
Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 64

Instruction Fetch Unit

The instruction fetch unit, or IFU, decodes a stream of bytes from memory into a sequence
of 8-bit opcodes and operands using a writeable decoding memory, and presents the
results to the processor for efficient interpretation. The next section contains an overview
of IFU function, supplemented by details in later sections.

Read this chapter with Figure 12 in front of you.

Overview of Operation

The IFU handles four independent instruction sets. Opcodes are 8-bit bytes, which may be
followed in memory by 0, 1, or 2 operand bytes. Hence, the total length of an operation is
1, 2, or 3 bytes. The first operand byte is called a, the second b.

One method of dealing with operations longer than 3 bytes is to encode them in IFUM as 1-byte
jumps to the next operation. This gives up the possibility of referencing N, a, or b with _Id but
avoids having to restart the IFU. The processor then must compute the proper place in the
instruction stream and reference a, b, g, etc. without help from the IFU.

The term PC refers to the displacement of an opcode byte from the codebase, which is BR
31. PC’s are 16-bit items, where 0:14 are an unsigned word displacement relative to the
codebase, and bit 15 selects the byte. In other words, codebase points at a 32k segment
of virtual memory; a PC selects a byte in this segment. The PC’s are named PCF, . . .,
PCM, and PCX, where the final letter in the name denotes the level in the IFU pipeline.

Since the IFU’s PC is only 16 bits, overflowing either end of the code segment causes wraparound.
This programming error is not detected by the hardware.

For Alto compatibility reasons, we currently have the following kludge. Instruction sets 0
and 1 treat byte 0 in the selected word as bits 0:7, 1 as bits 8:15; instruction sets 2 and 3
treat byte 0 as bits 8:15, 1 as 0:7. Eventually, this may be changed so that all instruction
sets use 0 for the byte in 0:7 and 1 for 8:15.

The IFU is started by first selecting an instruction set (InsSetOrEvent_B function) and then
loading the F-level PC (PCF_B function). The IFU then starts fetching the byte stream
starting at the word BR[31] + PCF[0:14], byte PCF[15], from the cache and prepares
opcodes for interpretation by the processor.

Bytes from the cache then march through the IFU pipeline beginning with the F and G full-
word buffer registers on the MemD board; single bytes from F/G then move into J or H on
the IFU board. InsSet[0:1] and the opcode byte in J address the decoding memory, IFUM,
a 1024-word x 24-bit (+3 parity) RAM containing the information in the table below.
Although IFUM is writeable, it will normally be loaded with the microprogram and not
subsequently changed (Diagnostics are, of course, an exception.).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 65

Table 18: IFUM Fields

Name Size Contents

Length’ 2 Opcode length: 1, 2 or 3 bytes (0 length is illegal).

TPause’ 1 The opcode is of type pause.
TJump’ 1 The opcode is of type jump.
IFaddr’ 10 TNIA[4:13] of the first instruction to be executed in interpreting this opcode

(TNIA[14:15] from the IFUJump in the exit of the previous opcode).
RBaseB’ 1 RBase initialization, discussed below.
MemB 3 MemBase initialization, discussed below.
Sign 1 Operand sign extension, discussed below.

Packeda 1 Packed a, discussed below.

N 4 Operand encoded in the opcode, discussed below.

Length’, TPause’, TJump’, Sign, Packeda, and N are used by the IFU to prepare operands
and to sequence correctly to the next opcode; IFaddr’ is passed to the control section; and
the processor uses MemB and RBaseB’ to initialize MemBase and RBase when the
microcode for the opcode commences.

Length’ determines the number of operand bytes; a for a two or three-byte instruction will
be in H, while b for a three-byte instruction will be in F/G, when the assembled instruction
is ready to proceed. The assembled instruction and a then drop into the M level.

IFUJump[n] (see "Control Section") transfers control to the starting instruction for the
opcode assembled in M, where TNIA[4:13]_IFaddr, TNIA[14:15]_n (n is 0 to 3) is the
location of the entry instruction. A 4-long entry vector, rather than a single starting
address, can be utilized for faster execution, as discussed later. IFaddr may be overruled
by a trap address when appropriate.

At t0 of the starting instruction, the processor initializes RBase to RBaseB (i.e., to 0 or to 1)
and MemBase to 0..MemBX[0:1]..MemB[1:2] if MemB[0] = 0, or to 348+MemB[1:2] if
MemB[0] = 1. MemBX is interpreted as a stack pointer to a 4-entry stack with 4 base
registers in each entry, and MemB[1:2] in IFUM select a particular base register from the
current entry. The MemBX kludge may reduce computation on procedure call/return, as
discussed later. Other information about the opcode and a are copied into the X level.

Instructions that implement the opcode then reference operands in sequence using the
A_Id, RisId, or TisId operations discussed in "Processor Section" or the IFetch_ operation
discussed in "Memory Section," which read operands from the X level. The operand
sequence delivered by the IFU in response to _Id is as follows:

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 66

Table 19: Operand Sequence for _Id

Type Length Packeda Sequence

� 0 � Illegal
Jump 1 � Length, Length, Length, . . .

Packeda, sign, and N determine jump displacement.

Jump 2 � Length, Length, Length, . . .
Packeda and N are unused; sign extends the sign of a for the
jump displacement.

Jump 3 � Illegal
Regular 1 � N if N ne 178, Length, Length, Length, . . .

Packeda and sign are unused.

Regular 2 0 N if N ne 178, a, Length, Length, . . .

a is sign-extended if sign = 1.

Regular 2 1 N if N ne 178, a[0:3], a[4:7], Length, Length, . . .

Sign is unused.

Regular 3 0 N if N ne 178, a, b, Length, Length, . . .

a is sign-extended if sign = 1.

Regular 3 1 N if N ne 178, a[0:3], a[4:7], b, Length, Length, . . .

Sign is unused.
Pause x x Same as regular

Regular and pause opcodes have an optional 4-bit operand N that is delivered first (N isn’t supplied
when N = 178). This is followed by a and b, if they exist; a is sign-extended when sign = 1 or

split into two 4-bit nibbles if Packeda = 1. Subsequently, _Id delivers Length. For jumps, all of
these operands are consumed in computing the jump displacement, and _Id delivers Length.

The normal opcode references all of its N, a, and b operands; however, except on three-
byte opcodes, the IFU hardware does not require that these operands be referenced�the
processor could exit to the next opcode without reading all the operands, if that was
desirable for some reason. However, for opcodes of length 3, the processor must consume
the a byte with _Id (both a[0:3] and a[4:7] if Packeda=1) before going to the next opcode
with an IFUJump�it does not suffice to consume the last a byte with _Id concurrent with
IFUJump. An opcode must never do more than 7 _Id’s for reasons that will be discussed
later.

The types of opcodes are distinguished as follows: A pause has no successor, and the IFU
must be restarted with PCF_B before the next IFUJump. A regular’s successor is the byte
following its last operand; a jump’s successor is determined by adding a displacement to
the current PC as follows:

If Length=1, then Sign.Packeda.N forms a six-bit signed displacement. In other
words, the jump is to any byte in the range PC�408 to PC+378.

If Length=2, then Packeda and N are unused; the jump displacement is a, if sign
is 0, or sign-extended a, if sign is 1.

A jump with Length=3 is illegal.

The IFU pipeline follows the instruction stream and fills up when it is five or six bytes ahead
of the current opcode. When a pause opcode is recognized, further memory references
are not made. When a jump opcode is recognized in J, the IFU discards any bytes in F, G,

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 67

and H and refills these pipe levels with bytes along the jump path.

The B_PCX’ function reads PC (inverted) for the current opcode. Note that PCF_B does
not affect the value of PCX; B_PCX’ continues to read the displacement of the current
opcode, which does not change until an IFUJump is done.

An opcode that conditionally jumps can be encoded in IFUM with type either jump or
regular. If encoded as type jump, when the condition is false, the program must issue
PCF_B to restart the IFU at the fall-through address. Similarly, if regular, PCF_B must be
issued to restart at the jump address.

The Length argument delivered by _Id after other operands have been referenced is useful in
conditional jump calculations. Note that the fall-through address for a conditional jump is
Length+PCX, so:

T_(Id)�(PCX’)�1; *Id = Length for type jump
PCF_T;
Noop;
IFUJump[0];

restarts the IFU at the fall-through address for type jump.

Following PCF_B, the IFU flushes its pipeline; it is illegal for either the instruction
containing PCF_B or the one immediately after it to do an IFUJump, but any subsequent
instruction can issue an IFUJump; however, the processor will spin uselessly at the IFU
"NotReady" trap until the fifth cycle after PCF_B (earliest) or later (longer opcodes, cache
misses, Mar traffic).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 68

Table 20: IFU FF Decodes

Name Action

IFUReset Halt and clear the IFU pipeline and clear errors, testing features, and BrkPending
(i.e., BrkIns); Reschedule condition and instruction set are not cleared.

B_IFUMLH’ Read the high-order IFUM word, InsSet, and IdCnt onto B (low-true) as follows:

Field B bits

IdCnt 0:2 Count of _Id’s since start of opcode
InsSet 3:4 Instruction set number
Packeda 5 Packed a
IFaddr’ 6:15 Starting address

IFUMLH_B Load the high-order IFUM word from B (t1 to t3), where the Packeda and IFaddr

fields are in the same form as B_IFUMLH’. Must have at least one intervening
instruction after a preceding BrkIns_ or InsSetorEvent_.

IFUMRH_B Load the low-order IFUM word from B (t1 to t3) in the format given below; must

have at least one intervening instruction after a preceding BrkIns_ or
InsSetorEvent_:

Field B bits

Sign 0
IPar.0 1 Even parity over N, MemB[1:2], and IFAD[0:1]
IPar.1 2 Even parity over IFAD[2:9]
IPar.2 3 Even parity on Packeda, Sign, Length’, MemB.0,

RBaseB’, TPause, and TJump
Length’ 4:5 Instruction length (low true)
RBaseB’ 6 1-bit RBase initialization
MemB 7:9 3-bit MemBase initialization
TPause’ 10 Type pause (low true)
TJump’ 11 Type jump (low true)
N 12:15 4-bit operand

B_IFUMRH’ Read IFUM fields in the same format as IFUMRH_B (inverted).

PCF_B Load PCF at t3, clear and restart the pipeline.

B_PCX’ Read PC for the currently executing opcode (inverted).

BrkIns_B Load BrkIns from B[0:7] at t3, and set BrkPending (ill-defined unless the IFU has

been reset). BrkIns replaces the next opcode loaded into J; then BrkPending is
cleared. BrkIns also addresses IFUM on IFUMLH/RH_ and B_IFUMLH’/RH’.

InsSetOrEvent_B If B[0]=1, then B[6:7] are loaded into the InsSet register at t3; if B[0]=0, then

B[4:15] control event counters as discussed in the "Other IO and Event Counters"
chapter. A following PCF_B starts the IFU interpreting using the new instruction
set. Illegal except when the IFU is paused or reset or when PCF_ will be done
before the next IFUJump.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 69

Table 20: IFU FF Decodes (continued)

Name Action

Reschedule Cause a reschedule trap on the second or third "successful" IFUJump.
"Successful" means that an IFUJump is not trapped for some other reason such
as not-ready. The second IFUJump will be trapped if it does not occur in the
instruction immediately after the first successful IFUJump; otherwise, the third
successful IFUJump will be trapped. The trap instruction is executed as though it
were the first instruction of the rescheduled opcode, and _Id and IFUJump will
work as though that opcode were in progress.

Also set the Reschedule branch condition (emulator only) to true.

RescheduleNow RescheduleNow is guaranteed to trap the next successful IFUJump, so long as the
next IFUJump appears in the second cycle after RescheduleNow, or later. The
Reschedule branch condition is not affected.

NoReschedule Turn off the Reschedule trap and branch condition.

IFUTest_B Load the test-control register from B (load with 0 or do IFUReset when not testing)
as follows:

Field B bits

TestFG 0:7 Substituted for cache data
TestFGParity 8 Substituted for cache parity bit
TestFault 9 Substituted for memory fault signal
TestMemAck 10 Substituted for memory MemAck signal
TestMakeF_D 11 Substituted for memory MakeF_D signal
TestFH’ 12 enable FHCP and t1 when IFUTick executed

TestSH’ 13 enable SHCP and t2 when IFUTick executed

TestEn 14 test enable

IFUTick Tick the IFU’s clock once according to TestFH and TestSH in the IFUTest register.

The IFUJump Entry Vector

An IFUJump[n], encoded in the JCN field of the instruction, sends control to an address
partly determined by the IFU and partly by the IFUJump clause. The four possible targets
of an IFUJump are called an "entry vector".

An opcode leaves its results in one of several convenient forms agreed to by convention,
then chooses an entry instruction in its successor with IFUJump[n], where n =0 to 3.
Every opcode in the instruction set must have an entry vector of the same length. Careful
choice of forms may reduce execution time by one cycle for some opcodes without
increasing execution time for successor opcodes.

A true branch condition (FF-encoded) with IFUJump prevents starting the next opcode. For
example, IFUJump[2,condition] sends control to the next opcode’s entry 2, if condition is
false, or entry 3, if condition is true. However, no other IFU activities associated with
starting the new opcode take place when condition is true, so entry 3 is executed in the
context of the opcode that did the IFUJump[2,condition]; however, the processor initializes
RBase and MemBase as though the next opcode were starting, so this part of the state is
lost. Thus, at a cost of one entry instruction in every opcode of an instruction set, it may
be possible to shorten the execution time of some opcodes using a conditional exit.

An opcode with common and uncommon exit cases, for example, can exit with
IFUJump[2,condition], where entry 2, the common case, starts the next opcode, while entry
3 is reached for the uncommon case. Since IFUJump loads Link with .+1, entry 3 can
either Return, to execute more code associated with the uncommon case, or it can do

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 70

something more explicit, if an appropriate convention is followed by all opcodes.

The following example shows how an instruction set with four opcodes (Push, Add, Store,
and JNZ) is implemented using a four-long entry vector. The opcodes in this example deal
with the stack like Mesa opcodes do, and the first three entry conventions are, in fact, ones
which might be used by the current Mesa emulator.

%Entry
0: Stk[StkP] holds top-of-stack (if any�garbage if stack empty), T holds garbage
1: T and Stk[StkP-1] hold previous top of stack (garbage if stack empty),

Stk[StkP] garbage, Md holds top-of-stack.
2: T and Stk[StkP+1] hold top-of-stack,

Stk[StkP] holds previous top of stack (garbage if stack empty).
3: Results in same form as entry 2, but restart IFU at NewPC = (Id)�(PCX’)�1

Note that Stack&+1 references must not check for underflow when the stack may legitimately be
empty.
%

*Push the memory location pointed to by N.
Push: Fetch_Id, T_StackNoUFL&+1, IFUJump[1];

Fetch_Id, T_StackNoUFL&+1_Md, IFUJump[1];
Fetch_Id, StkP+2, IFUJump[1];
T_(Id)�(PCX’)�1, StkP+1, Return;

*Replace the top two stack entries by their sum.
Add: T_Stack&�1, Branch[.+2];

Stack_Md;
T_Stack&�1_T+(Stack&�1), IFUJump[2];
T_(Id)�(PCX’)�1, StkP+1, Return;

*Store the top-of-stack into the memory location pointed to by N and pop the stack.
Store: Store_Id, DBuf_Stack&�1, IFUJump[0];

Stack_Md, Branch[Storex];
Store_Id, DBuf_T, IFUJump[0];
T_(Id)�(PCX’)�1, StkP+1, Return;

Storex: Store_Id, DBuf_Stack&�2, IFUJump[2];

*Pop the stack and branch if the top-of-stack was zero, else fall through
*This opcode is of type jump.
JNZ: Pd_Stack&�1, Branch[ZTest];

Pd_Md, StkP�1, Branch[ZTest];
Pd_T, Branch[ZTest];
T_(Id)�(PCX’)�1, StkP+1, Return;

ZTest: T_Stack&�1, IFUJump[2,ALU#0];
*Return here when the jump doesn’t take.

T_Stack&�1, PCF_T;
IFUJump[2];

Push thus requires 1 execution cycle; Store and Add take either 1 or 2 cycles depending
upon the entry point; JNZ takes 2 cycles when the jump takes or 9 cycles when the opcode
falls through (because the IFU isn’t ready until the fifth cycle after PCF_B).

Although every opcode in an instruction set must have an entry vector following the same
conventions, it is not necessary that the vector be four-long. In the above example, a
single-entry scheme would probably use the entry 2 convention followed above. In that
event, Push, Add, Store, and JNZ would require 2, 1, 2, and 3 cycles (common case),

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 71

respectively, compared to 1, 1 or 2, 1 or 2, and 2 or 3 cycles for the four-entry scheme
above.

Since Mesa requires about 120 IFU entries for its 256 opcodes, the cost of the second
entry in the vector is between 0 and 120 locations, and 120 locations each for the third and
fourth entries. Since Mesa is implemented by about 1044 instructions using entry vectors
of length 1, a vector of length 2 scheme would require ~1100, length 3 ~1220, and length
4 ~1340 instructions. The implementor of an instruction set should decide when the
additional locations expended for larger entry vectors are no longer worth the additional
speed.

Although we originally hoped for as much as 8% faster inner loops and 4% overall speed
improvement, Gene McDaniel measured only 2% faster execution for Mesa (excluding disk
wait) using a length 3 entry vector; microstore increased about 120 locations. Investigation
revealed that increased traffic on Mar (by overlapped Fetch_ and _Md) was causing IFU
not ready to occur more often, offsetting the fact that fewer processor cycles were needed.
Forwarding saved about .2 cycles/opcode.

Note: IFU trap locations discussed below must also be entry vectors that follow the same
convention.

Timing Summary

From the detailed timing discussion at the end of this chapter, the following generalizations
about IFU timing can be drawn:

Assuming no misses and no delays because the processor uses Mar, IFUJump will
successfully dispatch to the entry instruction of the next opcode on the fifth cycle
after PCF_B if the new opcode either is one byte long or is two bytes long and
starts at an even byte; otherwise it will succeed on the sixth cycle.

A jump opcode causes a 3 cycle gap in the IFU pipe. The effect of the gap would
be a 3 cycle delay if each opcode were executed in exactly one cycle. However,
the gap can overlap with extra cycles taken on the jump opcode itself or either of
the two preceding opcodes. As usual in timing considerations, a 3-byte opcode
counts as two normal opcodes.

If a long stream of regular one-byte opcodes is being executed by the processor at
the fastest possible rate (one instruction/opcode), and if the IFU neither misses
nor faults nor waits for the processor’s use of Mar or the cache, then it will always
have the next opcode ready for IFUJump. If the IFU waits one cycle for the
processor to use Mar, it will shortly fill its pipe again, so scattered Mar references
by the processor will not result in IFU NotReady.

If a long stream of regular two-byte opcodes, each of which has an a but no N
(This is the worst case.), is being executed by the processor at the fastest possible
rate (one instruction/opcode), and if the opcodes in the stream start at the even
bytes in words, and if the IFU neither misses nor faults, and if the processor never
uses Mar, then the IFU will give 25% NotReady. Each cycle in which the processor

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 72

uses Mar adds one cycle of delay. If the opcodes in the stream start at the odd
bytes in words, then the processor will get NotReady 40% of the time.

Three-byte opcodes are not as bad as two-byte opcodes because, in the worst
case, the processor cannot reference both a and b in less than 2 instructions.
Hence, a stream of three-byte opcodes has timing approximately the same as a
stream in which each three-byte opcode is replaced by a one-byte opcode followed
by a two-byte opcode.

Mar traffic may be an important timing factor if many opcodes finish in one or two cycles.
Whenever the processor is making a reference, the IFU cannot use Mar, and the IFU must
make one reference for every two bytes in the instruction stream. Note that if a processor
reference is held, the IFU will also be prevented from making references (but the IFU is not
prevented from making references when _Md is held).

Use of MemBX and the Duplicate Stk Regions

The present Mesa implementation requires 34 cycles for a local XFER and 54 cycles for an
external XFER, excluding memory wait, and measurements made on the Mesa compiler
showed that 38% of all cycles were spent in XFER. For this reason, speed improvements in
XFER are an important objective.

