn Never
3103:3104 ARes.0 to 1 Never
3105:3106 BRes.0 to 1 Never
 3107 OISRcvdData Never
3110:3117 --

Dorado Midas Manual Edward R. Fiala 24 June 1983 69

Table 20: Other DMux Stuff

* BMUX and ESTAT signals are obtained from the four-bit slice readout. The temperature sensing signals are moved
from the position in which the hardware reads them out.

Midas Midas Midas Signal Simulation
Word Word DMux Name Condition
Name Number Address

TEMP 160 3500 CBTemp Never
 3501 BaseTemp Never
 3502 ProcHTemp Never
 3503 ProcLTemp Never
 3504 IFUTemp Never
 3505 DskEthTemp Never
3506:3517 --

BMUX 163 -- BMux[0:17] if driven from ALUB

ESTAT 164 4020 PEIMrh
 4021 PEIMlh
 4022 MdPE
 4023 RAMPEen
 4024 IOBPE
 4025 RAMPE
 4026 MemPE
 4027 MemPEen
 4030 CIMPErh
 4031 CIMPElh
 4032 Stopped
 4033 MdPEen
 4034 IMrhPEen
 4035 IMlhPEen
 4036 IOBPEen
 4037 MIRDebugen

Dorado Midas Manual Edward R. Fiala 24 June 1983 70

42. Hardware Read/Write Methods

This section discusses the methods Midas uses to read and write each register and memory, so that
failing data paths can be identified when Midas reports problems via "Test" or "TestAll". These
sequences are included to help maintainers determine what registers or data paths might be
malfunctioning when something is found to be non-working.

To understand how the sequences given below communicate information between Midas and the
Dorado, you have to understand the lowest-level communication protocols which are discussed in
"Dorado Debugging Interface" ([Indigo]<DoradoDocs>DoradoDebugging.press). These primitives
are outlined here:

DoradoOut Storing into DoradoOut sends 13d bits of control information over the printer
interface to the (connected) Dorado. This information is interpreted by the
receiving hardware as a 3-bit address field, 9-bit data field, and 1-bit strobe.

Strobe A strobe operation consists of 3 DoradoOut’s identical except for the strobe bit,
which is first off, then on, then off again. Strobe sequences are used to send
commands to the Dorado.

Load Clock A register internal to the communication interface that can be loaded with one
strobe operation.

Load Control Another register internal to the communication interface that can be loaded with
one strobe operation.

Load MIR MIR can be loaded by four strobe operations, each loading 9 bits of the
microinstruction. Midas computes and sends the parity also.

Load CPReg Two strobe operations load the 16d-bit CPReg, the register from which Midas
usually sends data to the Dorado.

Xct(mic) A microinstruction can be executed by loading it into MIR and single-stepping the
Dorado. To get data from Midas to the Dorado, Midas first loads CPReg with
data, then executes a microinstruction which does "Q _ Link" or "T _ Link", for
example, while the UseCPReg bit in the Clock register is true. This kind of
sequence is denoted by "Q _ CPReg(data)" below, which means that the data is
routed from CPReg through the multiplexor on the ContA board to the Q or T
register. The fact that the B data path is used is not explicitly stated in the
microinstruction, but B is the only possible data path; this implicit use of data paths
in the examples below is consistent with the conventions of the microprogramming
language.

Also, a function called "B _ RWCPReg", solely for use by Midas and the
baseboard microcomputer is used to do "Link _ B _ CPReg(data)". This function
is needed when reading and writing some registers in the control section.

DoradoIn Reading from DoradoIn obtains 5 bits of data selected according to bits 0..4 in the
last DoradoOut operation; it is not necessary to use a strobe operation for the
purposes of DoradoIn. The fifth bit is always the current DMux bit; the first 4 bits
can be any of the 4 B nibbles, any of 4 error nibbles, either of two MAReg nibbles
or the MASync bit (for communication with the baseboard microcomputer).