Since about 70% of all calls return before calling any other procedure, if a caller’s base
registers and stack were left untouched, then this information would neither have to be
saved during the call nor restored during the return in most cases.

The hardware that supports this idea consists of the MemBX register, pointing at one of
four blocks of 4 base registers each, and StkP, pointing at one of four stacks of 64
registers each. During a procedure call, StkP and MemBX may be advanced by 1 region,
leaving the caller’s state intact; if the callee makes nested calls, then eventually the MemBX
and Stk regions would be exhausted and some would have to be saved and (eventually)
restored. However, if the callee returns without too many nested calls, then its caller’s
state would still be intact.

We have not constructed examples that use this idea, but a savings of 50% in average
XFER timing has been projected for Mesa.

Traps

The IFU may trap for not ready, reschedule request, map faults, cache data errors, and
IFUM parity errors. When a trap condition occurs, the IFU substitutes a trap address for
IFaddr on the next IFUJump. Hence, the next IFUJump sends control to one of the entries
in the trap vector.

Locations assigned to these trap vectors are given in "Control Section"; note that each
instruction set has independent trap locations.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 73

Each trap vector is dispatched into by IFUJump exactly as though it were an opcode.
B_PCX’ reads the PC of the opcode that would have been executed if the trap had not
occurred and RBase, MemBase, and _Id stuff are set according to that opcode (in every
case except NotReady�all are undefined at a NotReady trap).

The relative priority of traps is as follows: IFUM parity error is highest, then NotReady,
reschedule, cache data parity error, and map fault.

The NotReady trap occurs whenever the IFU does not have both an opcode and its
associated operands (a, b) ready for the processor. Since PCX, MemBase, and RBase are
invalid, the trap microcode must wait for the IFU to become ready. The following code
sequence will work for all instruction sets that do not use a conditional exit:

NotReady:
FreezeBC, IFUJump[0];
FreezeBC, IFUJump[1];
FreezeBC, IFUJump[2];
FreezeBC, IFUJump[3];

For the sample instruction set given earlier, which uses entry 3 as a conditional exit, the
following sequence would be appropriate:

NotReady:
IFUJump[0]; *Can’t convert to IFUJump[2] because stack may be empty
T_Stack&�1_Md, IFUJump[2]; *Convert case 1 to case 2
IFUJump[2];
T_(Id)�(PCX’)�1, StkP_StkP+1, Return; *Resume the opcode which didn’t really exit

If the IFU detects bad parity on any read of IFUM, the IFUJump to the opcode affected by
this parity error will trap to the IFUM parity error trap location.

The IFU will trap at the cache data parity error location, if it detected invalid parity on any
byte sent by the memory system. PCX will always correctly point at the opcode that would
have been executed next had the trap not occurred; however, the opcode and operands
pointed at by PCX are not necessarily the ones that suffered the parity error. This occurs
because the pipe has continued ahead of PCX. The most confusing case occurs when the
opcode following PCX was a jump; in this case the opcode fetched by the jump may have
caused the parity error, in which case PCX+/� jump displacement is limited to the range
PCX�4008 to PCX+3778.

The IFU will hold an IFUJump in the cycle prior to a cache data parity error or IFUM parity
error trap.

Note that IFUReset must be given after an IFUM or cache data parity error and before
restarting the IFU.

The Reschedule function is used by io tasks to request service by the emulator. The IFU
will honor this trap request on the second IFUJump after it is executed, as discussed in a
later section. The RescheduleNow function is like the Reschedule function, but the IFU
honors it on the first IFUJump after it is executed, rather than the second (RescheduleNow
was intended for use when continuing an opcode which previously experienced a fault).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 74

An IFU fetch may experience a map fault. The memory system does not report IFU map
faults to the fault task. Instead, it signals the IFU that a map fault has occurred, and the
IFU passes this indication through its pipeline. Eventually, the IFUJump that would have
sent control to the opcode affected by the map fault will instead transfer to the map fault
trap vector.

Although IFU map faults are not reported to the fault task, the fault task must be careful to pass
over any pipe entries that were created by IFU map faults when it is woken for some other reason.

Erroneous bytes fetched after a pause or jump opcode might cause map faults, but the IFU discards
these before they reach the end of the pipeline, so the processor is never informed. Consequently,
erroneous references interfere with processor memory activity and delay the IFU’s efforts to refill its
pipe on a jump, but don’t have any disastrous effect.

An IFU fetch may experience single or double storage failures. Unlike map faults, these are
reported to the fault task just as on processor fetches. The memory system pipeline will
finish loading the cache munch just as though the data were ok, and the cache entries will
have valid byte parity. The IFU will continue running just as though no error had occurred.

However, the fault task will be woken soon enough that it will run before the IFU’s F
register is loaded with a byte from the bad munch. Hence, the fault task will run before
the emulator can possibly execute an IFUJump to the byte that suffered the error.

For a recoverable error, the fault task can simply carry out some logging action and block;
no harm will occur because the IFU will actually have gotten valid data, and the cache will
contain valid data. For an irrecoverable error, the fault task must clear the bad cache
munch and use the RescheduleNow function to trap the next IFUJump to code for dealing
with the irrecoverable error.

Erroneous bytes fetched after a pause or jump opcode might suffer irrecoverable errors. The fault
task has no reasonable way to distinguish these from bytes really in the instruction stream, so it will
cause a Reschedule trap anyway.

Remark

Although independent trap vectors for each instruction set are probably inessential, performance should be
better when the NotReady trap, which occurs frequently, is distinct for each instruction set. This allows the
various IFUJump exits to be transformed into the form most likely to be convenient for the next opcode.

The other traps could have been implemented to use a common trap for all locations. This would be more
economical for IFUM and FG parity error traps, if these simply result in an uncontinuable crash when running
system microcode. However, different trap vectors for each instruction set are probably more convenient for
Reschedule and Map fault traps, which have to save the state of the emulator currently running.

In any case, reserving locations for these traps costs at most 5 traps * 4 instruction sets * 4 entries/trap =
1008 locations, and realistically is much less than this because many instruction sets will not need 4 entries

and there will probably be fewer than 4 instruction sets concurrently active.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 75

IFU Reset

The processor can reset the IFU by executing the IFUReset function. This clears all IFU
error conditions, prevents further IFU memory references, clears the BrkIns_ feature
discussed earlier and the test features discussed later, and generally puts the IFU in a
clean and operable state. The Reschedule feature is not affected by IFUReset.

IFUReset should be executed after power-on to get the IFU shut off. A single IFUReset will
make the IFU passive with respect to operating the rest of Dorado. However, the IFU itself
might not be operable until a second IFUReset is executed because of a pathological
condition (If BrkIns is loaded and Testing is true, then the first IFUReset will clear Testing
but not BrkIns; a second IFUReset is required to clear BrkIns in this case).

If the IFU has any outstanding memory references pending at the time the first IFUReset is
executed, those references will complete and disturb the top part of the IFU pipeline. A
second IFUReset must be issued after these references have all finished prior to reading or
writing IFUM. If the second IFUReset is executed 36 or more cycles after the first, then it
will for sure completely reset the IFU.

The worst case is when a miss has just started the storage pipeline with an IFU reference in the
cache address section. In this case the IFU reference does not enter the storage pipeline until the
8th cycle and then takes 28 cycles to complete.

IFUReset should be executed prior to using BrkIns_. It should also be executed after
reading or writing IFUM (to reset the BrkPending condition that is still lurking).

Rescheduling

Io tasks request service from the emulator by first indicating a request in some way
(Presently an RM location is used as a 16-bit table in which 1’s indicate requests.), then
executing the Reschedule function, and finally blocking. The IFU and the processor store
the reschedule condition in flipflops which remain set until the NoReschedule function
turns them off.

The next IFUJump after Reschedule transfers to the entry vector for the opcode as usual;
the reschedule trap address will drop into the IFAddr register at t2 of this instruction, and
the first IFUJump after that will dispatch into the reschedule trap vector. This means that
second IFUJump will trap unless the second IFUJump occurs on the instruction
immediately after the first IFUJump, in which case the trap will not occur until the third
IFUJump. IFUJump’s that experience a NotReady trap are not counted.

The entry vector at the reschedule trap location is entered as though it were the next
opcode. When Reschedule is used by io tasks to request the wakeup of another process,
this fact is unimportant. However, the other use of Reschedule is in continuation from map
(and other) faults. In this application, the reschedule trap will wind up restoring the IFU
state by executing an appropriate number of _Id’s and eventually branching back to the
instruction that experienced the fault. The continuation method is discussed later.

Opcodes which might execute for a long time, such as block transfer and BitBlt, must
check for rescheduling explicitly, and the (emulator only) Reschedule branch condition

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 76

makes this check easier. If such opcodes did not check for rescheduling, then service to
the io device might be postponed for too long.

The reschedule flipflops are not cleared by IFUReset, so the NoReschedule function must
be executed as part of system reset.

When the reschedule trap vector is entered, the IFU is in an undefined state except for
PCX’, and PCF_ is needed to restart the IFU at the continuation address.

Breakpoints

BrkIns_B implements debugging breakpoints straightforwardly. The idea is that a one-byte
opcode, BrkP, is used to transfer control to a debugger while saving emulator state needed
to continue later, and another opcode, Continue, is used to continue from breakpoints (For
Mesa, BrkP and Continue are special cases of Xfer.).

BrkP may be substituted for any opcode in a program. The debugger gets control when
BrkP is executed, saves state, and eventually can execute Continue to restore state from
values saved by BrkP.

Continue first restores registers, then loads BrkIns with the opcode for which BrkP was
substitued; then it uses PCF_B to restart the IFU at the breakpoint. The IFU will then start
running; the first opcode fetched will again be the BrkP opcode, but the contents of BrkIns
will be substituted for the one fetched from memory, and the program will continue
correctly.

Without BrkIns_B the debugger would have to simulate the broken opcode before
continuing at the following opcode, which would be harder. The example below shows a
code sequence for the final part of Continue.

Continue:
. . .
IFUReset; *Stop future IFU fetches and clear pipe
T_41C;
Cnt_T;
IFUReset, Goto[.,Cnt#0&-1]; *Reset after previous IFU fetches complete
BrkIns_Opcode; *Load opcode which BrkP replaced
PCF_BreakAddress; *Restart IFU at address of BrkP
Noop; *No-op required after PCF_ before IFUJump
IFUJump[0]; *Resume program

Note: IFUReset is required before BrkIns_, even when an opcode of type Pause is in
progress.

Reading and Writing IFUM

In addition to its function related to breakpoints, BrkIns_B is used to address IFUM when
reading or writing that memory.

When IFUM is loaded, it is addressed by the instruction set InsSet[0:1] and BrkIns. The
data must remain on B for two cycles, so tasking must be disabled and the instruction

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 77

following the one with IFUMLH/RH_ must put the same data on B. If this data comes from
RM or T, the register must not have been loaded in the cycle preceding the IFUMLH/RH_
(because the bypass logic will change the B select from Pd or Md to RM or T, possibly
glitching data on B). The following subroutines illustrate loading and reading back IFUM.

WriteIFUM:
IFUReset; *Stop future IFU fetches and clear the pipe
T_41C;
Cnt_T;
IFUReset, GoTo[.,Cnt#0&�1]; *Reset after previously issued fetches complete
InsSetOrEvent_RMaddr0; *Load 2 instruction set bits forming IFUM address
BrkIns_RMAddr1; *Load 8 opcode bits forming IFUM address
TaskingOff; *Ensure no B glitch below and let BrkIns_ settle for 1 cycle
IFUMLH_RMdataHi; *Write high part of IFUM
B_RMdataHi; *Keep data good a little longer (mustn’t glitch)
IFUMRH_RMdataLo; *Write low part of IFUM
B_RMdataLo, TaskingOn; *Keep data good a little longer
IFUReset, Return; *Clear BrkIns

ReadIFUM:
IFUReset; *Stop future IFU fetches and clear the pipe
T_41C;
Cnt_T;
IFUReset, GoTo[.,Cnt#0&�1]; *Reset after previously issued fetches complete
BrkIns_RMaddr1; *Load 8 opcode bits forming IFUM address
InsSetOrEvent_RMaddr0; *Load 2 instruction set bits forming IFUM address
Noop; *Two instructions must elapse after loading BrkIns

*one after loading InsSet (?Two noops after loading InsSet
*might be better since this is a tight path?)

RMdataHi_IFUMLH; *Read IFUM into RM.
RMdataLo_IFUMRH;
IFUReset, Return; *Clear BrkIns

Continuing from Processor Faults

Saving and restoring the state of an interrupted program requires some cleverness not only
for the IFU, but also for the Control, Processor, and Memory sections. The emulator might
fault for a data error, map fault, or stack overflow/underflow; for io tasks, stack
overflow/underflow is impossible and map faults will probably be illegal, so only data error
faults are legitimate. The discussion here will concentrate on map faults, though the same
approach could be used for other fault conditions as well.

The fault task must use as few instructions as possible so that io tasks won’t be preempted
for too long. The minimum is to copy all pipe entries that contain memory faults into RM or
Stk buffers, preserve DBuf, and save the emulator’s TPC; the fault task must itself deal with
data error faults by io tasks; it then restarts the emulator at a trap address. The emulator
microprogram then saves the rest of the emulator state and deduces the nature of the
fault(s) using methods discussed in "Memory Section".

The emulator fault microcode first saves ALU branch conditions and task-specific registers,
then other information of interest. The saved information is stored where the Mesa (or
whatever) program can get at it; then the trap microcode restarts Mesa at a trap procedure
that will service the map fault (probably swap in a page from the disk); eventually, state will
be restored and the opcode that faulted will be resumed at the instruction that faulted.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 78

The IFU state may be saved via B_IFUMLH’ and B_PCX’. B_IFUMLH’ reads the current
instruction set and IdCnt from B[0:4]; B[5:15] are IFUM bits which are not of interest when
saving the state of the program, so the tricky code sequence given earlier for reading IFUM
is not required. B_PCX’ reads the current PC.

The 3-bit counter, IdCnt, keeps track of how many _Id’s have been done; to avoid
overflowing this counter, no more than 7 _Id’s should be done when executing any
opcode. This is one (harmless) restriction on coding emulators. The other is that
emulators never map fault on the instruction after a dispatch (BDispatch_B,
BigBDispatch_B, or Multiply); this can be assured by doing _Md prior to or concurrent with
any dispatch.

Sample microcode for saving emulator state is as follows:

%Must first save the volatile branch conditions; Overflow and Carry won’t change unless an arithmetic
ALU operation is executed, so saving them can be deferred. T, the first item saved, is written into the
RM region reserved for Save using the change-RBase-for-write FF decode.
%
Save: FreezeBC, DblGoTo[ALUls,ALUge,ALU<0];
ALUls: SavedT_T;

T_0C, GoTo[SaveBC];
ALUge: SavedT_T, DblGoTo[ALUgr,ALUeq,ALU#0];
ALUgr: T_1C, GoTo[SaveBC];
ALUeq: T_2C;
*Have a code, 0, 1, or 2, in T indicating the state of the ALU<0 and ALU=0 branch conditions.
SaveBC: SavedALULEZ_T; *Save the branch condition code

T_Pointers; *T_MemBase, MemBX, and RBase
T_T Or (100000C); *Make negative
RBase_RBase[SaveRMRegion];

*Now choose two numbers such that their sum produces the correct ALUcry and Overflow branch
*conditions.

SavedPointers_T, MemBase_SaveBaseReg, DblGoto[Cry,NoCry,Carry];
Cry: DblGoTo[CryOvf,CryNoOvf,Overflow];
NoCry: DblGoTo[NoCryOvf,NoCryNoOvf,Overflow];
CryOvf: SaveA1_100000C;

SaveA2_100000C, GoTo[SaveRest]; *Numbers such that SaveA1+SaveA2 produces
*Overflow and Carry result

NoCryNoOvf:
SaveA2_0C, GoTo[.+2];

CryNoOvf: SaveA2_1C;
SaveA1_177777C, GoTo[SaveRest];

NoCryOvf: SaveA1_77777C;
SaveA2_77777C, GoTo[SaveRest];

SaveRest:
SavedPCX_Not(PCX’);
T_Not(IFUMLH’); *Read IdCnt and InsSet in IFUMLH[0:4]
SavedIdCnt_LdF[T,0,2];
T_T and (14000C);
T_RSh[T,2];
SavedInsSet_T+(100000C); *Set up word for InsSetOrEvent_ below
. . . *Code to save rest of state (all easy)

Sample microcode for continuing is given below:

Resume: . . . *Restore all processor registers except T, Cnt, RBase,
*and MemBase.

InsSetOrEvent_SavedInsSet; *Restore the IFU instruction set number.
PCF_SavedPCX; *Restart IFU at address of the opcode that faulted
WakeUp[ContTask]; *Wakeup the special task used for continuation.
Noop; *No-op required so that the instruction after the IFUJump

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 79

*below will be executed by the continuation task.
Cnt_SavedIdCnt, IFUJump[0]; *Continue execution in the continuation task at Cont0

Resume1: Skip[Cnt=0&�1], At[Resume1Loc]; *Reissue the appropriate number of _Id’s to put
 A_Id, GoTo[.�1]; *the IFU in the state it was in at the fault.
Cnt_SavedCnt; *Restore Cnt
. . . *Restore Md by fetching from a convenient storage

*location. Then repeat the Fetch_ or Store_ that
*faulted using a convenient base register and restore
*the base register (complicated code here needs careful
*thought).

T_SaveA1;
Pd_T+SaveA2; *Restore Carry and Overflow branch conditions.
T_SavedT, TaskingOff; *Restore T register

*Below, the TaskingOff, WakeUp, TaskingOn sequence insures that precisely one emulator instruction will
*be executed after the TaskingOn before the continuation task runs.

BDispatch_SavedALULEZ; *Dispatch to 0, 1, or 2 in table based on
*ALU>0, ALU<0, or ALU=0.

WakeUp[ContTask]; *Wakeup the special task reserved for continuation.
Link_SavedLink, At[ConTab,0]; *Restore Link and ALU>0
TaskingOn;
Pd_Not(Pointers_SavedPointers), GoTo[COK];
Link_SavedLink, At[ConTab,1]; *Restore Link and ALU<0
TaskingOn;
Pd_Pointers_SavedPointers, GoTo[COK];
Link_SavedLink, At[ConTab,2]; *Restore Link and ALU=0
TaskingOn;
Pd_(SavedPointers) xor (Pointers_SavedPointers), GoTo[COK];

COK: FreezeBC, GoTo[.];

*The special restart task needed for continuation
ContinueInit:

RBase_RBase[SavedTPC]; *Initialization code for the task
*First of two wakeups comes here�change emulator’s TPC to Resume1 and block.
Cont0: Block;

T_Resume1Loc;
Link_T, TaskingOff;
LdTPC_0C; *Restart emulator at Resume1
TaskingOn;
Block;

*Second of two wakeups comes here. Reload emulator TPC with continuation address.
Cont1: Link_SavedTPC;

LdTPC_0C; *Restart emulator at saved continue address
Branch[Cont0];

IFU Testing

The IFU test control register is loaded by the IFUTest_B function; when not testing, this
register should contain 1, and it is loaded with 1 by the IFUReset function. IFUTest.15
disables the periodic wakeup request to the Junk task discussed in the "Slow IO" chapter;
when IFUTest.15 is 0, the junk wakeups occur 60 times/sec and are dismissed by any
IFUTest_ function.

IFUTest.14 (TestEn) enables IFU test mode; it is illegal for this bit to change from 0 to 1
when the IFU is active because, if this occurred in the same cycle that an IFU memory
reference was issued, then the IFU would pollute the Mar bus indefinitely, making the
memory system unusable by the processor.

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 80

The test features aim at two situations. First, they allow the IFU clocks to be controlled by
a program, so a diagnostic can slowly step the IFU pipeline through its stages. Secondly,
they allow data supplied by a diagnostic to be substituted for signals that would otherwise
come from the memory system. This allows the IFU to be tested in the absence of the
memory system, which allows scope probes to be inserted easily and decouples IFU
problems from memory system problems.

The TestFH’ and TestSH’ bits in the IFUTest register enable the first-half-cycle and second-
half-cycle clocks, respectively, which will occur between t2 and t4 of the cycle after the one
issuing the IFUTick function. Thus, the IFU can be stepped through a PCF_B function as
follows:

TaskingOff;
IFUTest_TestEn;
IFUTick;
PCF_value;

where PCF_value is just an example�any other IFU function or an IFUJump could be used
instead.

The IFU’s memory interface is simulated by the TestFG, TestParity, TestFault, TestMemAck,
and TestMakeF_D bits in IFUTest. Memory references are not issued by the IFU when
TestEn is true. TestFG and TestParity are substituted for the FG byte and parity bit from
the memory system; the other signals are control signals sent by the memory system in
response to IFU references. They are supposed to work as follows:

MemAck occurs at t2 of a cycle in which the IFU makes a reference at t1, iff the memory
system accepted the reference; if the memory system was busy and did not accept the
reference, then MemAck does not occur, and the IFU should repeat its reference. The
absence of MemAck serves approximately the same purpose for the IFU that Hold serves
for the processor.

MakeF_D occurs at t1 of a cycle in which the memory system loads F at t3; in the event of
a map fault, MakeF_D occurs at t1 of the cycle in which the memory system would have
loaded F at t3 if the map fault had not occurred. The IFU can try to start a reference at t1,
even though it has an unfinished reference in progress. The memory system will accept
the reference iff MakeF_D occurs; otherwise, it will refuse the reference. In other words,
the IFU’s second reference starts at t1 iff the first reference will deliver data at t3.

Fault is concurrent with (?) MakeF_D and indicates that the IFU reference experienced a
map fault.

In other words, a memory reference can be simulated with the IFU test feature by (1)
ticking the IFU through a cycle in which it makes a reference; (2) ticking the TestMemAck
response of the memory system with IFUTest_B and IFUTick; (3) ticking TestMakeF_D; (4)
ticking with TestFG and TestParity holding simulated memory data.

Details of Pipe Operation

The IFU is a six-stage pipeline, starting with words fetched from memory, and ending with
opcode starting addresses delivered to the control section and operands delivered to the

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 81

processor. The levels are named: F, G, H, J, M and X. Each level has a data-valid bit
indicating whether or not it contains something useful.

PCF, PCJ, PCM, and PCX are PC’s for the corresponding pipe levels (except that PCF is a
word PC rather than a byte PC). PCF, PCM, and PCX are independent of each other since
jumps and PCF_ may result in these all being different; PCJ is related to PCF by the
number of valid bytes in the F/G/H levels; the hardware also uses PCFG, which contains
PCF plus the number of valid bytes in the F/G levels. Operationally, F/G are a FIFO in
which PCF is the write pointer, incremented as words are fetched from the cache, and
PCFG is the read pointer, incremented as bytes are moved from F/G into J/H. Note that
there is no PCH because PCH would equal PCJ+1.

Pipe control is straightforward in principle. The F and G levels are 16-bit registers filled
from the cache. Following PCF_B, if there is space in the pipeline for another word, the
IFU will start a reference at t1 of any cycle in which the processor is not using Mar (so as
many as 2 IFU references can be outstanding). Cache words are stored in F at t1, then
dropped into G at t2; bytes drop into H at t3 or J at t4; there are bypass paths to get bytes
directly from F/G into J when H is invalid. As the processor executes opcodes, F and G
become invalid, and the IFU refills them from memory automatically. This continues until
the IFU is reset by the processor, or encounters a pause opcode.

The F and G registers are physically located on the MemD board. The four bytes in F/G are inputs
to a multiplexor controlled by the IFU, and the multiplexor output is sent across the backplane to the
IFU. BrkIns[0:7] or IFUTest[0:7] replace F/G data when using breakpoints, reading/writing IFUM, or
using IFU test features.

While following the opcode stream, a jump will invalidate data in F. However, if a reference is in
progress and F has not yet been filled by the memory system, then the IFU will invalidate the data
when it arrives and restart the next reference immediately. In other words, the IFU cannot abandon
the useless fetch; it must wait for it to finish and discard the result.

The J and H levels are one byte wide. For one-byte opcodes it is possible to consider H
and J as independent levels of the pipe; however for two or three-byte opcodes, it is
appropriate to consider J/H as a single level in which J holds the opcode and H holds a.

If J is invalid, then it will be loaded from the next opcode (which may be in G, F, or H
according to various conditions) at an even clock (t0) and H will be loaded from the byte
after the opcode (which is always in G) at the following odd clock (t1); if the byte after the
opcode isn’t ready, it will drop into H at the next odd clock after it is ready. The InsSet
and J registers address IFUM and IFUM outputs reveal whether the byte in H is a (Length
= 2 or 3) or the next opcode (Length = 1).

The conditions under which the M level can be loaded from J are that M is invalid (or
about to become invalid) and:

Length = 1 -or-
Length = 2 and H is valid -or-
Length = 3 and H is valid and either F or G is valid.

If these conditions are met, then the M level is loaded (t2) with information from IFUM and
with a, if Length = 2 or 3. If Length = 3, then b will drop from G into H (t3).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 82

If Length < 3, then the H/J level is now free to work on the next opcode. If Length = 1
and the next opcode happens to be in H, then H will drop into J at the same time (t2);
otherwise, J will be loaded from the next opcode in F/G when it is ready.

When the processor does an IFUJump[n], level M presents information needed by the next
opcode as follows:

IFaddr is TNIA[4:13] for the IFUJump;
MemBase is set to 0.MemBX.MemB[1:2] or 348+MemB[1:2];
RBase is set to 0 or 1;
N, Sign, Length, Packeda, and a are loaded into the X level;
b is loaded into the M level if Length = 3.

Referencing IFU operands with A_Id, TisId, or RisId affects the IFU in two ways: it causes
the IFU to advance to the next item of Id, and for a 3 byte instruction when a is taken
(a[4:7] when Packeda = 1) it causes b to drop from M to X, freeing M for the next
instruction.

IFetch_ also uses Id, as discussed in memory section, but does not advance the IFU to the
next item of Id.

For a one or two-byte opcode, it is permissible for the processor to do an IFUJump before
referencing any operands with _Id; this will advance normally to the next opcode.
However, for a three-byte opcode the processor must reference all of a, so that b drops
into X, before doing an IFUJump.

When a pause or jump is recognized, the IFU may already have filled the F and G levels
erroneously (i.e., 4 bytes ahead). These levels are flushed and refilled along the jump path.

Timing Details

This section discusses timing details of the IFU pipeline assuming that all IFU references hit
in the cache and are never deferred for processor references.

First case: Restart IFU at even byte

t0: An instruction with PCF_FOO is started, where FOO is even.

t2: F, G, H, J, and M levels are made invalid.

t3: Reference the word containing FOO.

t5: Reference word containing FOO+2.

t7: Load F with data from the FOO reference; reference the word containing FOO+4.

t8: Load the first byte from F into J; load G from F; F becomes invalid; start reading the IFUM
entry for J.

t9: Load the putative operand byte from G into H; G becomes invalid; load F from the FOO+2
reference.

t10: Distinguish 5 cases below.

FOO is a one-byte regular opcode

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 83

t10: Load M from IFUM; IFUJump will now succeed; load J from H (FOO+1); load G from F
(FOO+2 and FOO+3); F and H become invalid; start reading the IFUM entry for J.

t11: Load H from G (FOO+2); load F from FOO+4 reference.

t12: � (The FOO+1 opcode would pop into M if IFUJump were done at t10.)
IFU is quiescent; F has two useful bytes, G one byte, J/H has two bytes; M level is ready
and waiting for IFUJump.

FOO is a two-byte regular opcode

t10: Load M from IFUM and M[a] from H; IFUJump will now succeed; load J from F (FOO+2);
load G from F (garbage and FOO+3); F and H become invalid; start reading the IFUM entry
for J.

t11: Load H from G (FOO+3); G becomes invalid; load F from FOO+4 reference; reference the
word containing FOO+6.

t12: Load G from F; F becomes invalid.

t15: Load F from the FOO+6 reference; now quiescent.

FOO is a three-byte regular opcode

t10: Load M from IFUM and M[a] from H; IFUJump will now succeed; load G from F (FOO+2

and FOO+3); H and F become invalid; J goes to special state (b in H).

t11: Load H from G (FOO+2 = b); load F from the FOO+4 reference; now quiescent.

t12: � (The FOO+2 byte would pop from H into M[b] if IFUJump were done at t10.)

FOO is a one-byte jump opcode

t10: Load M from IFUM; IFUJump will now succeed; J, H, G, and F become invalid.

t11: Discard the FOO+4 reference; reference the first word along the jump path.

t13: Reference the second word along the jump path.

t15: Load F from the first word along the jump path.

t16: Load J from F, etc.

FOO is a two-byte jump opcode

t10: Load M from IFUM and M[a] from H; IFUJump will now succeed; G and F become invalid; J
and H are in a special jump state, computing the jump address.

t11: Discard the FOO+4 reference; reference the first word along the jump path.

t12: J and H become invalid.

t13: Reference the second word along the jump path.

t15: Load F from the first word along the jump path, etc.

Second case: Restart IFU at odd byte

t0: An instruction with PCF_FOO is started, where FOO is odd.

t2: F, G, H, J, and M levels are invalid; IFUJump will trap at NotReady.

t3: Reference the word containing FOO.

t5: Reference word containing FOO+1.

t7: Load F with data from the FOO reference; reference the word containing FOO+3.

t8: Load the second byte from F into J; F becomes invalid; start reading the IFUM entry for J.

t9: Load F from the FOO+1 reference.

t10: Distinguish 3 cases below (and the one and two-byte jump cases which are not repeated
below).

Dorado Hardware Manual Instruction Fetch Unit 14 September 1981 84

FOO is a one-byte opcode

t10: Load M from IFUM; IFUJump will now succeed; load J from F (FOO+1); load G from F
(garbage and FOO+2); F becomes invalid; start reading the IFUM entry for J.

t11: Load H from G (FOO+2); G becomes invalid; load F with the FOO+3 reference; reference
the word containing FOO+5.

t12: Load G from F; F becomes invalid.

t15: Load F from the FOO+5 reference; now quiescent.

FOO is a two-byte opcode

t10: Load G from F (FOO+1 and FOO+2); F becomes invalid.

t11: Load H from G (FOO+1); load F with the FOO+3 reference.

t12: Load M from IFUM and M[a] from H; IFUJump will now succeed; load J from G (FOO+2);
load G from F; F and H become invalid; start reading the IFUM entry for J.

t13: Reference the word containing FOO+5; load H from G (FOO+3).

t17: Load F with data from the FOO+5 reference; now quiescent.

FOO is a three-byte opcode

t10: Load G from F (FOO+1 and FOO+2); F becomes invalid.

t11: Load H from G (FOO+1); load F from the FOO+3 reference.

t12: Load M from IFUM and M[a] from H; IFUJump will now succeed; H becomes invalid; J is in

a special state (b in H).

t13: Load H from G (FOO+2); load G from F (FOO+3 and FOO+4); F becomes invalid; reference
the word containing FOO+5.

t17: Load F from the FOO+5 reference; now quiescent.

Dorado Hardware Manual Slow IO 14 September 1981 85

Slow IO

The slow io facility allows data transfers between the processor and any of up to 256
independently addressed io registers. It is intended that the slow io facility will be used to
load and read control information associated with high speed io devices (> 20 x 106

bits/sec), which will then use the fast io system for their data transfers. Low speed devices
(< 20 x 106 bits/sec) will use the slow io bus for all phases of their operation. Very slow
or polled devices may be driven directly from an emulator.

Device controllers for Dorado interact with the processor by exchanging data over a 16-bit
bidirectional bus IOB (" Input/ Output Bus"). There may be a total of up to 256 io registers
in all controllers connected to a single system. The unique 8-bit device numbers assigned
to particular devices or uses that appear in every system are discussed in subsequent
chapters and summarized in the table below.

Table 21: IO Register Addresses

Number Name Comment

�10 DiskControl Disk control register
�11 DiskMuff Disk muffler control
�12 DiskData Disk FIFO data
�13 DiskRam Disk format RAM
�14 DiskTag Disk tag register
�15 EData Ethernet input or output data
�16 EControl Ethernet control and status
360 PixelClock DDC pixel clock
361 Mixer DDC mixer
362 CMap DDC CMap
363 � DWTFlag* (DispM analog of DWTFlag)
364 � DHTFlag* (DispM analog of DHTFlag)
365 BMap DDC BMap
366 � NLCB* (DispM analog of NLCB)
367 � Statics* (DispM analog of Statics)
370 Status DDC muffler and OIS data
372 MiniMixer DDC MiniMixer
373 DWTFlag DDC word task control
374 DHTFlag DDC horizontal task control
375 HRam DDC horizontal waveform control
376 NLCB DDC next line control block
377 Statics DDC debugging control

Dorado Hardware Manual Slow IO 14 September 1981 86

Input/Output Functions

In most cases, a task will need to do many sequential io operations to the same io register.
The 8-bit task-specific register TIOA holds the device address being referenced by each
task.

TIOA is loaded at t2 from B[0:7] by the TIOA_B function, or TIOA[5:7] can be loaded from
FF[5:7] while preserving TIOA[0:4] by the TIOA_small constant function. Pd_Input,
Pd_InputNoPE, or Output_B functions can be issued in the instruction immediately
following the one that loads TIOA.

Most input registers include odd byte parity with IOB data. The Pd_Input function reads
IOB data and checks parity. The Pd_InputNoPE function reads IOB data without a parity
check; this is useful when determining whether a device exists (IOB has bad parity if a
nonexistent register is selected). The enabling and timing of parity error halts is discussed
in the "Errors" chapter.

The Output_B function sends 16 bits of data with parity to the io register selected by TIOA.
Many controllers check the parity and report parity errors as part of their status.

The tasks reserved for standard peripherals are given in the table below.

Table 22: Task Assignments

Number Name Comment

�0 EMU The emulator
�1 CON Special task for restarting emulator after faults
�2 JNK Junk task (awakened every 32 ms)
�3 DHT Display horizontal task
�4 AHT DispM terminal interface horizontal task
�6 EOT Ethernet output task
�7 EIT Ethernet input task
118 AWT DispM terminal interface word task
128 SIM Task simulator
138 DWT Display word task
148 DSK Disk io
178 FLT The fault task

IO Opcodes

The Mesa instruction set has two opcodes for dealing with the slow io system:

INPUT:

TIOA_a;

Stkp_Stkp+1;
Stack_Input, IFUJump[0];

OUTPUT:

Dorado Hardware Manual Slow IO 14 September 1981 87

TIOA_a;
Output_Stack&�1, IFUJump[0];

These opcodes allow a Mesa program to have full access to the io system. The intent is
that these instructions will be used to set up registers in firmware-driven devices, and do all
the service required by polled slow devices. In many cases, the use of an INPUT or
OUTPUT instruction is not sensible (doing io to a device normally driven by firmware, for
example), but the capability should prove useful for testing and diagnostics.

Wakeup, Block, and Next

The "Control Section" chapter discussed task switching, and the material which follows is an
elaboration of that discussion.

Note that a task for which a wakeup request is issued at t0 cannot commence its next
instruction until t4; i.e., at least two cycles elapse after a wakeup before the next instruction
is executed. The task then runs until it does a Block; in order to avoid an erroneous extra
wakeup, the task must lower its wakeup request at least one cycle before issuing Block.

Consequently, an io device may turn off its wakeup request according to one of three
strategies:

The first is to turn off the request when Next becomes equal to its task number; in
this case the wakeup request is lowered at t0 of the first instruction executed for the
task, and it must not block until the second instruction to prevent an erroneous
second wakeup. The special situation in which Next is invalid ("Next Lies") must be
dealt with by device controllers that do this. This situation occurs as follows:

Suppose that a task blocks with the following instruction:

Branch[Loop], Fetch_Address, Block; *Fetch next word

This generates Switch and the task in Bnt is broadcast over the Next bus.
If the Fetch_ causes hold and Bnt < Ctask, then no task switch will occur.
However, the Next bus is incorrectly broadcasting Bnt. Since hold occurs
after t1, there is insufficient time to change the Next bus back to Ctask in
this case.

Consequently, controllers using Next detect "Next Lies" and disable any
actions that would otherwise be performed when it occurs.

A pathological lockout problem should be noted: Since task T’s wakeup
request was lowered at t2 when Next=T was noted at t0, the Next Lies
condition will (correctly) result in repeating the held instruction at t2;
however, some task of lower priority than T may erroneously execute at t4.
This might be a problem if some high demand task of higher priority is
coded so that it always creates Next Lies (say, by doing Block and
immediate _Md in the instruction after a Fetch_).

Another consequence of "Next Lies" is that IOAtten may be incorrect when

Dorado Hardware Manual Slow IO 14 September 1981 88

"Next Lies" is occurring. Consequently, branch on IOAtten is illegal during
an instruction that blocks and might cause hold.

The second strategy monitors TIOA becoming equal to a particular device value. In
this case the wakeup request is lowered at t0 of the second instruction following a
wakeup, and the task must not block until the third instruction. The disk controller
has used this strategy, which has the draw back that if TIOA inadvertently assumes
the particular device value for any other task, the hardware will malfunction. A
consequence of any device using this strategy is that all tasks must be careful to
initialize TIOA properly when first awakened.

The third strategy waits for some Output_B or Pd_Input operation to reset the
wakeup condition. This would reset the condition at t3 or t5 of the Output_B
instruction, and the wakeup would be lowered at t4 or t6; in this case the task must
not block until the third or fourth instruction after the Output_B or Pd_Input to
avoid an erroneous wakeup. The exact requirement depends upon the io
controller�the disk controller, for example, lowers its wakeup request at t4 and can
block in the third instruction after Output_B, while the display controller horizontal
task lowers its wakeup request at t5 and can block in the fourth instruction.

If loops naturally run for at least three instructions, use of TIOA is more economical than use
of Next because TIOA decoding is mandatory in any case, while Next is needed only for
short loop devices, devices that use the fast io system, and devices that drive the SubTask
lines.

SubTasks

When an io device sees Next becoming equal to its task, it can (optionally) present a two-bit
SubTask number as well.

The processor, control, and memory sections clock SubTask into flipflops at t0. The
processor OR’s SubTask [0:1] into RBase[2:3] and into MemBase[2:3]. This allows the same
firmware to control several identical io devices concurrently�each device, represented by a
SubTask, gets its own RM region with 16 RM locations and its own pair of MemBase
registers; if only SubTask[0] is driven, then two RM regions and four MemBase registers are
available to each subtask. Note that the 16 change-RBase-for-write functions do not OR
SubTask into the changed address, so they cannot be used; also, if RBase is read by the
processor the value read out has SubTask OR’ed in. However, the 16 change-RSTK-for-
write functions do work.

Note also that when the debugging processor (Baseboard microcomputer or Alto running
Midas) asserts the Freeze signal, the affect of the subtask on RBase[2:3] is disabled, but
subtask continues to affect MemBase[2:3].

In the memory section, the task and SubTask that issued an IOFetch_ is bussed to fast
output devices with data from storage. The device receiving the data identifies itself by
means of this information. IOStore_’s are handled similarly.

A task presenting SubTask signals generally must Block at the same location each iteration

Dorado Hardware Manual Slow IO 14 September 1981 89

since there is only a single TPC value for all of the SubTasks. Hence, the full generality of
tasking is unavailable�the microcode for these tasks must be coded as though the wakeup
mechanism were a priority interrupt.

Illegal Things IO Tasks Must Not Do

(1) It is illegal to Block in an instruction that does B_ExternalSource, where ExternalSource
is anything except one of the sources on the IFU board. This restriction is needed so that
the emulator will be able to do arithmetic on B_PCX’.

(2) The IOAtten branch condition is illegal in an instruction that Blocks and might be held,
because NextLies might occur, as discussed above.

(3) A task may not Block on an instruction that might be held, if its wakeup request might be
dropped at t0 of the instruction. If this occurred, the instruction might inadvertently be
repeated before the Block took effect.

(4) It is illegal to Block with TaskingOff in force.

(5) A task must not Block until one cycle after its wakeup request is turned off.