Read B Reading 16 bits of B is accomplished by a sequence of four DoradoOut/DoradoIn
operations to obtain the 4 nibbles of B data. When a microinstruction is executed
for the purpose of extracting data on the B, it is written like "B* _ Q"; "*"
denotes that Midas captures the B data.

Read DMux Midas has special microcode to extract all 2048d DMux signals using strobe
operations. This is done in about (32+39)/2 * 2048 * .00018 msec = 13 msec.
Assembly code uses about 15 msec more appending B and ESTAT to the readout,
rearranging certain signals, and computing histories.

SelectTask Complicated. See "Dorado Debugging Interface".

SingleStep Complicated. See "Dorado Debugging Interface".

Dorado Midas Manual Edward R. Fiala 24 June 1983 71

Run Complicated. See "Dorado Debugging Interface".

Stop Complicated. See "Dorado Debugging Interface".

LoadDMD Execute a "manifold" operation by loading the 11-bit DMux address with a control
function and then executing it.

MCXct MCXct is used to communicate with the baseboard microcomputer. Midas first
loads CPReg with a command and then interrupts the microcomputer with
DoStrobe(Clock+BaseBAtten); a slowed strobing sequence is used because the
microcomputer requires it. Then Midas waits for an acknowledge by doing
DoradoIn’s until the microcomputer responds with MASync. MCXct can be used
while the Dorado is running to extract voltage, current, temperature, and daytime
information from the baseboard microcomputer. DoradoIn can be used to get two
nibbles of information from the baseboard.

Each sequence below gives the microinstructions or other sequences executed by Midas to read and
write each register and memory. These sequences do not include the shifting and masking and
other transformations which occur within Midas to position data. Sequences bracketed with "[]" are
used to restore registers incidentally smashed on the read or write. The restoration sequences ARE
NOT executed when using "Test" or "TestAll"; they ARE executed when registers or memory
words appearing in a name value menu are accessed.

D1OUT Write only. This artificial register allows the user to execute the most primitive control
function for the Dorado interactively.

STROBE Write only by DoStrobe(D), which is equivalent to three D1OUT’s with the strobe bit first off,
then on, then off again. This artificial register allows the user to send strobed commands
interactively.

CPREG Read by B* _ CPReg;
[Restore MIR].

Write by Midas direct handle.

MIR Read from DMux.

Write by Midas direct handle.

IMOUT Artificial read-only register (part of DMux memory).

Q Read by B* _ Q;
[Restore MIR].

Write by Q _ CPReg(new value); Noop;
[Restore MIR; read DMux].

CNT Read by
T _ Cnt;
B* _ T;
[T _ CPReg(SavedT); Noop; restore MIR].

Write by
Q _ CPReg(new value);
Cnt _ Q;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

SHC Read by
T _ ShC;
B* _ T;
[T _ CPReg(SavedT); Noop; restore MIR;].

Write by

Dorado Midas Manual Edward R. Fiala 24 June 1983 72

Q _ CPReg(new value);
ShC _ Q;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

MEMBX Read by
T _ Pointers;
B* _ T;
[T _ CPReg(SavedT); Noop; restore MIR].

Write by
MemBX _ <new value>S;
[Restore MIR; read DMux].

STKP Read by
T _ TIOA&StkP;
B* _ T;
T _ Pointers;
B* _ T;
[T _ CPReg(SavedT); Noop; restore MIR]. Note that StkOvf and StkUnd are obtained from
Pointers while the value in the register is obtained from TIOA&StkP.

Write by
Q _ CPReg(new value);
StkP _ Q;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux]. StkOvf and StkUnd are read-only.

TASK Read returns value saved at breakpoint.

Write with SelectTask;
[Restore MIR; read DMux].

PROCSRN Read by B* _ Config;
[Restore MIR].

Write by Q _ CPReg(new value); ProcSRN _ Q;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

MCR Read from DMux.