(6) It is illegal to issue Wakeup[n] if task n might run in the next cycle. Wakeup[n] must be
executed with TaskingOff in such circumstances.

Dorado Hardware Manual Fast IO 14 September 1981 90

Fast IO

The fast input/output system provides high-bandwidth data transfers between storage and
io devices. Transfers occur in units of one munch (= 16 words); the addresses of the 16
words must be i, i+1, ..., i+15, where i mod 16 = 0. One word is transferred every clock,
for a peak bandwidth of 533 x 106 bits/second. A fast device is also interfaced to the slow
io system, from which it receives its control information, since there is no way for the
device to communicate directly with the processor using the fast io system.

A single transaction of the fast io system transfers exactly one munch. Successive
transactions are completely independent of each other, whether they involve the same or
different devices, as far as the io system is concerned. The only relationship between
transactions is that storage references of two transactions occur in the order that they were
issued.

Each fast io transaction is initiated by an IOFetch_ or IOStore_ reference coded in ASEL.
Once this instruction has been executed, the transaction proceeds without further
interaction with the processor (except for fault reporting). The transaction itself involves a
storage reference, and transport of the data between main storage and the device. In the
case of a fetch, transport happens at the end of the reference, after the munch has been
error-corrected. For a store, transport happens at the beginning of the reference, in
parallel with mapping the VA and starting the storage chips. As a result of this difference,
the transport for a fetch may overlap or even follow the transport for a following store.

Transport

The device is only concerned with the transport of the data, and has no way of knowing
exactly how or when the storage reference take place. The transport happens in 16
clocks, each transporting a single word using the Fin bus (IOFetch_’es) or Fout bus
(IOStore_’s). The two busses are independent, and transport can be happening on both of
them simultaneously.

The two busses have much in common. Both have Task and Subtask lines, on which the
memory presents the task and subtask involved in the transport about to begin and a Next
signal used for synchronization. The Fout bus has a Fault line which is high at the time the
last word of the transaction is delivered if there was a memory fault during the fetch (other
than a corrected single error).

Both data busses are 18 bits wide: 16 data bits, numbered 0..15, and two byte partiy bits,
numbered 16 (bits 0..7) and 17 (bits 8..15). The parity bits have the same timing as the
data bits. A device is invited to check the parity of data on Fin, and is required to generate
parity for data on Fout.

Wakeups and Microcode

The normal interface between a device and its task involves one wakeup for each munch
transferred. The device must keep track of the number of wakeups it has issued, since
data may not arrive from storage for several microseconds, but there is no way to stop the

Dorado Hardware Manual Fast IO 14 September 1981 91

data from arriving once the task has started the memory reference.

Typical microcode for a fast output device is given in the "Display Controller" chapter.

Latency

Suppose that the highest priority fast io task issues its wakeup request at t0; then it will
execute its first instruction at t4. Some other task can cache fault with clean victim in the
cycle starting at t0, and another task can cache fault with dirty victim in the cycle starting
at t2. The first reference gives rise to one storage reference and the second to two storage
references; each of these three storage references takes 8 cycles to handle, so the fast io
reference will not begin for about 24 cycles. From the time it begins until the last data
word is delivered to the device is 23.5 cycles, for a total of 47.5 cycles, to which 2 cycles
must be added for the time between the wakeup and the first executed instruction. In this
situation, the transport is not finished until 49.5 cycles after the wakeup. Lower priority
tasks are delayed by an additional 8 cycles for each reference which might be made by a
higher priority task.

The above is one possible worst case. Another is the execution time of higher priority
tasks; a wakeup might be delayed by sum of the longest normal execution of the fault task
and of other higher priority tasks. The fault task execution time is presently unknown.

A store reference is slightly better, since its transport is finished 8 cycles after the
reference starts, for a total latency of 40 cycles.

All these numbers assume that a reference can be started every 8 cycles. If
successive references are to 4k modules, however, they can happen only every 13
cycles, and the calculations must be adjusted accordingly. Also, data is returned
from a 4k module 3.5 cycles later.

Dorado Hardware Manual Disk Controller 14 September 1981 92

Disk Controller

This chapter describes the Dorado disk controller, which uses the Slow IO system to
control up to four Century Data Trident disk drives. Either the 80x106-byte T-80 or the
300x106-byte T-300 drives can be used. An extension of the controller onto a second logic
board (not designed) would allow control of up to 31 disk drives; alternatively, duplicating
the present controller (with different TIOA, task, and muffler assignments) would allow
independent control of four additional drives.

Keep Figure 13 in view while reading this chapter.

The disk controller uses task 148 and the first five values of the TIOA addresses in block
108 - 178 (The Ethernet controller, on the same logic board, uses two of the other three.).
Either the task or TIOA block can be modified by changing a SIP component on the logic
board. TIOA assignments are as follows:

108 DiskControl Output_B to control register
118 DiskMuff Output_B muffler control and Pd_Input to read muffler
128 DiskData Pd_Input to read FIFO or Output_B to write FIFO data
138 DiskRam Output_B to format RAM
148 DiskTag Output_B to tag register

Note: other tasks must not select these TIOA addresses at any time; doing so may cause the disk
controller to malfunction.

The controller is interfaced to the disk drives by a daisy chain cable bussed to all drives
and by an independent radial cable to each drive. The radial cables contain the following
signals:

data line (bidirectional, differentially driven)
data clock (from drive, differentially driven)
subsector/index line (from drive)
selected line (from drive)
select line (from controller)
sequence line (from controller, controlled by the baseboard for drive 0 and grounded

for other drives)
two VCC lines and scope trigger (from controller)

The daisy-chain cable contains the following signals:

16 control "tags" driven by the controller and received by the selected drive
9 error and status signals from the drive as follows:

CylOffset’
ReadOnly’
NoTerminator
HeadOvfl’
SeekInc’
DevCheck’
NotOnLine
NotReady
Index’

Dorado Hardware Manual Disk Controller 14 September 1981 93

The controller or’s the NoTerminator error (which means that the daisy-chain cable isn’t
terminated) into the NotOnLine error; the other error indications are discussed later.

Disk Addressing

The disk system is accessed through a many level addressing scheme. First a particular
disk drive is selected. Then a data surface or head and a cylinder are selected (5 surfaces,
815 cylinders on a T-80). Each cylinder is further divided into sectors which consist of
blocks.

Firmware may control the following parameters:

Sector size (1378 words max., limited by 4-bit subsector counter)
Number of blocks within one sector (1 to 4)
Block sizes (2 to 2684 words)

Note: Various limits on the sizes of blocks and sectors will be discussed. The processor interface allows
a six-bit subsector counter of which only four bits are presently implemented, and this is the most
significant length limit at present (1378 words). If the subsector counter were enlarged to six bits, then
the block size limit imposed by the error correction algorithm (2684 data words) would apply. We are,
however, unlikely to find any of these length limits significant unless we enlarge the memory page size to
4096 words. Jumpers in the disk unit could also be set to vary the spacing between subsector pulses.

Because sector formats are flexible, firmware can adjust the controller to system needs.
The sector formats specifically envisioned in the design of the controller include 28 256-
word sectors for Alto Diablo emulation and Pilot, 16 512-word sectors for Juniper, and 9
1024-word sectors for Alto Trident emulation.

Sector Layout Considerations

Each block within a sector can be either read, written, or checked. However, once any
block is written, later blocks in that sector cannot be read during that disk revolution.
(Later blocks should be readable on subsequent disk revolutions, though this is not
guaranteed and no existing software depends on this.) Reading or writing must start with
the first block in the sector and continue; since check bits are stored at the end of each
block, the entire block must be read to verify its data or correct errors; however, one does
not have to read or write subsequent blocks in the sector. After a check-block operation is
started, the controller inhibits writing later blocks within a sector without a specific "OK"
from the firmware.

Our general plan is to use the first block in a sector as a header identifying the disk
address; all headers will be written when a disk pack is initialized; subsequently, the disk
task compares the header with the disk address it thinks it is accessing. The header not
only provides a useful safeguard against positioning errors but also allows faster sector
determination when switching to a new drive, as discussed later.

The second block might identify information stored in the sector (e.g., the Label block in
Alto format). The third block might be the data block. The fourth block could hold
reference, backup, or archiving information. All of these choices are a matter of
programming convention.

Dorado Hardware Manual Disk Controller 14 September 1981 94

Feasible sector layouts are determined by several considerations. First, each disk drive is
configured to generate 117 subsector pulses/revolution. The disk controller has a
subsector counter for each drive that is initialized to N when an index pulse is received
from the drive; it then counts down to -1, generates a sector pulse, and reinitializes itself.
The firmware can specify N (0 to 178) independently for each disk drive and thus create
117/(N+1) sectors/revolution. If this division leaves any remainder, then there will be one
or more unused subsectors at the end of the cylinder.

Note that the quantization of cylinders into subsectors allows a sector size to be specified
in units of 10,080/117 = 86.15 words/subsector.

Various delays must be provided at the beginning and end of each block to allow for
electrical and mechanical tolerances within the disk drive. To define a sector format, one
simply needs a summary of "words lost" for each block:

Total words/track = 10,080
Words lost for the 1st block in a sector = 38
Words lost for successive blocks = 14
Required gap at end of sector = (microcode-dependent)

A track is the path swept through one revolution by a single head at a single cylinder.
"Words lost" for each block include 2 words of error detection and correction (32 bits of
ECC code) which are always added at the end of the data written, plus preamble,
postamble, and various other delays required by the controller and drive electronics.
These are detailed later under "Format RAM and Sequence PROMs". Additionally, to
enable the microcode to process consecutive sectors, there must be some gap between
the end of the last block and the end of the sector; the number of words required depends
on the amount of time the microcode requires to complete processing the last block and
issue a command for the next sector.

For the Alto Trident format there is a 2-word Header block, 10-word Label block, and 1024-
word data block; total words lost for disk formatting is 38 for the first block, 14 for the
second, and 14 for the third; altogether, this requires 1100 words/sector. The next larger
multiple of the subsector size is 86.15*13 = 1119 words, leaving 19*1.65 = 31.35 ms of
gap at the end of the sector. Thus 13 subsectors/sector are required, yielding 117/13 = 9
sectors/revolution.

Using this kind of analysis, reasonable sector layouts on the T-80 are as follows:

29 sectors of �256 data words each (4 subsectors/sector),
16 sectors of �512 data words each (7 subsectors/sector), or
�9 sectors of 1024 data words each (13 subsectors/sector).

Note: The 29-sector and 16-sector formats do not divide the disk evenly but rather yield an unusable
leftover fraction of a sector; the 9-sector format does divide the disk evenly. The 9-sector format is
compatible with the Alto Trident 9-sector format (used by BCPL Trident software such as IFS). The 16-
sector format is not compatible with the Alto Trident 16-sector format (used by Juniper), though it is
usable if interchangeability of disk packs with Altos is not required. The 29-sector format has no Alto
analogue.

Dorado Hardware Manual Disk Controller 14 September 1981 95

Table 23: T-80 Specifications and Characteristics

Capacity 82.1 million 8-bit bytes unformatted

Transfer rate 9.67 x 106 bits/sec (= one 16-bit word/1.65 ms)

Cylinder positioning time 6 ms cylinder to cylinder maximum (3 ms typical)
30 ms average
55 ms maximum

Rotational speed 3600 rpm (16.66 ms/revolution)

Sector length selection 12-bit increments through jumpers on sector board

Densities 370 cylinders/inch
6060 bits/inch max. recording density

Disk pack characteristics IBM 3336-type components
5 recording surfaces plus 1 servo surface
815 cylinders/surface

Operating methods Modified frequency modulation recording
Linear positioning motor with cylinder following servo

Mechanical specifications Size - 17.8" wide x 10.5" high x 32" deep
Weight - 230 lbs.

Error rate Recoverable: 1 error/1010 bits

Irrecoverable: 1 error/1013 bits

Positioning: 1 error/106 seeks

Pack start/stop time 20 sec start time
20 sec stop time (with dynamic braking)

Controls and indicators Ready Indicator
Off = disk not spinning
Flashing = spinning up/down
On = Ready

Fault Indicator
Start/Stop switch
Read-only switch
Degate switch (inside the drive; takes disk off-line for testing)

General Firmware Organization

This section gives a general overview of how the disk controller firmware is organized;
more detailed descriptions follow later.

The disk drive generates subsector and index pulses on one line in the radial cable; the
controller distinguishes these according to pulse width. In the normal Idle loop, the
controller looks only at these pulses from the connected drives. A four-bit counter for each
drive counts down subsector pulses and generates sector pulses. Upon either a sector or
an index pulse from the selected drive, the controller generates a disk task wakeup. The
disk task then either increments (sector wakeup) or zeroes (index wakeup) its firmware
sector counter, clears the wakeup condition, checks for a new command, and blocks.

Because there are no hardware sector counters, the disk task must maintain a sector
counter itself; this implies that the rotational position is generally unknown on all
deselected drives.

Dorado Hardware Manual Disk Controller 14 September 1981 96

When first selecting a drive, there are two strategies for determining the sector position: (1) Wait for
an index wakeup, at which time the sector position becomes known; (2) Wait for a sector wakeup
and then read the sector number stored in the header block (This can only be done if the disk is
not moving to a new cyclinder.). The most efficient strategy appears to be a combination: Select
the drive and start a seek to the correct cylinder; if an index wakeup arrives before the seek is
finished, then the sector position is synchronized with no loss of time. If the seek finishes first, then
read the next header to determine the sector number.

When a new disk operation is noted, firmware will perform the following steps:

Execute a drive-select command, if the drive differs.
Load the sector size only if different, and block until index.
Load the format RAM only if word count or commands differ.
Execute a Control Tag (seek) command only if the cylinder differs, and wait (continuing
to count sectors) until the drive becomes ready again.
Execute a Head Tag command.
Block until, at a sector wakeup, the next sector is the one wanted.
Load the appropriate transfer command into the control register
Block until the next sector wakeup.

At the start of the next sector, the controller will become active and sequence through
commands under control of the format RAM and two sequence proms (one for reading,
one for writing).

The sequence proms define what operations the controller must go through, and the format
RAM contains all parameters that might change from one implementation to another.
Actual commands for the Trident disk are stored in the format RAM along with count
values such as words/block, words of ECC, and words of delay before some operation; the
commands are loaded into the tag register and executed by the controller during the
transfer.

Once a transfer has started, the disk task will be woken according to the number of words
in the FIFO, and it will send or receive the appropriate number of words. Read and
compare operations are performed by firmware, as well as detecting checksum errors at
the end of reading. During writing, firmware must provide one word of sync bits (2018
standard, 0018 for Alto Trident emulation) followed by the specified number of words for
that block (the controller will append 2 words of checksum). During read, the controller
will look for, and discard, the first word of sync bits, then firmware must accept the
specified number of words for that block, followed by two words of checksum to be
discarded, followed by the ECC remainder to be used for error detection/correction.

Task Wakeups

The controller may wakeup the disk task for many conditions; the disk task must detemine
the cause and take appropriate action, which must in some way cause the wakeup to go
away.

In general, there are two ways to determine the wakeup condition: read the wakeup
condition, or assume the condition knowing the state of the disk task (which implies the
state of the controller). When expecting a sector or index wakeup, the disk task must test
carefully to count sectors reliably, but in the middle of word transfer operations, it will

Dorado Hardware Manual Disk Controller 14 September 1981 97

assume the wakeup reason to minimize overhead. The various conditions are as follows:
IndexTW, SectorTW, TagTW, RdFifoTW, and WrFifoTW; these wakeup conditions are
detailed in the "Muffler Input" section.

Control Register

The DiskControl register is a collection of flip-flops defining the state of the controller; on
Output to DiskControl, IOB is interpreted as follows:

B[5] Clear EnableRun
B[6] Set DebugMode
B[7] Set BlockTilIndex
B[8:9] Operation for first block of sector, where the operations are:

0 = Done (finished with all blocks in this sector)
1 = Write
2 = Read and check
3 = Read

B[10:11] Operation for second block of sector, as above.
B[12:13] Operation for third block of sector, as above.
B[14:15] Operation for fourth block of sector, as above.

EnableRun determines whether the controller is active at all. It is initially cleared by
IOReset, and can only be set by completing the loading of the format RAM (see below).

DebugMode allows the controller to be exercised by diagnostics when no disk is present; in
this case, diagnostic firmware provides fake disk bit-clocks and data. The flip-flop is
cleared by DisableRun.

BlockTilIndex can be set to disable sector and index task wakeups until (a) the selected
drive is ready, and (b) an index pulse is received from the drive. It is cleared by an index
wakeup. This is useful after switching drives or executing a ReZero operation, either of
which causes the controller to lose sector synchronization with the drive. BlockTillIndex
prevents the wakeup conditions from being set until these conditions are met, but does not
clear any such wakeups that have already occurred. To prevent races, it is necessary to
clear SectorTW and IndexTW, then set BlockTillIndex, then clear SectorTW again.

A request for a sector transfer is initiated by loading bits 8 and 9 of the control register
with a non-zero value. Then the controller will wait until the next sector pulse to set the
"Active" flip-flop and execute the transfer. Once a transfer has been started, it may be
aborted by loading a new value into the control register twice. The first will clear the
Active flip-flop, and the second will load the control register. (When Active, the control
register is enabled for shifting commands rather than loading of io data.)

Format RAM and Sequence PROMs

The format RAM is a 16-word by 12-bit register that holds commands and delay counts
used by the controller during a transfer. Words within the RAM are used according to the
following table; the example values are appropriate for Alto Diablo disk emulation (2-word
header, 8-word label, and 256-word data record).

Dorado Hardware Manual Disk Controller 14 September 1981 98

Example
Addr Description Value

00 Word count of the first block 0001
01 Word count of the second block 0007
02 Word count of the third block 0377
03 Word count of the fourth block 0000
04 Control tag command for a read operation 0104
05 Control tag command for a write operation 0204
06 Control tag command to set Head Select 0004
07 Control tag command to zero the tag bus 0000
08 Word count to write zeroes before writing the 1st block of a sector 0033
09 Word count to write zeroes before writing the sucessive blocks 0006
10 Word count to wait before reading the 1st block of a sector 0011
11 Word count to wait before reading the sucessive blocks 0002
12 Word count of ECC words plus one 0002
13 Word count of 2 0001
14 Word count of 1 (minimum count) 0000
15 Not used 0000

Notice that the format RAM contains both word counts and tag commands. Word counts
are 1 less that the desired count. Tag commands will be loaded into the tag register (see
below) and then used as a "control tag function" by the Trident disk. The values in the
right column are those used for the Alto Diablo emulation format. Notice that all but the
first 4 values are determined by characteristics of the drive being used as opposed to the
specific sector format. The meaning of the tag command values can be found in the "Tag
Register" section.

The format RAM is addressed in two ways. During a transfer, sequence PROMs move data
from the RAM into either a tag register or a count register. At other times, the Dorado may
address the RAM with the RAM Address register, which is zeroed when the control register
is written; executing an Output to the DiskRam register writes IOB into the RAM at the
current address and then increments the address. Loading the last word in the format
RAM turns on the EnableRun flip-flop allowing normal disk control activity. The format
RAM may be read via the muffler scheme discussed later.

There are two sequence PROMs, one for reading (or checking) and one for writing. The
PROMs are addressed by a program counter that is initialized to zero at the beginning of a
sector and is incremented upon completion of each PROM program action. Either the read
PROM or the write PROM is selected according to the operation being performed on the
current block.

The sequence PROMs are clocked by WordClock, which is derived from the disk bit clock,
which in turn is derived from timing information pre-recorded on the disk pack. The
subsector pulses generated by the drive are also derived from this timing information. This
enables very precise placement of the data on the disk, in a manner that is independent of
the disk’s rotational velocity or the Dorado’s clock rate.

Dorado Hardware Manual Disk Controller 14 September 1981 99

The read and write sequence PROMs are described in the following tables.

Write Sequence PROM Duration
Addr Description (WordClocks)

00 Issue tag command in RAM[6] (head select) 1
01 Delay (wait for head select to settle) RAM[13]+1
02 Issue tag command in RAM[5] (write command) 1
03 Write long preamble for first block RAM[8]+1
04 Write sync word 1
05 Write data for first block RAM[0]+1
06 Write first ECC word RAM[14]+1
07 Write second ECC word and 2 postamble words RAM[12]+1
08 Advance control register to the operation for the next block RAM[14]+1
09 Issue tag command in RAM[5] (write command) 1
10 Write short preamble for second block RAM[9]+1
11 Write sync word 1
12 Write data for second block RAM[1]+1
13 Write first ECC word RAM[14]+1
14 Write second ECC word and 2 postamble words RAM[12]+1
15 Advance control register to the operation for the next block RAM[14]+1
16-22 Same as 09-15, except step 19 uses RAM[2]+1
23-29 Same as 09-15, except step 26 uses RAM[3]+1
30 Zero the tag bus 1
31 Not used

Read Sequence PROM Duration
Addr Description (WordClocks)

00 Issue tag command in RAM[6] (head select) 1
01 Delay (wait for head select to settle) RAM[13]+1
02 Delay (skip over early part of preamble) RAM[10]+1
03 Issue tag command in RAM[4] (read command) 1

Note: WordClocks cease until controller has read sync word from disk
04 Read data for first block RAM[0]+1
05 Read ECC words RAM[13]+1
06 Compute first word of ECC remainder, issue tag command in RAM[6] 1
07 Compute second word of ECC remainder RAM[14]+1
08 Advance control register to the operation for the next block RAM[14]+1
09 Delay (skip over early part of preamble) RAM[11]+1
10 Issue tag command in RAM[4] (read command) 1

Note: WordClocks cease until controller has read sync word from disk
11 Read data for second block RAM[1]+1
12 Read ECC words RAM[13]+1
13 Compute first word of ECC remainder, issue tag command in RAM[6] 1
14 Compute second word of ECC remainder RAM[14]+1
15 Advance control register to the operation for the next block RAM[14]+1
16-22 Same as 09-15, except step 18 uses RAM[2]+1
23-29 Same as 09-15, except step 25 uses RAM[3]+1
30 Zero the tag bus 1
31 Not used

Tag Register

The 16-bit tag register drives the tag bus on the daisy-chain cable; all disk drive commands
are initiated through the tag register. The tag register is sometimes loaded from IOB via an
Output command to DiskTag, sometimes from the format RAM. Loading a Head Tag,
Cylinder Tag, or Control Tag into the tag register (from either source) activates a timing
circuit that handles all timing requirements of the Trident drive as follows: Only the tag bus
bits are enabled for the first 200 ns; then the Tag[0:3] bits are also enabled for 1.2 ms;
finally, the Tag[0:3] bits are disabled again and the TagTW flip-flop is set to wakeup the
disk task (indicating completion of the Tag instruction). The Drive Select Tag (Tag[0]) does
not activate the timing circuit, since the timer counts disk clock cycles, but disk clocks are
invalid during drive select changes.

Dorado Hardware Manual Disk Controller 14 September 1981 100

Bits 4 through 15 of the tag register are interpreted according to the following table:

Tag[0] Drive select and subsector count
Tag[4:15] are interpreted by the controller to effect drive select or
subsector counter changes. The tag timing and wakeup circuit is not
activated; firmware must take care of the timing by first loading Tag[4:15]
as desired but with Tag[0:3] equal 0, then or-ing in the Tag[0] bit and
outputting again.

 4:9 Subsector count
Divide the 117 subsector pulses from disk by subsector count+1 to form Sector
pulses (Tag[4:5] are presently unimplemented).
Tag[4:9] = 3 yields 29 sectors large enough for 256-word data blocks
Tag[4:9] = 6 yields 16 sectors large enough for 512-word data blocks
Tag[4:9] = 148 yields 9 sectors large enough for 1024-word data blocks

 10 Load subsector from Tag[4:9] for the drive selected prior to the execution of this
tag instruction.

11:15 Drive select
The basic controller handles up to 4 disk drives; additional units may be
accommodated by adding drive dependent logic on an additional board and
connecting it in in place of drive 3. To allow this, the 5 bit drive select field is
interpreted as follows.

 0 - 3 select drive 0 to 3, respectively
 4 - 368 select drive 3

378 don’t select any drive

Tag[1] Head Tag
Loads a register in the drive that selects the head to be used during
subsequent read/write commands. A Tag wakeup occurs at completion
(1.6 ms).

 4:7 Unused

 8 Off Cylinder�may be activated during a read to attempt recovery of unreadable
data. It causes cylinder positioning to be offset 80 micro-inches.

 9 Determines direction of offset if bit 8 is set.

10:15 Head number�values from 0 to 4 are valid for a T-80, 0 to 19 for a T-300. The
drive will turn on "EndOfCylinder" (alias HeadOverflow) error if an invalid head
address is issued.

Tag[2] Cylinder Tag
Causes the drive to seek to the specified cylinder. A Tag wakeup occurs
after the tag timing sequence has completed (1.6 ms), and the NotReady
status bit is raised until the seek has completed (3 to 55 ms depending on
the seek distance).

 4:15 Cylinder number (0 to 814 for Trident disks presently in use). An illegal cylinder
number will cause DeviceCheck to be raised.

Tag[3] Control Tag
A Tag wakeup occurs at command completion (1.6 ms) and upon
completion of the last read/write operation in a sector. Generally, Control
Tag commands are issued only by the controller itself (using tag
commands from the format RAM) rather than by the microcode; Device
Check Reset and ReZero are an exception.

Dorado Hardware Manual Disk Controller 14 September 1981 101

 4 AltoLeader�special flag to the controller that allows disks written by an Alto
Tricon Controller to be read. This bit should only be used for the Alto Trident
simulation.

 5 Unused

 6 Strobe Late�causes data recovery circuits within the drive to sample data early
within the data bit time (for recovery when the drive is experiencing excessive
read errors).

 7 Strobe Early�like StrobeLate except in the obvious way.

 8 Write�turns on the write circuits.

 9 Read�turns on the read circuits.

 10 Unused

 11 Reset Head register�zeroes the head address register in the drive.

 12 Device Check Reset�resets all latched error conditions in the drive.

 13 Head Select�turns on the head selection circuits, in conjunction with a Read or
Write.

 14 ReZero�repositions the heads to cylinder 0 (if the heads are loaded) and resets
the head address register; resets SeekIncomplete and DeviceCheck error
conditions.

 15 Head Advance�increments the head address register in the drive.

FIFO Register

Data to/from the disk is buffered through a 16-word FIFO (25 ms of buffer), which is
read/written with Pd_Input/Output_B when TIOA selects DiskData. Each FIFO word holds
16 data bits, 2 parity bits, and a 2-bit field indicating that the next word to be read is either
write, read, or read-and-check type data. During output to the disk, the controller checks
parity both when receiving data on the io bus and again when reading the FIFO. During a
disk read, parity is computed before writing into the FIFO, is passed through the FIFO, and
is then written on the io bus for the processor to test.

Muffler Input

Dorado uses a multiplexor scheme called the muffler system for reading miscellaneous
logic signals during debugging from the Alto or baseboard. The disk controller also allows
a muffler address to be specified on an Output to the DiskMuff register; in this way, any
DskEth board signal available through the multiplexors (mufflers) is also available for
firmware sampling. Other bits of the DiskMuff register output specify other operations as
follows:

B[0] Simulate read data of 1 for 1 cycle (for use by diagnostic programs)
B[1] Simulate read clock of 1 for 1 cycle (for use by diagnostic programs)
B[2] Clear CompareErr�done by disk task if a read&compare is found to be OK
B[3] Set ReadDataErr�done by disk task to inhibit future writes
B[4] Clear the index wakeup flip-flop
B[5] Clear the sector wakeup flip-flop
B[6] Clear the tag wakeup flip-flop

Dorado Hardware Manual Disk Controller 14 September 1981 102

B[7] Clear all error flip-flops within the controller (not the disk drive)
B[8:15] Muffler address�signals are enumerated below

Following an output to the DiskMuff register, the firmware must wait one cycle before
inputting the selected muffler signal with Pd_Input. The state of the signal selected will be
driven on IOB[15], and the remaining bits will be zero. For the purpose of examination
from Midas, the signals are grouped into 16-bit words, as shown in the following table. The
bits within each word and an appropriate explanation follow:

KSTATE various bits indicating the state of the controller
 000 TempSense see "Dorado Debugging Interface" document

 001 IndexTW disk task wakeup is due to an index pulse; index pulses occur once/disk
revolution (16.7 ms) and are used to synchronize the hardware subsector
counter and the firmware sector counter. An index pulse also causes a
SectorTW.

 002 SectorTW disk task wakeup is due to a sector pulse. To maintain a reliable sector
count in a race-free manner, the microcode must (a) check for SectorTW,
and upon finding it set increment the sector number and clear SectorTW;
(b) check for IndexTW, and upon finding it set zero the sector number and
clear both IndexTW and SectorTW.

 003 TagTW disk task wakeup is due to completion of a Head Tag, Cylinder Tag, or
Control Tag command. This occurs 1.6 ms after issuing an Output to the
DiskTag register, and also upon completion of the last read/write transfer
in a sector.

 004 RdFifoTW disk task wakeup is due to presence of at least 3 words in the FIFO during
a normal read or 1 word during a read-and-check. During a normal read,
an Input that reduces the FIFO below 3 words will drop RdFifoTW in time
for a Block to take effect on the 5th cycle following the Input; this permits
a 2-cycle loop (Input, Block). During a read-and-check, an Input that
empties the FIFO will drop RdFifoTW in time for a Block to take effect on
the 3rd cycle following the Input; this permits a 4-cycle loop (Input, no-op,
no-op, Block).

 005 WrFifoTW disk task wakeup is due to space for at least 4 words in the FIFO. An
Output that reduces the free space below 4 words will drop WrFifoTW in
time for a Block to take effect on the 5th cycle following the Output; this
permits a 2-cycle loop (Output, Block). WrFifoTW is enabled to occur by
selecting TIOA[DiskData] when a write command is in progress; it is
disabled by TIOA[DiskControl], which the microcode executes after
outputting the last data word of a block. One more WrFifoTW will occur
after all data has actually been sent to the disk.

 006 ReadData Data bit from the disk (available for diagnostics)

 007 WriteData Data bit to the disk (available for diagnostics)

 010 EnableRun Format RAM has been written, and wakeups are enabled

 011 DebugMode Controller has been placed in debug mode

 012 RdOnlyBlock’ The controller is processing a block in normal read mode

 013 WriteBlock’ The controller is processing a block in write mode

 014 CheckBlock’ The controller is processing a block in read and check mode

 015 Active The controller is processing a command for the current sector

016:017 Select.0..1 The address of the currently selected drive unit

KSTAT various bits indicating the status of the drive/controller. The controller will
turn on WriteInhibit for the remainder of the sector after any of the following
errors are detected, but will still go through all the motions of word
transfers.

Dorado Hardware Manual Disk Controller 14 September 1981 103

 020 SeekInc The disk drive has not correctly positioned the heads within the last 700
ms. A ReZero command must be issued to clear this error.

 021 HeadOvfl The head address given to the disk drive is invalid (i.e., greater than 4 for
a T-80 drive).

 022 DevCheck One of the following errors occurred:
Head select, Cylinder select, or Write command and disk not ready
Illegal cylinder address.
Offset active and cylinder select command.
Read-Only and Write.
Certain errors during writing, such as more than one head selected, no
transitions of encoded data or heads more than 80 micro-inches off
cylinder.

A ReZero command may be necessary to clear this error.

 023 NotSelected The selected drive is in "off-line" test mode or the selected drive is not
powered up

 024 NotOnLine The drive is in test mode or the heads are not loaded

 025 NotReady There is a cylinder seek in progress or the heads are not loaded

 026 SectorOvfl The controller detected that a command was active when the next sector
pulse occurred. This error implies either a hardware malfunction or a
discrepancy between the sector format of the drive and the word count the
program thinks is appropriate.

 027 FifoUnderflow Either the FIFO became empty while writing (task got behind) or the FIFO
had too many words taken out of it while readng (microcode word count or
wakeup error).

 030 FifoOverflow Either the FIFO became full while reading (task got behind) or the FIFO
had too many words put into it during writing (microcode word count or
wakeup error).

 031 ReadDataErr A flip-flop in the controller for latching one of three errors:

CompareErr a read-and-check operation was executed on a block,
and the microcode did not issue ClearCompareErr before
the beginning of the next block.

ECCError the microcode can set the ReadDataErr flag if it
determines that the ECC words after reading one block
are non-zero in order to inhibit future writes.

ECCComputeErr The ECC hardware within the disk controller failed to
generate a single "1" bit (i.e., a hardware malfunction).

 032 ReadOnly The "Read-Only" switch on the drive is on.

 033 CylinderOffset The cylinder position is currently offset. This is a mode used for recovery
of bad data.

 034 IOBParityErr The controller detected bad parity on the IOB bus.

 035 FifoParityErr The controller detected bad parity on the data out of the FIFO.

 036 WriteErr OR of errors on muffler addresses 020-035

 037 ReadErr OR of errors on muffler addresses 020-031 and 034-035

KRAM contents of the format RAM

040:043 Address of format RAM word

044:057 contents of format RAM word

KTAG contents of the tag register

060:077 20 bit value last loaded into the tag register

KFIFO state of the io control logic

Dorado Hardware Manual Disk Controller 14 September 1981 104

 100 ShiftIn The controller is currently shifting data into the FIFO

 101 ShiftOut The controller is currently shifting data out of the FIFO

 102 ComputeECC The controller is currently shifting data and computing the ECC checksum

 103 NextBlock Occurs between blocks within a sector

 104 LoadTag Indicates that the next word read from the format RAM should be loaded
into the tag register as opposed to the count register

 105 CntDone’ Indicates that the count register is again zero, and a new value from the
format RAM will be loaded next

 106 OutRegFull The holding register on the input to the FIFO has been loaded, but not
transferred into the FIFO.

 107 InRegFull The holding register out of the FIFO has been loaded, but not read via
Pd_Input or loaded into the output shift register.

110:113 FifoWaddr The 4-bit address indicating where the next word will be written into the
FIFO

114:117 FifoRaddr The 4-bit address indicating where the next word will be read from the
FIFO. if FifoWaddr equals FifoRaddr then the FIFO is defined as empty.

Error Detection and Correction

To allow high data density and a few surface imperfections during manufacture, Trident
disk packs are not required to be perfect. A disk pack is defined as suitable when no more
than three bad areas occur on any data surface; a bad area is defined as one which could
potentially cause read errors of no more than 11 bits in length. To correct errors arising
from these imperfections as well as other (infrequent) read errors, the controller implements
an error detection and correction scheme which will detect (with very high probability)
errors of any length, and will allow correction of any burst error of 11 bits or less.

Warning: If an error burst longer than 11 bits occurs, there is a significant possibility that the error
correction algorithm detailed below will fail and double the number of bad bits! Consequently, disk
handling programs should try other methods of error recovery before invoking the error-correction
algorithm.

To avoid problems, it is good practice to run diagnostic programs on new disk packs; note bad
sectors and don’t use these during normal operation.

When an error does occur, the first step is to try rereading the offending sector several times. One
of these reads may succeed. If not, try rereading with the cylinder position offset or with the data
strobe early or late as discussed in the "Tag Register" section. If these attempts all fail, then try
error correction.

Error correction is accomplished through a mixture of disk controller hardware (for ECC
generation and checking) and system software/firmware (for error recovery). This is a
compromise between capability, speed, and cost. The basic capabilities and restrictions of
the 32-check-bit scheme are summarized below.

1) A single error burst of length less than 12 data bits (i.e., a scattering of error
bits within the bit stream, all of which fit within an 11-bit span) can be corrected in
blocks shorter than 2685 data words. (Example: for the data "000 1100101", the
data "000 0101101" contains a single burst error of length 4.). The code
implemented will detect errors in arbitrarily long blocks, but not enough
information exists to correct longer blocks.

Dorado Hardware Manual Disk Controller 14 September 1981 105

2) Simple error detection�two words are returned by the hardware which are both
zero if the read is successful.

3) Software/firmware error correction can be completed in less than one disk
revolution. The correction procedure is well suited to a mixture of software and
firmware. If done entirely in firmware, error correction would take less than 1 ms.

4) Not all uncorrectable errors will be detected as such. An uncorrectable error
requires two bad spots on the disk surface within one sector (the pack is
bad�throw it out!), an electronic error in a sector with a bad spot, or two
electronic errors within one sector. If such an error has occurred, it can, with a
probability of say 20 percent, result in an error pattern and displacement that
seems valid. This will result in leaving the error bits uncorrected and changing
some bits which were in fact correct. This means that for high data security, a
check code should be generated and imbedded as part of the data file before
writing on the disk.

The error-correcting code (ECC) generated is referred to as a Fire Code (see Error-
Correcting Codes by Peterson). The following is a detailed description of this code and
recovery procedure.

The code calls for dividing the outgoing data stream by a polynomial of the form:

P(X) = P1(X)(Xm + 1)

Where P1(X) is an irreducible polynomial of degree n (n = burst length) and m is > 2*n.
For this particular application the polynomials chosen are:

P(X) = (X11 + X2 + 1)(X21 + 1)

During a write, the two polynomials are multiplied together and implemented by hardware in
the form:

P(X) = X32 + X23 + x21 + X11 + X2 + 1

The data stream is premultiplied by X32 to make room for the 2 word ECC and then
reduced modulo P(X). This is accomplished by the normal feedback shift register
technique with the difference that to perform premultiplication, the output of the register is
exclusive-or’d with the incoming data and then fed back. After all data bits have been
shifted out, the contents of the ECC shift registers are appended to the disk block.

During a read, the feedback shift register is reconfigured such that the two original
polynomials are implemented separately. The incoming data stream, including the 2
appended words of ECC, is independently reduced modulo P0(X) and P1(X), where

P0(X) = X21 + 1

Dorado Hardware Manual Disk Controller 14 September 1981 106

P1(X) = X11 + X2 + 1

After reading in all words off the disk, the contents of the two polynomial shift registers are
read out of the FIFO. If the data is recovered without error, then reducing it modulo P0(X)
and P1(X) results in the registers containing all zeroes.

If the data contains an error, then the two registers will be non-zero. If one but not both
registers is non-zero, then the error is irrecoverable.

To recover from an error, a procedure is undertaken which determines the pattern of bits
which are in error, and the displacement of this pattern from the end of the record. I am
simply going to present the magic equation to be solved, and some magic constants to be
used for solving this equation. Much of the polynomial implementation and the equations,
which use the "Chinese Remainder Theorem" are discussed in technical reports from
CALCOMP (Calcomp Technical Report TR-1035-04, by Wesley Gee and David George) and
XEROX (Xerox XDS preliminary report "Error Correction Code for the R.M. Subsystem," by
Greg Tsilikas, 28 March 1972.).

The basic equation is:

D = Q*LCM � (A0*M0*S0 + A1*M1*S1)

where:
Ei = modulus of the polynomial
LCM = least common multiple of E0 and E1
Mi = LCM/Ei
Ai = a constant such that Ai*Mi modulo Ei = 1
Q = smallest integer to make D positive
Si = number of shift operations to the appropriate polynomial remainders as
described below.
D = displacement of right-most incorrect bit from the end of the record.

The values of E0 and E1 were found by programming the procedure outlined in the
CALCOMP report, and yielded the following result:

E0 = 21 E1 = 2047

The least common multiple (LCM) of E0 and E1 is simply the product of E0 and E1 since
the two numbers have no factors in common. Thus the LCM, which is also the record
length which can be corrected, is 42,987 bits, or 2686�2 words.

Knowing LCM and E0 and E1, the values of M0 and M1 are easily found to be

M0 = 2047 M1 = 21

The values of A0 and A1 are next determined using a trial and error approach that I put in
a small program. The results can easily be confirmed, and are given below:

Dorado Hardware Manual Disk Controller 14 September 1981 107

A0 = 19 A1 = 195

All of the above values derived so far are constants determined for the particular
polynomials chosen. The values of S0 and S1 are determined in the software from the
error patterns returned at the end of a disk transfer.

S0 is first determined by a software procedure using the following steps:

1) The remainder from dividing the input data by X21 + 1 is found in ECC[11:31];
if this remainder is zero, then the error is uncorrectable.