Write by
T _ CPReg(new value);
MCR _ T;
[T _ CPReg(SavedT); Noop; restore MIR; read DMux].
The MCR register is written only when DMuxTab is selected by the "DMux" action. Writing
MCR is illegal when OldDMuxTab or DWrong is selected; and DCheck is written instead
when DCheck is selected.

CONFIG Read only by
B* _ Config;
[Restore MIR].

PCX Read only by
B* _ PCX;
[Restore MIR].

INSSET Read by
B* _ IFUMLH’;
[Restore MIR].

Write by
Q _ CPReg(new value);
InsSetOrEvent _ Q;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

Dorado Midas Manual Edward R. Fiala 24 June 1983 73

TESTSYN Write only by
SelectTask(16B);
T _ CPReg(constant);
MCR _ T;
Q _ CPReg(new value);
Noop;
Store _ T, DBuf _ Q;
LoadTestSyndrome;
[T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT); Noop; Q _ CPReg(SavedQ);
SelectTask(SavedTask); restore MIR; read DMux].

UPTIME Artificial read-only register (part of ABSOL memory).

TGLITCH Artificial read-only register (part of ABSOL memory).

EVCNTA Read only by B* _ EventCntA’;
[Restore MIR].

EVCNTB Read by B* _ EventCntB’;
[Restore MIR].

Write by
Q _ CPReg(new value);
EventCntB _ Q;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

AATOVA Artificial register.

ESTAT Actually read by Midas direct handle but treated as part of the DMux memory. This is a
register rather than simply another word in the DMux memory so that the error enables can
be written.

Write error enables with LoadDMD; write MIRDebug with four LoadDMD’s.

ABSOL Read ABSOL by two MCXct’s followed by, if the Dorado isn’t running,
DoStrobe(Clock+UseCPReg).

Write with MCXct(constant+new value) followed by, if the Dorado isn’t running,
DoStrobe(Clock+UseCPReg);

TPC Read from a static if address .eq. SavedTask; otherwise,
RdTPC _ CPReg(address);
B* _ Link;
[If address .eq. SavedTask, then done; otherwise, B _ RWCPReg(SavedLink); Noop; restore
MIR].

If address eq SavedTask then write static and done;
otherwise, write by

B _ RWCPReg(new value);
LdTPC _ CPReg(address);
Noop;
[B _ RWCPReg(SavedLink); Noop; restore MIR; read DMux].

TLINK Read by
SelectTask(address);
B* _ Link;
[SelectTask(SavedTask); Noop; restore MIR; read DMux]

Write by
SelectTask(address);
B _ RWCPReg(SavedLink);
[SelectTask(SavedTask); Noop; restore MIR; read DMux].

Dorado Midas Manual Edward R. Fiala 24 June 1983 74

OLINK Artificial memory read and written like TLINK.

IMBD The setup code common to both the read and the write of IMBD first zeroes BNPC, which is
wire-OR’ed with the control store address loaded by manifold operations. This is accomplished
by loading TPC for task 17B with 0 and then notifying that task; the notify causes the priority
encoder to select task 17B, so BNPC becomes equal to 0.

Read by
SelectTask(0);
RdTPC _ CPReg(17B);
B* _ Link (save old TPC(17B) for restoration later);
B _ RWCPReg(0);
LdTPC _ CPReg(17B);
Noop;
LoadMIR(Notify[17B]); single-step with Freeze off;
B _ CPReg(-1);
three LoadDMD’s to setup the control store address;
LoadDMD(constant);
read DMux to get the IMOUT signals;
four LoadDMD’s to clear IMBD adress again;
[B _ RWCPReg(SavedTPC17B); LdTPC _ CPReg(17B); Noop; B _ RWCPReg(SavedLink);
SelectTask(SavedTask); DoStrobe(Clock+UseCPReg+ClrReady); DoStrobe(Clock+UseCPReg);
Noop; restore MIR].