2) Test the low order 10 bits for all zeroes, and if not then perform a left circular
shift on the 21 bits. When the low order 10 bits are all zeroes, the error pattern is
in the upper 11 bits of the word, and S0 is the number of times the circular shift
was performed.

3) If the low order 10 bits don’t become all zeroes within 20 shifts (1 full cycle), the
error is uncorrectable.

S1 is then determined in microcode as follows:

1) The remainder from dividing the input data by X11 + X2 + 1 is found in
ECC[0:10]; if this remainder is zero, then the error is uncorrectable.

2) Test this number to see if it is equal to the error pattern determined in step 3 of
S0, and if not reduce this number modulo X11 + X2 + 1 (left shift and XOR
feedback). When the contents of this word equals the error pattern (it is
guaranteed to happen before 2047 reductions), S1 is determined as the number of
reductions performed (In the hardware implementation of switching from the write
polynomial to the read polynomials, it was easier to implement a polynomial that
premultiplied by X11. This means that the remainder returned by the hardware
already has had 11 shifts performed. To compensate, when S1 has been
determined by the above procedure, you must add 11 to the value, and subtract
2047 if the result is greater than or equal to 2047.).

The basic equation for the displacement now looks like

D = Q*42,987 � 19*2047*S0 � 195*21*S1

where:
0 < S0 < 20
0 < S1 < 2046

Notice that the straightforward solution to this equation cannot be done with single-
precision arithmetic on the Dorado; to avoid double precision, the following manipulation of
the equations is useful:

Dorado Hardware Manual Disk Controller 14 September 1981 108

D = Q*2047*21 � 19*2047*S0 � 4095*S1
D = Q*2047*21 � 19*2047*S0 � 2*2047*S1 � S1
D’= Q*21 � 19*S0 � 2*S1

where:
0 < D’ < 20
D = 2047*D’ � S1 (add 42,987 if D’ = 0)

For some reason that we don’t understand, the actual required calculation must be D =
2047*(D’+1) � S1 in the last step. Also D’ is conveniently calculated as (215*21 � 19*S0
� 2*S1) rem 21.

Dorado Hardware Manual Display Controller 14 September 1981 109

Display Controller

The Dorado Display Controller (DDC) uses the fast io system to obtain representations of
video images from storage; it then transforms these representations into control signals for
monitors. Its three design objectives are:

(1) To handle a variety of color, grey-level, and binary (black-and-white) monitors;
(2) To utilize the full power of the fast io system in producing high-bandwidth
computer graphics;
(3) To allow various compromises in color and spatio-temporal resolution for
experimental purposes. Clock rates, video signals, and other monitor waveforms
should be controllable by firmware.

There are two independent video channels capable of running in a variety of modes. Two
channels allow text to be displayed on one channel, graphics on another, or the main
picture on one, cursor on the other.

The DDC must readily handle Alto-style and LF (large format) monitors which we expect to
be standard for most systems. Bit maps, display control blocks, and monitor control
blocks, similar to those used on the Alto, provide the software interface to the DDC. The
"seven-wire" video interface makes provision for one or more low bandwidth input devices
(keyboard, pointing device, etc.); our current provisions for keyboard and mouse input are
also discussed in this chapter.

Keep Figure 14 in view while reading this chapter.

Operational Overview

Video scan lines are encoded in bitmaps, which are contiguous blocks of virtual memory;
the two channels, A and B, have independent bitmaps and data paths in the DDC. The
high-priority DWT (Display Word Task) runs on behalf of either A or B using the subtask
mechanism; it transmits each bitmap to a FIFO consisting of 15 munches/channel. The
bitmap stream emerging from the FIFO is then sorted into items (1, 2, 4, or 8 bits wide) for
each channel which are combined, mapped, and transformed into pixels (picture cells) on
the screen.

In addition to the two channels, the DDC supports a programmable cursor that is 16 pixels
x 1 bit/pixel wide.

A lower priority DHT (Display Horizontal Task) handles horizontal and vertical retrace and
sets up starting addresses and munch counts, cursor data, and formatting information in
the NLCB (Next Line Control Block) for the DDC. The NLCB is then copied into the CLCB
(Current Line Control Block) during horizontal retrace prior to the next scan line.

The rate-of-flow of items is governed by the resolution and pixel clock period. Resolution
may be independently programmed for each channel so that items flow at 1/4, 1/2, or 1
times the pixel clock period. If the DispM board is present, then the pixel clock period is
also progammable; otherwise, it is determined by a crystal oscillator on the DispY board,
which must have a frequency appropriate for the monitor being driven.

Dorado Hardware Manual Display Controller 14 September 1981 110

Items can be treated in one of three ways: First, an Alto monitor can be driven. Second,
items can be mapped through the 256-word x 4-bit MiniMixer into video data for a black-
and-white or grey-level monitor.

Three separate interfaces are provided on the DispY board. An Alto monitor interface ORs one-bit
items from the A and B channels with the cursor, and then XORs by polarity to produce one-bit
pixels for an Alto display. A seven-wire interface outputs 1 bit/pixel for a binary monitor. And an 8-
bit digital-to-analog converter (DAC) produces grey-level video.

Third, items may be mapped by the Mixer (or A color map), a 1024-word x 24-bit RAM, into
signals for a color or grey-level monitor. A variety of modes determine which bits from the
A and B items address the mixer. Mixer output consisting of 8 bits for each of the red,
green, and blue guns is then digital-to-analog converted for color monitors. Additionally,
there is a 24-bit/pixel mode in which the Dorado supplies 8 bits for each of the three
colors; the colors are independently mapped through the Mixer and two additional 256-
word x 8-bit RAMs called the BMap and the CMap.

The DDC is implemented on two Dorado main logic boards, called DispY and DispM.
DispY contains all the logic necessary for vertical and horizontal sweep control, channel
data paths, and video data for binary and grey-level monitors running at a fixed pixel clock
rate. DispM contains the color maps, the programmable pixel clock, and the three DACs
for driving a color monitor. Additionally, DispM contains an independent terminal controller
that is structurally similar to a one-channel, one bit/pixel DispY but is specialized to driving
a 7-wire terminal.

Thus there are two principal DDC configurations. On a Dorado with only a 7-wire terminal
and no color monitor, only the DispY board is present; it is programmed for Alto terminal
emulation, and only a small subset of its capabilities are used. However, on a Dorado with
both a 7-wire terminal and a color monitor, the DispM board is also present; all of DispY
and the color hardware on DispM are used to drive the color monitor, and the independent
controller on DispM is used to drive the 7-wire terminal.

Video Data Path

Fast IO Interface and FIFO

The fast io system delivers data to the DDC at a rate of 16 bits/clock; words are received
alternately in the REven (t1) and ROdd (t2) registers shown in Figure 14, then written into
the FIFO, a 256-word x 32-bit RAM, during the first half of the next Dorado cycle (t2 to t3),
leaving the second half of the cycle free for read access by the video channels. In other
words, the REven and ROdd registers widen the data path from 16 to 32 bits to allow
sufficient time to both write and read the FIFO in one cycle.

The 256 double-words in the FIFO are divided evenly among the two channels, so each has
buffer storage for 16 munches. Each channel has write and read pointers that address the
FIFO when appropriate.

Write pointers are initialized once during vertical retrace and then sequence through
addresses for the entire display field; a write pointer is incremented after each double-word
write for its channel, so that the next word to be written is addressed at all times. Since

Dorado Hardware Manual Display Controller 14 September 1981 111

the fast io system delivers only one munch at a time, there is never any problem in
deciding which of the two write pointers should address the FIFO.

Read pointers, however, are initialized during each horizontal retrace, so that the correct
first double-word is read at the start of every scan line. This is required because the fast io
system always delivers complete munches, but unused double words may appear at the
end of the last munch for the previous scan line, or at the beginning of the first munch for
the current scan line; the read pointer has to be reinitialized to skip over these. FIFO reads
alternate between channels A and B, so the data rate for one channel is limited to 32
bits/2 cycles (=16 bits/cycle).

Note that bitmaps are required to start at even addresses because the FIFO is 32 bits wide.

Item Formation

At the output end of the FIFO there is a multiplexor shared by both channels and, for each
channel, two intermediate buffers (FIB and SIB), and a shift register SR. The multiplexor
permutes the 32-bit quantity emerging from the FIFO so that when the double-word has
marched through FIB and SIB and is finally loaded into SR, successive shifts will produce
successive items of the selected size (8, 4, 2, or 1 bits).

The SR is tapped as follows:

SR.0 Item[0] for item sizes 1, 2, 4, or 8;
SR.16 Item[1] for sizes 2, 4, or 8, gated to 0 for size 1;
SR.8, SR.24 Item[2:3] for sizes 4 or 8, gated to 0 for sizes 1 or 2;
SR.4, SR.12, SR.20, SR.28 Item[4:7] for size 8, gated to 0 for sizes 1, 2, or 4.

All eight Item bits are gated to 0 if the channel is off. It is useful to think at this point that,
regardless of a channel’s item size, an 8-bit wide item is produced, whose bits contain non-
zero data only in those positions dictated by the item size; i.e., for size 1 only the most
significant bit may be non-zero; size 2 allows data in the topmost two bits, etc.

The SR loads on the item clock after its last item has been used; the item clock rate is the
pixel clock rate divided by the resolution (1, 2, or 4 for full, half, or quarter, respectively).
Hence, for 8, 4, 2, or 1-bit items, SR will be shifted 3, 7, 15, or 31 times, repectively, and be
reloaded from SIB on the following item clock.

Synchronization of SR, which uses the item clock, with FIB and SIB, which use the Dorado system
clock, is a little tricky. SIB_FIB will occur no later than (4.6 ns)+C+(1.1 ns)+C+C = 3*C+5.7 ns
after SR_SIB, where C is the period of the Dorado system clock and 4.6 ns and 1.1 ns are the worst
case propagation delay and setup time of the components in the synchronizer; FIB_FIFO will occur
at this time or on one of the next three Dorado clocks, depending upon which of these four clocks
corresponds to t2 of the cycle in which this channel can read the FIFO. Allowing for propagation

delay through SIB (5.0 ns) and setup time for SR (1.7 ns), the worst case minimum spacing between
loads of SR is 3*C+(5.7 ns)+(6.7 ns) = 3*C+12.4 ns. This must be less than the time for
emptying SR which is I*(32/ItemSize), where I is the period of the item clock. Hence, I >
(3*C+12.4)/4 for ItemSize=8, or I > 25.6 ns for a Dorado clock period of C = 30 ns.

The 8-bit items from the two channels are then presented to either the Mixer section on the
DispM board or the MiniMixer or Alto video interface on the DispY board.

Dorado Hardware Manual Display Controller 14 September 1981 112

Mixer

The Mixer is controlled by the A8B2, BBypass, and 24Bit mode controls. It is a 1024-word
x 24-bit RAM for which the 10 bits of address required may be obtained from two possible
source distributions, depending upon the A8B2 mode. When A8B2 is true, the address
consists of AItem[0:7] and BItem[0:1]; when false (called A6B4), the address is AItem[0:5]
and BItem[0:3].

Another mode, the BBypass mode, can be enabled independently for the B channel. If B is
bypassed, none of its bits contribute to the Mixer address. Instead, they bypass the mixer
and address a 256 x 8 RAM, the BMap, whose outputs are ORed with the mixer outputs for
the blue DAC. For example, with ASize=8, BSize=4, BBypass true, and A8B2 true, and
with appropriate values in the Mixer RAM, the controller may be thought of as three 4/bits
pixel channels driving three color guns. One channel is bypassed data from B, while the
other two are mapped through the Mixer.

24Bit mode, used in conjunction with BBypass mode, is used to run a three-channel color
display directly from memory. In this mode, items from the A channel alternately address
the Mixer (called the AMap in this mode) and another 256 x 8 RAM called the CMap.
Meanwhile, the B channel runs at half the A channel rate and addresses the BMap as
described above. (That is, the B channel must be set to one-half the resolution of the A
channel.) With suitable values in the color maps, the AMap, BMap, and CMap
independently generate outputs for the red, blue, and green DACs respectively.

Note: when the A channel is turned on, the first AItem addresses the AMap and the second AItem
addresses the CMap. For the A and B pixels to align properly on the display in 24Bit mode, the left
margin counts must be set to start the B channel one pixel clock earlier than the A channel. The
blue and green portions of the AMap must be entirely zeroed, since the blue and green outputs are
ORed with the BMap and CMap.

After routing as dictated by the mixer modes, chosen items are loaded into the map
address registers, causing the color maps to produce a new video value every pixel clock
(every two pixel clocks in 24Bit mode), and these values are latched in the three 8-bit mixer
output registers. Three very fast DAC modules then produce a Red-Green-Blue triple of
analog signals for a color monitor, or up to three grey-level video signals. In conjunction
with the sync, blank, and composite waveforms produced by the monitor control circuitry,
these signals can drive a wide variety of monitors attached to the Dorado.

Alto Video Interface

A small circuit on the DispY board produces video for an Alto monitor. This circuit ORs
CursorData, AItem[0], and BItem[0], then XORs by the polarity, and finally ORs with the
vertical and horizontal blanking signals. This interface is obsolete and is no longer in
active use.

MiniMixer

A small video mixer on the DispY board, not to be confused with the large Mixer on the
DispM board, can drive either a DAC or the seven-wire interface discussed later. The
MiniMixer is a 256 word x 4-bit RAM addressed by a combination of AItem, BItem, and state
bits, as shown in Figure 14. On every pixel clock, dDAC[0:3] are loaded from MiniMixer

Dorado Hardware Manual Display Controller 14 September 1981 113

output, while dDAC[4:7] are loaded directly from AItem[4:7]. The MiniMixer aims at
experiments with mixing channels and driving grey level monitors.

Horizontal and Vertical Control

Every monitor requires horizontal synchronizing and blanking waveforms. Interlaced
monitors must be able to distinguish fractions of a scan line to implement interlacing. In
general, the duration and phasing of sync/blank waveforms is unique to a given monitor.
The DDC uses the 1024-word x 3-bit HRam (Horizontal RAM) to control horizontal
sync/blank.

The DDC has a set of registers called the CLCB (Current Line Control Block) which
controls video generation for the current scan line. The DHT sets up parameters for the
next scan line in NLCB (Next Line Control Block), a 16-word x 12-bit RAM. The first 32
pixel clocks of horizontal blanking are called the HWindow; during HWindow parameters for
the next line are copied from NLCB into CLCB. Vertical control is also handled through the
NLCB.

The interpretation of fields in NLCB and HRam are shown in Figure 15 and loading will be
discussed in the "Slow IO Interface" section; the use of the different information is
discussed here. The top part of Figure 14 shows how horizontal timing is controlled.

Line Control Blocks

The fields in NLCB/CLCB are interpreted as follows, where a denotes that the item is
channel-specific (i.e., copies exist for both A and B channels):

aPolarity. A single bit, used only for binary monitors, that inverts black and white
(APolarity and BPolarity are or’ed by the hardware).

aResolution. A 2-bit field that controls item clock generation; values of 0, 2, and 3
cause quarter, half, and full resolution, respectively.

a ItemSize. A 4-bit field unary encoded as aSize1, aSize2, aSize4, or aSize8,
denoting bits/pixel for the channel; setting multiple bits is illegal.

aLeftMargin. A 12-bit field in units of pixel clocks specifying 31 less than the
number of pixel clocks to wait after HWindow completes before turning the
channel on. This value is not a straightforward constant, but depends upon
monitor-specific horizontal blanking time. If the horizontal blanking time is B pixel
clocks and the desired beginning of data is L pixel clocks after the end of
horizontal blanking, then aLeftMargin should be loaded with B+L�32�31 =
B+L�63, independent of resolution. Since L may be 0, this implies that the
horizontal blanking time for the monitor must be greater than 63 pixel clocks.
Since high-speed monitors typically have greater than 4 ms horizontal blanking
times, and are this fast only with high speed pixel clocks, this restriction is not
expected to be significant.

Dorado Hardware Manual Display Controller 14 September 1981 114

Note: For a monitor connected via the 7-wire interface, aLeftMargin must be B+L�68,
rather than B+L�63, because video signals are delayed from horizontal control waveforms
by 5 pixel clocks.

Note: The value loaded into aLeftMargin must actually be the negative of the left margin
count computed above.

aWidth. A 12-bit counter that counts at the pixel clock rate as soon as the
channel turns on; when the counter runs out (or when horizontal retrace starts,
whichever is earliest), the channel is turned off. Precisely, if the channel is to run
for W pixel clocks, the width counter must be loaded with �(W+255).

aFifoAddr. An 8-bit quantity pointing to the munch and word within the munch for
the first FIFO read for the next scan line; this must be an even number because
doublewords are fetched from the FIFO. Firmware must keep track of the number
of used munches for any given line and advance aFifoAddr by exactly the right
amount, adjusting for munch boundaries, interlacing, and data breakage. The
CLCB register for aFifoAddr is the channel read pointer itself.

MixerModes. A set of bits that control the mixer; these are not channel-specific.
These will normally be changed infrequently, maybe at the field rate or during
display initialization. However, they are in the NLCB to allow modes to change on
the fly.

Vertical Control Word (VCW). A word controlling the vertical retrace operation of
the monitor; it contains the vertical blank bit, vertical sync bit, and interlace field
bit discussed in the "Vertical Waveform Generator" section below.

Cursor and CursorX. The 12-bit CursorX value is loaded into a counter which
starts counting at the end of HWindow. When the counter runs out, the 16-bit
Cursor value is shifted out onto the CursorVideo line. This is used by the Alto
video interface and in the MiniMixer address. Precisely, if horizontal blanking is B
pixels in duration, and the leftmost bit of the cursor is to appear X pixels beyond
the end of horizontal blanking, then the CursorX register must be loaded with
�(B+X+226), or �(B+X+221) when using the 7-wire interface.

Horizontal Waveform Generator

The 1024-word x 3-bit HRam contains control information for these waveforms. Under
normal operation, HRam is addressed by a 12-bit counter (HRamAddr[0:11]) which is reset
at the leading edge of horizontal sync and then increments every pixel clock until the next
leading edge of horizontal sync; HRamAddr[1:10] address the RAM, and the output is
loaded into the HRamOut register every other pixel clock. The three bits in HRamOut
control horizontal sync, horizontal blank, and half-line; these three bits are combined and
level shifted by a logic network appropriate for the monitor being driven.

The 1024-word HRam imposes the uninteresting restriction that there be fewer than 2048 pixels/scan
line.

As shown in the diagram at the top of Figure 14, horizontal blanking (HBlank) is true from
the end of one scan line to the beginning of the next. During horizontal blanking, HSync is
turned on to initiate the horizontal retrace and turned off again when horizontal retrace is

Dorado Hardware Manual Display Controller 14 September 1981 115

finished. HBlank then continues for a monitor-specific interval. Note that if a channel’s
visible left margin is non-zero, then the horizontal scan will begin before that channel is
producing any data; in this case, the video channel outputs zero items to the mixing stages
until the channel is turned on.

Due to an implementation error, when the 7-wire interface is being driven from DispY, the value of
HBlank[i] may differ from HBlank[i�1] only when i is even, where i is HRamAddr[1:10].

Vertical Waveform Generator

Only 2:1 interlaced monitors are supported in this design, but more complicated vertical
control could be provided, if desired. To support 2:1 interlace, HRam contains a waveform
called HalfLine, which is a pulse at the horizontal line frequency, 180o out of phase with
HSync.

Vertical control is handled by DHT through the NVCW word in the NLCB, which specifies
whether or not vertical blank or retrace should begin or end during the next scan line. The
DHT microcode must keep track of scan lines to enable vertical signals at the appropriate
times.

The three VCW bits are called VBlank, VSync, and OddField. VSync enables vertical sync
to begin on the next line, and the OddField bit chooses either HSync or HalfLine on which
to do vertical syncing (OddField=1 implies HalfLine phasing for vertical sync). This phase
will alternate from the start of the line to the middle of the line and back for successive
fields. The blanking signal for the monitor is VBlank ORed with HBlank.