Write by
SelectTask(0);
RdTPC _ CPReg(17B);
B _ Link (UseCPReg turned off) to save TPC(17B) for later;
B _ RWCPReg(0);
LdTPC_ CPReg(17B);
Noop;
LoadMIR(Notify[17]); single-step with Freeze off;
B _ CPReg(-1);
three LoadDMD’s to setup the control store address;
four LoadDMD’s to load left-half of the instruction;
four LoadDMD’s to load right-half of the instruction;
four LoadDMD’s to clear the Control register;
three more LoadDMD’s to something else;
[B _ RWCPReg(SavedTPC17B); LdTPC _ CPReg(17B); Noop; B _ RWCPReg(SavedLink);
SelectTask(SavedTask); DoStrobe(constant); DoStrobe(constant); restore MIR; read DMux;].

IM Artificial form of IMX memory.

IMX Read by
B _ RWCPReg(address);
B* _ ReadIM[0];
B _ RWCPReg(address);
B* _ ReadIM[1];
B _ RWCPReg(address);
B* _ ReadIM[2];
B _ RWCPReg(address);
B* _ ReadIM[3];
[B _ RWCPReg(SavedLink); Noop; restore MIR].

Write by
B _ RWCPReg(address);
IMLHR0POK _ CPReg(new value);
B _ RWCPReg(address);
IMRHBPOK _ CPReg(new value);
[B _ RWCPReg(SavedLink); Noop; Noop; restore MIR; read DMux].

ALUFM Read from static if address is 0 or 16B; otherwise, read by
T _ ALUFM, ALUF[address];
B* _ T;

Dorado Midas Manual Edward R. Fiala 24 June 1983 75

[T _ CPReg(SavedT); Noop; restore MIR].

Write static if address is 0 or 16B; otherwise, write by
Q _ CPReg(new value);
ALUFMRW _ Q, ALUF[address];
Noop;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

T Read by
SelectTask(address);
B* _ T;
[SelectTask(SavedTask); Noop; restore MIR].

Write by
SelectTask(address);
T _ CPReg(new value);
Noop;
[Restore MIR; read DMux].

RBASE Read by
SelectTask(address);
T _ Pointers;
B* _ T;
[T _ CPReg(SavedT); SelectTask(SavedTask); Noop; restore MIR].

Write by
SelectTask(address);
T _ CPReg(new value);
Noop;
[SelectTask(SavedTask); restore MIR; read DMux].

TIOA Read by
SelectTask(Address);
T _ TIOA&StkP;
B* _ T;
[T _ CPReg(SavedT); SelectTask(SavedTask); Noop; restore MIR].

Write by
SelectTask(Address);
Q _ CPReg(new value);
TIOA _ Q;
Noop;
[Q _ CPReg(SavedQ); Noop; SelectTask(SavedTask); restore MIR; read DMux].

MEMBASE Read by
SelectTask(address);
T _ Pointers;
B* _ T;
[T _ CPReg(SavedT); SelectTask(SavedTask); Noop; restore MIR].

Write by
MemBase _ <address>S;
Noop;
[SelectTask(SavedTask); restore MIR; read DMux].

RM Read by
RBase _ <hiaddress>S;
B _ RB, RStk[lowaddress];
[RBase _ <SavedRBase>S; Noop; restore MIR].

Write by
RBase _ <hiaddress>S;
RB _ CPReg(new value), RStk[lowaddress];
Noop;
[RBase _ <SavedRBase>S; restore MIR; read DMux].

Dorado Midas Manual Edward R. Fiala 24 June 1983 76

STK and STKX Read by
Q _ CPReg(address);
StkP _ Q;
SelectTask(0);
B _ RB, RStk[0], Blk[1];
[SelectTask(SavedTask); Q _ CPReg(SavedStkP); StkP _ Q; Q _ CPReg(SavedQ); Noop;
restore MIR].

Write by
Q _ CPReg(address);
StkP _ Q;
SelectTask(0);
RB _ CPReg(new value), RStk[0], Blk[1];
Noop;
[Q _ CPReg(SavedStkP); StkP _ Q; Q _ CPReg(SavedQ); Noop; SelectTask(SavedTask);
restore MIR; read DMux].

PIPE Read only by
T _ CPReg(address);
ProcSRN _ T;
B* _ VAhi; *First screen line
B* _ VAlo;
B* _ Pipe2’; *Second screen line
B _ Map’;
B _ Errors’; *Third screen line
B _ Pipe5;
[T _ CPReg(SavedSRN); ProcSRN _ T; T _ CPReg(SavedT); Noop; restore MIR].

BR Read by
MemBase _ <address>S;
T _ CPReg(constant);
MCR _ T;
T _ CPReg(0);
DummyRef _ T;
Noop;
B* _ VAhi;
B* _ VAlo;
[MemBase _ <SavedMBase>S; T _ CPReg(SavedSRN); ProcSRN _ T; T _
CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT); SelectTask(SavedTask); Noop; restore
MIR].

Write by
MemBase _ <address>S;
T _ CPReg(constant);
MCR _ T;
T _ CPReg(highdata);
BRhi _ T;
T _ CPReg(lowdata);
BRlo _ T;
Noop;
[MemBase _ <SavedMBase>S; T _ CPReg(SavedSRN); ProcSRN _ T; T _
CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT); SelectTask(SavedTask); restore MIR;
read DMux].

For both the read and the write, the cleanup is done by a subroutine shared with other
memories. "T _ CPReg(SavedSRN); ProcSRN _ T;" and the "SelectTask(SavedTask)" are
extraneous to the requirements of BR.

BRX Same as BR with "MemBaseX _ <address>S" replacing "MemBase _ <address>S".

CACHEA Read by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;

Dorado Midas Manual Edward R. Fiala 24 June 1983 77

MemBase _ 36S;
(Other stuff to save BR 36 if not saved yet since breakpoint--this stuff isn’t done automatically
at breakpoints because it prevents continuing.);
T _ CPReg(constant+lowaddress);
MCR _ T;
T _ CPReg(hiaddress);
Noop;
TurnOffRefresh with two LoadDMD’s;
DummyRef _ T;
Noop;
B* _ Pipe5;
restore Refresh;
B* _ VAhi;
B* _ VAlo;
[T _ CPReg(DisHold+DisCF+NoWake); MCR _ T; T _ CPReg(SaveBR36!0); BRhi _ T; T
_ CPReg(SaveBR36!1); Xct(BRLOFT); MemBase _ <SavedMBase>S; T _
CPReg(SavedSRN); ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(OldTask); restore MIR; read DMux].

Write by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;
MemBase _ 36S;
(Other stuff to save BR 36 if not saved yet since breakpoint);
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hi(address - new flag value));
BRhi _ T;
T _ CPReg(low(address - new flag value));
BRlo _ T;
T _ CPReg(new flag value);
Noop;
Fetch _ T;
Noop;
Fetch _ T;
Noop;
T _ CPReg(constant+lowaddress);
MCR _ T;
T _ CPReg(new flag value);
Noop;
TurnOffRefresh;
DummyRef _ T;
CFlags _ T;
restore Refresh;
Noop;
[T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0); BRhi _ T; T _
CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMemBase>S; T _ CPReg(SavedSRN);
ProcSRN _ T; (T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(SavedTask); restore MIR; read DMux].

CACHED Read by
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hiaddress);
BRhi _ T;
T _ CPReg(lowaddress);
BRlo _ T;
T _ CPReg(0);
Noop;
Fetch _ T;
T _ Md;
B* _ T;
[T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0); BRhi _ T; T _

Dorado Midas Manual Edward R. Fiala 24 June 1983 78

CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMBase>S; T _ CPReg(SavedSRN);
ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(SavedTask); Noop; restore MIR].