Pixel Clock System

The programmable pixel clock on the DispM board, if present, determines the fundamental
video data rate for a given monitor. The pixel clock is controlled by loading the PixelClk
register via the slow io system. The pixel clock frequency is (312.5*(241�M))/(16�D)
KHz, where M is PixelClk[4:11] and D is PixelClk[12:15]. Note that the pixel clock will not
stabilize until about 1/2 second after the PixelClk register is loaded.

The parts of the DDC synchronized to the rest of Dorado do, of course, use the Dorado
system clock. As discussed earlier, the synchronization logic for refilling SIB after SR_SIB
puts a lower bound on the pixel clock period of (3*C+12.4)/4 ns (= 25.6 ns for a Dorado
clock period of C = 30 ns), for an item size of 8 on either channel. We anticipate that
pixel clock rates in the range 10 to 50 MHz (100 to 20 ns/pixel) will be required, so the
lower bound is approximately consistent with this.

Dorado Hardware Manual Display Controller 14 September 1981 116

Seven-Wire Video Interface

So that a number of different controller and terminal types may be freely interconnected in
Dolphin and Dorado-based systems, a common interface between terminals and controllers
has been defined. This interface assumes that a terminal contains a raster-scanned bitmap
display and one or more low bandwidth input devices (keyboard, pointing device, etc.) The
DDC transmits digital video and sync to the terminal over six pairs of a seven-pair cable.
The input data is encoded by a microcomputer in the terminal and sent back serially over
the seventh pair (the "back channel"). Video and control (sync) are time-multiplexed, and
four bits are transmitted in parallel to reduce the cable bandwidth required.

While the description in the following sections assumes a display having one bit/pixel, the
basic signalling mechanism may be extended to support gray-level or color displays.

Video Output

The four output lines are interpreted as either a 4-bit nibble of video or four control signals
according to the phases of the two clock signals; the DDC places data on the data lines at
the falling edge of ClkA, and the terminal samples this data on the rising edge of ClkA. If
ClkB is 1 at this time, the nibble is interpreted as four bits of video, else as sync and
control information. ClkA and ClkB are transmitted in quadrature so that the terminal can
reconstitute a clock at the video bit rate.

When a nibble is interpreted as control information, bit 2 is reserved for horizontal sync
and bit 3 for vertical sync, while 0:1 are undefined; different types of terminals may use 0:1
for any purpose.

A circuit on the DispY board drives the seven-wire interface from the MiniMixer.
MinMixer[0] is serial-to-parallel converted into four-bit nibbles, which are held in a register
for transmission. Sync, blank, and clock phases are generated in accordance with the
seven-wire interface specification.

Back Channel

Data from low bandwidth input devices at the terminal are transmitted serially over the back
channel. Data are clocked by the terminal on the rising edge of the horizontal blank pulse
and are sampled by DHT during the subsequent scan line after HWindow.

By convention the terminal microcomputer encodes 32-bit messages (delivered in 32 scan
lines); each message begins with a 1, and after the 32nd bit of the message the DHT
ignores the backchannel until the start of another message is indicated by another 1. The
message consists of a start bit, 3 unused bits, a 4-bit message type, a 16-bit message body,
and finally an 8-bit trailer which must be 2008.

The terminal microcomputer perpetually cycles through all possible keys on the keyboard
(as well as mouse buttons and keyset paddles), detecting changes in state of the keys; the
state of the keyboard then exists in seven 16-bit words, and a back channel message is
defined for each. Whenever one of these words changes value, it is sent to the Dorado in
a message. Additionally, changes in mouse x,y coordinates are reported once per field
(i.e., twice/frame or typically 60 times/sec). If the mouse has not changed position during

Dorado Hardware Manual Display Controller 14 September 1981 117

a field, then one keyboard word is reported instead of the mouse position change; thus, the
correct state of the keyboard is eventually reported even if transitions are missed.

Table 24: Terminal Microcomputer Messages

Message
�Type Comments

00B Illegal�ignored

01B Keyboard word 0 (corresponds to Alto memory location 1077034B)

02B Keyboard word 1 (Alto 177035B)

03B Keyboard word 2 (Alto 177036B)

04B Keyboard word 3 (Alto 177037B)

05B Mouse buttons and keyset (Alto 177033B)

06B 8-bit changes in X-coordinate (0:7 of the message body) and Y-coordinate (8:15 of the
message body), represented in excess-200B notation

07B Illegal�ignored

10B Keyboard word 4 (Star keyboards only; no Alto analogue)

11B Keyboard word 5 (Star)

12B�16B Illegal�ignored

17B Boot message. Actually, depressing the boot button jams the data to one continuously,
rather than generating a valid terminal message. Furthermore, when the boot button is
let up, there may be as many as 8 bits of garbage following the last consecutive one
bit; these must be ignored by the firmware. The firmware should also ignore boot
button pushes less than 10 ms in duration, as these may be caused by noise or contact
bounce.

Processor Task Management

This section outlines the implementation requirements of DHT and DWT and discusses the
hardware associated with task wakeups and DWT subtask arbitration between the two
channels.

Since DHT must do a lot of processing, it runs at low priority and is awakened once/scan
line at the end of HWindow. When it runs, it must calculate all parameters for the next
scan line (i.e., the one after the scan line that is just starting), load the NLCB appropriately
for each channel, and set up the munch address and count for each channel in the RM
registers aNextAddr and aNextCount referred to in the DWT sample code below; then it
sets the aNextWCBFlag flags discussed below. The DHT wakeup will remain active until
any NLCB output command is executed, so the DHT must execute at least one NLCB
output command every time it wakes up, and this must occur at least three instructions
prior to blocking.

DWT is a very high priority task which may run on behalf of either channel: channel A is
subtask 0; channel B, subtask 2. Since it uses the subtask mechanism, DWT must always
block at the same instruction each iteration. DWT does not explicitly know the channel for
which it is executing at any given time; its two parameters, a start address and munch
count, are received from DHT in RM registers specific to the subtask. In the normal case,
DWT initates an IOFetch and blocks. The following is the main-line DWT microcode
presently in use:

Dorado Hardware Manual Display Controller 14 September 1981 118

%RM registers for channel A, indicated by names beginning with "A" below, are used in the program, but the
corresponding set of registers for channel B, in a different RM region, will be referenced when SubTask is 2.

Note that TIOA selects the DWTFlag register and T contains 20 at the beginning of the loop, so the second
instruction is used both to increment the munch address and to signal the hardware that an IOFetch is
commencing.
%
DWTStart: ACount_(ACount)�T, Branch[DWTCheck, R<0];

AAddress_(IOFetch_AAddress)+(Output_T), Block, Branch[DWTStart];

%AAddress will be even if we just exhausted a scan line. AAddress will be odd if we have just been awakened to
start a new scan line. In either case, isolate flag in AAddress[15] for use in adjusting the WCB flags.
%
DWTCheck: AAddress_ (AAddress) AND (1C), Branch[DWTAdjustWCBFlags, R even];
%Note that the change-RSTK-for write function used below is ok, but the change-RBase-for-write functions are
illegal because of subtasking.
%
DWTRefill: ACount_ANextCount; *from DHT, # munches to fetch -1 in 0:11

BrLo_ANextAddrLo; *first munch address
BrHi_ANextAddrHi;

%Now adjust WCB flags, as follows: If we just exhausted a scan line, AAddress=0 now; execute Output_0 to
clear the CurWCB flag, and set AAddress to �1 for the next wakeup. If we are starting a new scan line,
AAddress=1 now; execute Output_1 to set the CurWCB flag and clear the NextWCB flag, and set AAddress to 0
for the first IOFetch.
%
DWTAdjustWCBFlags:

AAddress_ (AAddress)�1, Output_AAddress, Block, Branch[DWTStart];

DWT lowers its wakeup request at the onset of the DWTStart instruction, and the DDC
remembers that DWT is in progress. No further DWT wakeups will be generated while the
task is running or is preempted by a higher priority task. Whenever DWT blocks, a counter
is initialized to a constant value N and counts once per Dorado cycle; when the counter
runs out, DWT wakeups are allowed again. This counter has two purposes. First, within a
munch loop it spaces out IOFetch references to the memory system by 8 or more cycles
(depending upon N, which is adjustable through a hardware SIP component), so as not to
clog the memory pipeline. Second, the decision to generate subsequent DWT wakeups is
based upon the state of flags that may be altered by output commands; these commands
take time to get from the processor to the DDC and alter the state. Other tasks may have
the processor while these state changes take effect.

After N cycles have elapsed, DWT will be woken whenever aWantsDWT is true for one of
the channels. Two channel-specific flags are involved in DWT wakeup control:
aCurrentWCBFlag is true when a is actively moving words into the FIFO; aNextWCBFlag is
set true by DHT after it has loaded the munch address and munch count into DWTnextaddr
and DWTnextcount for a. After fetching the last munch for a scan line, DWT clears
aCurrentWCBFlag and blocks unless aNextWCBFlag is true. In other words, aWantsDWT
when

(aNextWCBFlag & not aCurrentWCBFlag) %
(aCurrentWCBFlag & aFifoAvailable).

If only AWantsDWT or only BWantsDWT, no conflict arises and the requesting channel gets
DWT. However, if both channels want DWT, the channel that ran least recently will run
next.

Dorado Hardware Manual Display Controller 14 September 1981 119

Two observations must be made about the DWT microcode. First, because the final
instruction is normally an IOFetch_, the next instruction executed (by another task) will be
held one cycle if it initiates any memory reference. Secondly, the two instruction loop
above requires that the hardware cope with the NextLies condition discussed in the "Slow
IO" chapter; a pathological lockout problem could occur if a high demand task of higher
priority is coded so that it always creates NextLies (say, by doing Block and immediate
_Md in the instruction after a fetch). This would result in the DWT wakeup being
frequently delayed by 2 cycles.

Note: Neither DWT nor DHT drives the IOAtten branch condition.

Slow IO Interface

DDC manages all control functions via the slow io system. At this point you should study
Figure 15, which shows the format of the various output and input commands; there are six
output devices and one input device on the DispY board, and eight output devices and one
input device on the DispM board (if present). Output commands are handled uniformly:
TIOA is clocked into a register at t1; the register output is decoded and identified as one of
the DDC commands; if the processor is doing an Output_B, then at t3 IOB data from the
processor is clocked into a register and one of the "TIOA command" pulses occurs from t3
to t5, at which point the desired action is complete.

The IOB data received at t3 of an Output_B will remain in the DDC buffer register (RIOB)
until the next output command. This is useful for debugging and for muffler readout of the
NLCB (because an NLCB address can be loaded into RIOB for multiple cycles).

The HRam, MiniMixer, Mixer, BMap, and CMap are RAMs that will generally be loaded
during system initialization and not often changed while pictures are being displayed. The
programmable pixel clock will also be loaded during initialization, if it is being used instead
of the fixed crystal oscillator.

The HRam, Mixer (AMap), BMap, and CMap addresses each have two independent
sources: the Dorado slow io system and the video system. Video system addressing is
disabled during loading from the Dorado. The output commands to each of these RAMs
are interpreted as follows: The Keep’ bit is saved in a flipflop loaded by every RAM output
command; as long as Keep’ is true (i.e., low), video system addressing is off. If LoadAddr
is true, then IOB[4:15] are loaded into the RAM address register. If Write’ is true (i.e., low),
the currently-addressed word of the RAM is written from the data field; additionally, the
RAM address register increments after writing, so the RAM can be loaded sequentially at
high speed. A RAM output command with Keep’ false (i.e., high) releases the RAM from
Dorado control and returns it to the video system.

Note: the LoadAddress and Write’ bits of a RAM output command take effect only if the Keep’
flipflop is already true (i.e., set to zero by a previous RAM output command).

Note: in the case of the Mixer, the RAM address is loaded from IOB[4:14] and a Hi/Lo Select bit is
loaded from IOB[15]. The latter bit determines which 12 bits of the 24-bit wide mixer word will be
loaded by the next Write’. The Hi/Lo Select bit behaves as a low-order extension of the Mixer
address counter, so successive Write’ commands will alternate between the halves of one mixer word
before advancing to the next.

Dorado Hardware Manual Display Controller 14 September 1981 120

The MiniMixer is loaded by a single output instruction that specifies both the address and
data to be loaded. During the command pulse from t3 to t5 of the Output_B instruction,
the video channel address to the MiniMixer is replaced by the address being loaded, so if
the video channel is active, garbage may appear at the output during this cycle.

The 16-word x 12-bit NLCB is also loaded by single output instructions that specify both
the address and data. For the NLCB, output instructions are only effective when HWindow
is not occurring�during HWindow the RAM address is supplied by a counter that
successively copies the NLCB words into CLCB. The format of each of the words in NLCB
is shown in Figure 15. Note that any NLCB output operation will dismiss the wakeup
request for DHT, and DHT must not block any sooner than the fourth instruction after the
first NLCB output operation is issued.

The Statics output command is used for debugging and initialization. Two bits in the
Statics register called DHTShutUp and DWTShutUp are discussed in the "DDC Initialization
Requirements" section below. Three other fields called FakePClk, UseFakePClk, and
MufAddr are used for debugging. When UseFakePClk is true, the regular pixel clock is
degated; if FakePClk is true, then a pixel clock will occur at t5 of the Statics output
command; otherwise no clock occurs. Every Statics command also loads the hardware
signal addressed by MufAddr into a flipflop (at t5) which can be read by the Status input
command discussed below. In combination, the fake pixel clock and muffler readout
features allow diagnostic firmware to checkout most of the internal data paths in the
DDC�by simulating a very slow pixel clock and "stepping" the DDC through various states,
the diagnostic can check nearly all of the data paths between fake pixel clocks. The
hardware signals selected by MufAddr[5:11] are given in the table below.

Table 25: DDC Muffler Signals

MufAddr Signal MufAddr Signal

 0 ACurrentWCBFlag 70 AFifoFull
 01:07 AReaderPtr[1:7] 71 BFifoFull
 10 ANextWCBFlag 72 ASize8
 11:17 AWriterPtr[1:7] 73 ASize8-4
 20 BCurrentWCBFlag 74 ASize8-4-2
 21:27 BReaderPtr[1:7] 75 BSize8
 30 BNextWCBFlag 76 BSize8-4
 31:37 BWriterPtr[1:7] 77 BSize8-4-2
 40:47 AItem[0:7] 100 AOn
 50:57 BItem[0:7] 101 BOn
 60:63 AServicePtr[1:4] 102:103 ARes[0:1]
 64:67 BServicePtr[1:4] 104:105 BRes[0:1]

 106 MonitorType

Muffler 106 (MonitorType) is the only one of interest during normal operation. It identifies
the type of monitor connected via the 7-wire interface: zero denotes an Alto-style monitor;
one denotes an LF (large format) monitor.

Dorado Hardware Manual Display Controller 14 September 1981 121

A single input device called Status is implemented. It is used to return the currently
selected muffler bit and the seven-wire interface received data bit.

The MapInLo and MapInHi input devices read the current values output from the color
maps (Mixer, BMap, and CMap, whichever are active). When the color maps are controlled
by the video system, these outputs change too rapidly for reading them to be useful (unless
the DDC is being single-stepped by means of UseFakePixelClk). However, when the color
maps are controlled by the Dorado, this input device can be used to read out the color
map entries addressed by their respective RAM address registers.

MapInHi[0] is the 7-wire terminal input bit for the independent terminal interface on DispM;
its position corresponds to Status[0] on DispY (see below). MapInHi[1] is a constant 1 if a
DispM board is installed; if DispM is not installed, an Input from the nonexistent register
yields a zero value. This enables firmware to detect the presence or absence of a DispM
board. MapInLo[0:3] are a 4-bit color monitor type jumpered on the Dorado backpanel.

Note: the MapInLo and MapInHi input devices do not generate IOB parity, so they must be read by
the Pd_InputNoPE function to disable parity checking.

DispM Terminal Interface

The independent terminal interface on the DispM board functions much the same as a
single-channel DispY board, but is specialized to driving a binary monitor via a 7-wire
interface. The data path is one bit/pixel; the resolution is full; there is no MiniMixer; and
the horizontal waveforms are fixed by a PRom (which must be changed when a different
type of 7-wire terminal is installed).

Aside from these limitations, the DispM terminal interface operates almost identically to the
A channel of DispY. In particular, the io addresses are grouped parallel to the ones on
DispY, and the data formats are identical; so a microprogram can initialize TIOA to the
correct group and subsequently use the function that changes only TIOA[5:7] to select
registers within that group. This enables practically all the microcode for driving a 7-wire
terminal to be shared between DispY and DispM.

In Figure 15, the DispY io operations that are also defined for DispM are marked with an
asterisk. Note that outputs to unused NLCB addresses are ignored.

Due to hardware differences between DispY and DispM, the ALeftMargin and CursorX
values must be computed slightly differently. For DispM driving the 7-wire interface,
ALeftMargin = �(B+L�130) and CursorX = �(B+X+190).

Note: DispM does not have a muffler system. In particular, the MonitorType muffler value is always
read from DispY. By convention, this refers to the type of 7-wire terminal attached to the Dorado,
whether that terminal is connected to DispY or to DispM. Also by convention, the 7-wire terminal is
always connected to DispM if DispM is installed.

Dorado Hardware Manual Display Controller 14 September 1981 122

DDC Initialization Requirements

The two low-order bits in the Statics register are called DWTShutUp and DHTShutUp. They
are forced true by IOReset and prevent the respective task wakeups from happening. They
are individually set or cleared by the Statics output command. In addition, IOReset sets the
signal DoradoHasHRam; this will prevent horizontal sync from being sent to monitors until
the HRam has been loaded and released by firmware. Blanking is sent to monitors as long
as DHTShutUp remains true. It is anticipated that DHTShutUp will be left true until all DDC
initialization has been completed by the emulator (or by the DHT running in response to a
Notify).

Some other initialization requirements are as follows: aLeftMargin should be loaded with a
large negative value in case one of the channels remains unused forever; the Cursor in
NLCB should be zeroed in case the cursor is completely off-screen forever; HRam must be
loaded with monitor-specific waveforms; the pixel clock rate must be set; mixer modes must
be set; the MiniMixer must be loaded. In addition, the DHT must explicitly set the aAddress
registers to zero on behalf of the DWT, which cannot initialize itself completely for each
subtask.

Speed and Resolution Limits

High performance color monitors are typified by the following performance limits:

 22 ms horizontal scan time
 5 ms horizontal blanking time
800 ms vertical blanking time

Parameters for a particular monitor can be modified slightly through hardware adjustments,
but cannot be controlled by the DDC, which must provide control signals with timing
appropriate for the monitor. Consequently, a monitor must be chosen that conforms to the
speed limitations of the DDC.

One important speed limitation is how fast bits can be moved from storage through the
DDC. This limit is derived using the following parameters:

F Frame update rate. High speed phosphors require a minimum update rate of
30 frames/sec with interlaced operation for reasonable visual effects; this is
marginal and faster update is desirable.

S Scan lines/frame.

VR Vertical retrace time; with interlaced operation, there will be two vertical
retraces/frame.

HB Horizontal blanking time.

HS Horizontal scan time. The FIFO must not go empty during the horizontal scan
or garbage will be displayed.

T Time/munch or the rate at which storage can deliver data for IOFetches; this
is 1 munch/8 cycles = 1 munch/0.4 ms.

Dorado Hardware Manual Display Controller 14 September 1981 123

M Munches/scan line that the fast io system can deliver.

The time required to fill the FIFO for both channels is a little longer than 30*8+20 cycles
(= 276 cycles) or about 13.8 ms at a Dorado clock period of 25 ns; this follows from the
fact that there are 15 munches/channel or a total of 30 munches of FIFO storage, and the
fast io system can deliver one munch per 8 cycles with the first munch arriving 20 cycles
after the first IOFetch_. 13.8 ms is much smaller than the vertical blanking time and longer
than the horizontal blanking time, so the FIFO will start out full at the beginning of a field
and will be actively refilling itself during HS+HB of each scan line. If the memory system
keeps up with the demands of the video channels, then the FIFO will tend to refill itself
after momentary transients in which it empties out a little.