Write by
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hiaddress);
BRhi _ T;
T _ CPReg(lowaddress);
BRlo _ T;
T _ CPReg(0);
Noop;
Q _ CPReg(new value);
Store _ T,
DBuf _ Q;
Noop;
[Q _ CPReg(SavedQ); Noop; T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0);
BRhi _ T; T _ CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMBase>S; T _
CPReg(SavedSRN); ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(SavedTask); restore MIR; read DMux].

MAP Read by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;
MemBase _ 36S;
(Other stuff to save BR 36 if not saved yet since breakpoint);
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hiaddress);
BRhi _ T;
T _ CPReg(lowaddress);
BRlo _ T;
T _ CPReg(0);
Noop;
RBase _ 0S;
RB _ CPReg(0), RStk[0];
RMap _ RB, RStk[0];
B* _ Map’;
B* _ Errors’;
B* _ Config’;
[RB _ CPReg(SavedR0), RStk[0]; RBase _ <SavedRBase>S; T _ CPReg(constant); MCR _
T; T _ CPReg(SavedBR36!0); BRhi _ T; XctL16T(SavedBR36!1); BRlo _ T; MemBase _
<SavedMBase>S; T _ CPReg(SavedSRN); ProcSRN _ T; T _ CPReg(SavedMCR); MCR _
T; T _ CPReg(SavedT); SelectTask(SavedTask); Noop; restore MIR].

Write by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;
MemBase _ 36S;
(Other stuff to save BR 36 if not saved yet since breakpoint);
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hiaddress);
BRhi _ T;
T _ CPReg(lowaddress);
BRlo _ T;
T _ CPReg(0);
Noop;
Q _ CPReg(hi new value);
TIOA _ Q;
Q _ CPReg(low new value);
Map _ T, MapBuf _ Q;

Dorado Midas Manual Edward R. Fiala 24 June 1983 79

Noop;
Q _ CPReg(SavedTIOA);
TIOA _ Q;
Q _ CPReg(SavedQ);
Noop;
[T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0); BRhi _ T; T _
CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMBase>S; T _ CPReg(SavedSRN);
ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(SavedTask); restore MIR; read DMux].

VM Read by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;
MemBase _ 36S;
(Other stuff to save BR 36 if not saved yet since breakpoint);
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hiaddress);
BRhi _ T;
T _ CPReg(lowaddress);
BRlo _ T;
T _ CPReg(0);
Noop;
Fetch _ T;
T _ Md;
B* _ T;
[T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0); BRhi _ T; T _
CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMBase>S; T _ CPReg(SavedSRN);
ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(SavedTask); Noop; restore MIR].

Write by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;
MemBase _ 36S;
(Other stuff to save BR 36 if not saved yet since breakpoint);
T _ CPReg(constant);
MCR _ T;
T _ CPReg(hiaddress);
BRhi _ T;
T _ CPReg(lowaddress);
BRlo _ T;
T _ CPReg(0);
Noop;
Q _ CPReg(new value);
Store _ T, DBuf _ Q;
Noop;
[Q _ CPReg(SavedQ); Noop; T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0);
BRhi _ T; T _ CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMBase>S; T _
CPReg(SavedSRN); ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);
SelectTask(SavedTask); restore MIR; read DMux].

IFUM Read by
IFUReset;
Q _ CPReg(F(address));
InsSetOrEvent _ Q;
Q _ CPReg(F(address));
BrkIns _ Q;
Noop;
B* _ IFUMRH’;
B* _ IFUMLH’;
[Q _ CPReg(SavedQ); Noop; restore MIR].

Dorado Midas Manual Edward R. Fiala 24 June 1983 80

Write by
IFUReset;
Q _ CPReg(hiaddress);
InsSetOrEvent _ Q;
Q _ CPReg(lowaddress);
BrkIns _ Q;
Noop;
Q _ CPReg(new value);
IFUMLH _ Q;
B _ Q;
Q _ CPReg(new value);
IFUMRH _ Q;
B _ Q;
Noop;
[Q _ CPReg(SavedQ); Noop; restore MIR; read DMux].

LDR Artificial memory.

MDATA Artificial memory.

MADDR Artificial memory.

DMUX Read only by the special Alto microcode and software discussed at the beginning of this
section, when "current" DMux readout is selected. Old, wrong, or checked tables may be
selected for this memory by the "DMux" command action; when DChecked is selected, writes
are legal.

DHIST Artificial memory.

VH Artificial memory.

MD Read only by
SelectTask(address);
T _ Md;
B* _ T;
[T _ CPReg(SavedT); SelectTask(SavedTask)].

TASKN Artificial memory which cannot be read or written (used for displaying some values
symbolically).

DEVICE Artificial memory which cannot be read or written (used for displaying some values
symbolically).

MSTAT Artificial form of ABSOL memory.

ABS Artificial form of ABSOL memory.

ROW Read lines 0 to 3 like CACHEA; line 4 (Victim/Next Victim) by
SelectTask(17B);
T _ CPReg(1);
ProcSRN _ T;
MemBase _ 36S;
(other stuff to save BR 36 if not saved yet since breakpoint);
T _ CPReg(constant);
MCR _ T;
T _ CPReg(F(address));
DummyRef _ T;
Noop;
B* _ Pipe5;
[T _ CPReg(constant); MCR _ T; T _ CPReg(SavedBR36!0); BRhi _ T; T _
CPReg(SavedBR36!1); BRlo _ T; MemBase _ <SavedMBase>S; T _ CPReg(SavedSRN);
ProcSRN _ T; T _ CPReg(SavedMCR); MCR _ T; T _ CPReg(SavedT);

Dorado Midas Manual Edward R. Fiala 24 June 1983 81

SelectTask(SavedTask); Noop; restore MIR]

Write rows 0 to 3 like CACHEA; row 4 is read-only.

MidasPicture.sil

Loaded: KERNEL

BEGIN;

Sample Midas Display

Go at 0:BEGIN, BrkP after 0:QERR+1 at 0:QERR+2

RunProg RdCmds Brk UnBrk Go SS OS Passive Ld LdSyms Cmpr Dtach Reset SetClk
Config PEscan TestAll Test SimTest SimGo T1 T2 T3 RepGo RepSS RepT2 Fields
LDRtest ShowCmds WrtCmds Virtual DMux

CONFIG 0 PROBLEMS 0 UPTIME 0 days 3:24:42
CLKRUN 1040 OUTOFSPEC 0 TGLITCH 0 days 1:2:31
ESTAT 0 BADSUPPLYSPEC 0 COMM-ERRS 0
INSSET 2 MIR-PES 0
OLINK 20 344 VOLTS +12.07 +4.93 -1.98 -5.36
TLINK 20 345 AMPS 6 27 75 150
TPC 20 346 TEMP0 +27 +35 ?? +27
RBASE 20 17 TEMP0+1 +27 +33 ?? ??
MEMBASE 20 14 TEMP0+2 +25 +23 -- --
T 20 177767 *RTEMP 133747 MINVOLTS +12.07 +4.93 -1.97 -5.18
TIOA 20 0 *LTEMP 122001 MAXVOLTS +12.07 +4.93 -1.98 -5.36
CNT 1 MINAMPS 5 26 73 86
STKP 1 MAXAMPS 34 55 109 154
MEMBX 3 BMUX 177777 MAXTEMP0 +27 +35 ?? +27
Q 177766 MAXTEMP0+1 +27 +33 ?? ??

PCX 0
SHC 0 MAXTEMP0+2 +25 +23 -- --

PROCSRN 0 PIPE 0 0 DWATCH 0
MCR 0 0 IMOUT 321747 023457
TASK 0 0 MIR 124576 035777

*
*

*

8/1/79