Consequently, we know that HS+HB = 1/(S*F) � 2*VR, and that M = (HS+HB)/T less
corrections for refresh references, storage references by other tasks, hold, and delays for
tasks of higher priority than DWT. At F = 30 frames/sec, VR = 800 ms, and S = 1000
scan lines, we get HS+HB = 31.7 ms and M = 31.7/0.4 = 79 munches less corrections.
There will be an average of two refresh references/scan line, so we get an upper bound of
77 munches = 19,712 bits/scan line from storage.

However, the DWT will not get all storage bandwidth. The DWT wakeup spacing is
controlled by a SIP; the smallest reasonable spacing would result in one IOFetch every 8
cycles�closer spacing would result in hold while a preceding IOFetch completed, so more
processor cycles would be consumed without improving data rate. At this tightest spacing,
DWT runs for 2 cycles out of every 8. Conceivably, worst case memory activity discussed
in the "Fast IO" chapter could occur during these 6 cycles (a clean miss 3 cycles before
the IOFetch, followed by a dirty miss 2 cycles before the IOFetch, each by a different task).
However, the large amount of storage in the FIFO allows us to rely upon statistics to
average out memory competition, so it is probably reasonable to allow DWT at least 80% of
storage bandwidth or about 16,000 bits/scan line in the above example, which would
accommodate 1000 line x 1000 pixels/line x 16 bits/pixel. For HB = 5 ms this is equivalent
to a pixel clock period of 26.7 ns.

This is only one speed limitation. Since the 32-bit wide FIFO is accessed once/cycle
alternately by the A and B channels (i.e., 16 bits/cycle/channel), and since exactly three
doublewords are fetched before the horizontal scan begins for each channel, the maximum
bits/scan line for each channel is about (3*32 bits)+[(26.7 ns/pixel)*(16 bits/50 ns)*(1000
pixels/line)] = 8640 bits/scan line. This means that unless both channels are running at
the same data rate, the data rate will be significantly below the upper bound determined
above. For example, in 24Bit mode, if the A channel runs at full resolution and gets 8640
bits/scan line, the B channel will run at half resolution and get only 4320 bits/scan line, so
the maximum data rate would be about 1000 lines x 538 pixels/line x 24 bits/pixel.

Dorado Hardware Manual Ethernet Controller 14 September 1981 124

Ethernet Controller

An Ethernet is the principal means of communication between a Dorado and the outside
world. An Ethernet is a broadcast multi-access packet switched network which can
connect up to 256 stations separated by as much as 1 kilometer with a 3 mHz channel.
The ’Ether’ is a passive coaxial cable to which each station is connected through a
transceiver that is high-impedance when receiving, low impedance when driving.

Readers unfamiliar with the general concepts behind the Ethernet should refer to
"Ethernet: Distributed Packet Switching for Local Computer Networks," by R. M. Metcalfe
and D. R. Boggs, CACM, 19(7):395-404, July 1976; or to Design and Performance of Local
Computer Networks, by John Shoch, published by University Microfilms, August 1979.

Read this chapter with Figure 16 in view.

Ethernet Packets

Ethernet data are encoded in packets. Packets are preceded by a low signal (i.e., silence)
on the Ether; they begin with a one-bit prefixed by the transmitter, called the start bit. Bits
in the packet are phase encoded, where the bit cell time is nominally 340 ns; phase
encoded signals have one data transition per bit cell and its direction (low-to-high = 1) is
the value of the bit. Midway between these there may be a setup transition, so that the
next data transition can be in the correct direction.

Packets end when no transitions are detected for more than 1.5 bit times and the Ether is
low. Collisions are transmissions that overlap in time and cause malformed and
undecodable bits. Transmitters jam the Ether with a continuous high for several bit times
after participating in a collision. Collisions are of four types: too many transitions, in which
two transitions occur within .25 bit times; too few transitions, in which a transition occurs
between 1.25 and 1.5 bit times after the last one; end-of-packet (EOP), in which no
transitions occur for more than 1.5 bit times and the Ether is low; and jam, which is the
same as EOP except that the Ether is high.

In a well-formed packet that does not experience a collision, the start bit is immediately
followed by an 8-bit destination host number, then an 8-bit source host number. This is
followed by an indefinite number of 16-bit data words, a 16-bit checksum, and finally
silence.

Even when transmitted without a source-detected collision, a packet may fail to reach its
destination; packets are delivered only with high probability. Stations requiring a lower
residual error rate must follow mutually agreed upon communication protocols.

When the sender of a packet detects a collision, some method is needed to arbitrate
(without communication) its use of the Ether with other stations contending for it. The
algorithm used on the Ethernet, called the ’binary exponential backoff collision algorithm,’
is discussed in the above references. It involves waiting a random interval and then
reattempting transmission. The (ideal) distribution of the random intervals depends upon
many factors.

Dorado Hardware Manual Ethernet Controller 14 September 1981 125

Remarks

From the method of collision detection, it follows that in a noise free Ether with ideal transmitters and
receivers, a bit cell time between 0.75*T and 1.25*T, where T is the nominal bit cell time (340 ns), can be
decoded correctly.

Phase encoding has the undesirable property that only 50% of the transmission medium’s theoretical bandwidth
is utilized. A number of reasonably simple encodings are known that more nearly approach the theoretical
limit, though phase encoding is simple to implement. If at some time we were willing to abandon compatibility
with the existing Ethernet, we should reconsider the use of phase encoding.

A promising alternative to phase encoding is bit-stuffing, which averages 67%, 86%, or 93% of theoretical
bandwidth for 0th, 1st, and 2nd order codes. This encoding outputs data bits in a cell time equal to 1/2 of
the phase-encoded cell time; when 1 (0th order), 2 (1st order), or 3 (2nd order) data bits have been output
without a transition, then a non-data transition is inserted into the bit stream. The 1st order encoding (86%)
could be implemented with a few changes to the current controller.

Controller Overview

The Ethernet controller is a slow IO device packaged with the disk controller on the DskEth
logic board. These two devices require more edge pins than are available in an MSA-IO
slot, so the board must be mounted in a Fast IO slot (see Figure 2).

It would be possible to package two Ethernet controllers on one logic board using different task and
TIOA assignments for each. This might be appropriate if Dorados are ever used as Ethernet
gateways.

A cable connects the controller to a transceiver outside the Dorado enclosure; this
transceiver is almost identical to the ones used for Altos and other computers, the
difference being that it uses +12 volts rather than +15. Dorado transceivers are painted
bright red and have large block lettering saying "Dorado only". Plugging in the wrong type
of transceiver will not damage anything; it just won’t work. The cable between the
controller and the transceiver contains twisted-pair signals for receiver data, transmitter
data, collision, +5 v, and +12 v.

The controller has independent transmitter and receiver sections. Because these two
sections are completely independent, the Dorado can receive its own transmissions. This
is an important aid in hardware and software debugging and simplifies the device driver,
which need not check for sending to itself. Furthermore, the receiver can receive
consecutive packets separated by the minimum inter-packet spacing (510 ns). This means
that the Dorado can receive, without loss, streams of packets directed to it by mulitple
hosts and packets that immediately follow broadcasts. This capability is important for
servers and other high-performance applications.

The controller uses two tasks, one for the transmitter (EOT for Ethernet Output Task) and
one for the receiver (EIT for Ethernet Input Task). The receiver task is higher priority. To
permit two instruction/wakeup loops, a wakeup request is removed whenever the Next bus
says the task is about to run. This simple strategy can be fooled into removing a request
when NextLies occurs, but this is harmless since the required service rate is low. To avoid
a spurious wakeup, a wakeup is not requested again until after the task has blocked. A
debugging control bit can be set which prevents wakeups even when all other conditions
are satisfied.

Dorado Hardware Manual Ethernet Controller 14 September 1981 126

The transmitter and receiver each have 16-word x 20-bit Fifos. The bits are 16 data + 2
parity + 2 spare (the receiver uses one of the spare bits). Each Fifo has read and write
pointers, multiplexed into the address inputs of the storage chips, to select the next
location to be read or written; these pointers are zeroed by IOReset. A Fifo is empty when
the pointers are equal and full when (WritePtr+1) mod 16 equals ReadPtr. There are bus
registers between the Fifos and IOB. Service requests from the Ether side of a Fifo are
given priority. The Fifos are synchronous to t1.

The basic clock for transmitting and receiving data from the Ether, called EtherClk,
originates from a 23.5 MHz crystal oscillator (i.e., the period is 42.5 ns or 1/8 of the 340 ns
bit cell time). The memory system’s Pendulum clock (period 16 ms) is also used to time
retransmissions after a collision, as discussed later.

The receiver runs continually; its phase decoder (PD) samples the Ether every EtherClk; a
finite state machine (FSM) driven by the samples detects the presence or absence of
packets on the Ether, zero/one transitions, and collisions. Another FSM accumulates the
status of the packet and controls a shift register that assembles 16-bit words from the
incoming data. Words in the shift register are written into the receiver’s Fifo together with
odd parity on each byte; the status is written into the Fifo after the last word of each
packet and marked to distinguish it from data words. This allows the receiver to handle
back-to-back packets; firmware decides what to do with each packet as it is read from the
Fifo. EtherClk is used for receiver stages through the shift register; data in the shift
register is synchronized to the Dorado system clock as it is written into the Fifo.

When the transmitter is turned on, it attempts to send one packet and then must be
restarted by firmware. The EOT fills the Fifo; the transmitter FSM loads the shift register
from the Fifo and supplies a serial bit stream to the phase encoder (PE). Transmitter status
is read directly from the controller status registers (unlike receiver status, which travels
through the data path). Data is synchronized to EtherClk between the output of the shift
register and the input of the PE. A collision may be detected by either the transceiver or
the PD. The occurrence of a collision is captured, synchronized, and used to abort the
outgoing packet after jamming the Ether briefly.

The controller has a number of features to help debugging. All of the interesting internal
state is available via the IOB and the muffler system. The transceiver can be disconnected
and PE output internally connected to PD input under firmware control. Task wakeups can
be disabled permitting the controller to be driven entirely from emulator-level software. The
internal clock can be single-stepped. These features permit the construction of a
simulation program which compares its predictions with what the controller is actually
doing.

Dorado Hardware Manual Ethernet Controller 14 September 1981 127

Receiver

Most of the receiver runs continuously, tracking traffic on the Ether. The PD reports what
it sees to the receiver FSM, which assembles packets in the shift register and buffers them
in the Fifo. As words emerge from the Fifo into the bus register, they are either discarded
or generate a wakeup request under control of the wakeup logic. Following the last data
word of each packet as it travels through the Fifo are the CRC word and a status word.
IOAtten branches when a status word is present in the receiver bus register. Data and
status are synchronized to the Dorado clock between the output of the shift register and
the input of the Fifo.

The peculiar placement of status bits in Figure 16 eases emulation of the Alto Ethernet controller.

The PD is a FSM which takes in raw phase-encoded serial data and produces phase
decoder events and carrier. Phase decoder events are ’saw a zero bit’, ’saw a one bit’,
and ’saw a malformed bit’. Carrier indicates that the PD is seeing transitions on the Ether
(i.e. the Ether is in use). Since the PD is completely digital, it can be single-stepped for
debugging. Receiver collision detection, a by-product of this decoding technique, works as
well as transceiver collision detection.

The receiver control is another FSM that takes in PD output and produces control and
status signals. RxSRCtrl controls the shift register and the bit counter. The bit counter
decrements when a data bit is shifted into the shift register and resets to -1 when the
status is parallel loaded into the shift register. RxSRFull’ is low when the next shift will
make the register full. RxEOP travels in parallel with each Fifo word and is true if the word
is an ending status word. This bit is called EthData.18 when it is in the bus register where
it can be tested with IOAtten.

Writing data or status from the shift register into the Fifo has priority over loading the bus
register from the Fifo. Byte parity is computed at the shift register output and travels with
the data through the Fifo and the bus register, down IOB and into the processor where it is
checked.

The optimum point at which to synchronize received data with the Dorado clock system
would be at the input to the PD, where there is only one signal to synchronize, except that
this would make proper operation of the PD depend upon the Dorado clock period. The
next best sync point is the PD output where the number of signals has only grown to three.
The problem here is that the PD can produce events faster than they can be synchronized
to the Dorado clock without buffering. Consequently, synchronization takes place after the
shift register where the number of signals exceeds 20. This is not as unfortunate as it
seems because status and data use the same paths and can share a single synchronizer,
RxSRDump, which produces RxFifoWE’ each time RxFSM pulses RxSync’. This leaves only
RxCollision and PDCarrier which must be synchronized for the transmitter. RxCollision
shares a synchronizer with XcCollision, and PDCarrier’s is a simple level synchronizer.

A receiver data-late occurs when the receiver FSM requests a Fifo write and the Fifo is full.
In this case the write does not happen and the data is lost. RxDataLate is cleared after an
end-of-packet status word is successfully written into the Fifo. This status has the data late
error bit set so that the EIT is notified that the preceding packet was bad.

Dorado Hardware Manual Ethernet Controller 14 September 1981 128

EIT wakeup requests occur when the bus register contains an interesting word (provided
that the EIT is currently blocked, as discussed earlier). Words are interesting if they
emerge from the Fifo into the bus register while RxOn and RxBOP are true and NoWakeups
is false. RxBOP is set after the status word for a packet is discarded, so that the next word
out of the Fifo (presumably the first word of the next packet) can generate a wakeup. It is
reset by the EIT to discard the remaining words of a rejected packet (usually because the
address didn’t match). The receiver may be reset at any time by clearing RxOn. No more
wakeups are generated and every word is discarded as it emerges from the Fifo. When
RxOn is next set, the receiver will continue to discard words until it has discarded a status
word. It will then set RxBOP, and the next word (first word of the first packet after turning
on the receiver) will cause a wakeup.

Transmitter

When the transmitter is turned on, it attempts to send one packet and then must be
restarted by firmware. At the request of the wakeup logic, the EOT fills the Fifo using
Output_B to the bus register. The transmitter FSM loads the shift register from the Fifo
and supplies a serial bit stream to the PE. Transmitter status is read directly from the
controller status registers (unlike receiver status, which travels through the data path).
Data is synchronized to the Ether clock between shift register output and PE input.

EOT wakeups occur when the bus register is empty, TxOn is true, and TxEOP, TxCntDwn,
and NoWakeups are false (provided that EOT is blocked, as discussed earlier). After
delivering the last word of a packet, EOT wakeups are disabled by setting TxEOP. While
counting down a collision retransmission interval, firmware can disable wakeups until the
next tick of Pendulum by setting TxCntDwn. The transmitter may be reset at any time by
clearing TxOn, which stops wakeup requests and shuts down the PE within 2 bit times.

The binary exponential backoff collision algorithm must be implemented in firmware. The
controller merely provides a way to generate a wakeup on the next rising edge of
Pendulum, making the grain size of countdown intervals 16 ms for the Dorado (compared to
38 ms for Altos and Novas). Note that setting TxCntDwn prevents a wakeup; for one to
actually occur when Pendulum clears it, the bus register must be empty and TxEOP must
be false. Pendulum is considered to be a foreign signal so it is synchronized before being
applied to the reset input of TxCntDwn.

Loading the shift register from the Fifo has priority over writing into the Fifo from the bus
register. Byte parity is computed in the processor and travels with the data down IOB into
the bus register, and through the Fifo to the shift register where it is checked.

The transmitter control is a FSM which takes in start, end, and abort signals and produces
control signals. TxSRCtrl controls the shift register and bit counter. The bit counter
decrements when a data bit is shifted into the shift register and resets to -1 when the next
word is parallel loaded into the shift register. TxSREmpty’ is low when the next shift will
make the register empty. TxData wire-or’s the start bit at the beginning of each packet.
TxGone clears TxEOP to cause a wakeup at the end of each packet. The transmitter starts
when the Fifo is full or, if the packet is less than 15 words long, when TxEOP is true. The
transmitter ends normally when the Fifo is empty and TxEOP is true. The transmitter aborts
when a collision, Fifo parity error or data late occurs. TxAbort can be tested with IOAtten.

Dorado Hardware Manual Ethernet Controller 14 September 1981 129

A transmitter data late occurs when the TxFSM requests a Fifo read and the Fifo is empty
but TxEOP is false. The PE sends one random bit and then stops. The resulting packet
has an illegal length and probably a bad CRC.

The PE inverts and latches TxData at the start of each bit cell and inverts the latched value
1/2 bit time later. TxGo, synchronized to the beginning of a bit cell, enables the PE. The
PE assumes that a data bit is available long before it is needed and acknowledges each bit
after latching it by generating TxGotBit.

A collision may be detected by either the transceiver or PD. The occurrence of a collision
is captured, synchronized, and used to abort the outgoing packet. The output of the first
stage of the TxCollision synchronizer is wire-or’ed with PD output to jam the Ether after a
collision. The jam lasts for one or two bit times, being the delay through the TxCollision
synchronizer, TxFSM, and TxGo synchronizer.

Clocks

The controller needs a clock with a nominal frequency of eight times the Ether bit rate.
The SingleStep control bit selects either the 23.53 mHz crystal oscillator or single Dorado
clocks injected under program control. The clocks for the Ether-synchronous parts of the
controller are constructed from this basic clock.

The slowest Dorado clock period at which the transmitter works is 42.5 ns. Disabling the
Dorado system clocks while TxOn is true causes a transmitter data late. If TxGo is true,
the packet is chopped off, causing an incomplete transmission and probably a runt bit.
When the clock is reenabled, the PE sends a few fragmentary bits and then the data late
aborts the packet.

The slowest Dorado clock period at which the receiver works is 85 ns. Disabling the
Dorado system clocks causes a receiver data late. The next packet that arrives after the
clock is reenabled reports the data late.

Task Wakeups

The controller is designed for two completely independent tasks, with the receiver higher
priority. Two IOAs select data and status/control registers. IOAtten may be tested to
decide whether a wakeup request is just for another word or something special (ending
status for the receiver, or PE aborted for the transmitter).

Task wakeups must, on the average, be serviced within 5.44 ms. The transmitter and
receiver each have 17 words of buffering (bus register + 15 Fifo + shift register) so the
variance can be quite large�accumulated delay of up to about 90 ms is tolerable, while
longer delay will cause a data late error.

Dorado Hardware Manual Ethernet Controller 14 September 1981 130

Muffler Input

All muffled signals on the DskEth board are accessible to Dorado firmware. The method by
which a particular signal is selected and read out is discussed in the "Muffler Input"
section of the "Disk Controller" chapter. Signal addresses 1208 to 1778 for the Ethernet
controller are enumerated below. Unless it is obvious, signals which are specific to the
receiver or transmitter have Rx or Tx respectively somewhere in their names.

Table 26: Ethernet Muffler Signals

Word
 Bit Name Meaning

ERX0
 120 PDNew 1/8 bit time sample of PD input signal
 121 PDOld PDNew delayed one sample time
122:125 PDCnt[0:3] Number of samples since last data transition
 126 PDCntCtrl Increments or clears PDCnt
 127 ReportCollisions Control register bit that enables PD collision reporting
 130 RxBOP "Beginning Of Packet" enables receiver data wakeups
 131 EthData.18 Marks status word terminating a packet
 132 �
 133 RxCRCError Output of receiver CRC checker
 134 RxDataLate Receiver Fifo overflowed
 135 RxBusRegFull Word in BusReg can be read with Pd_Input
 136 RxFifoFull Receiver Fifo is full
 137 RxFifoEmpty Receiver Fifo is empty

ETX
140:142 TxState[0:2] State of transmitter FSM
 143 TxEOP Transmitter data wakeups are disabled
 144 TxBusRegFull’ Word is waiting to be written into the transmitter Fifo
 145 TxGone Transmitter FSM is shut down
 146 TxSREmpty’ Transmitter shift register is empty
 147 TxCntDwn’ Transmitter wakeups disabled until next pendulum clock
 150 TxCRCEnbl Shift/compute control for transmitter CRC
 151 TxGo Enable PE
 152 TxData Serial data input to PE
153:154 TxSRCtrl[0:1] Transmitter shift register control
 155 PEOutput Phase Encoder (PE) output
 156 TxFifoFull Transmitter Fifo is full
 157 TxFifoEmpty Transmitter Fifo is empty

ERX1
160:162 RxState[0:2] State of receiver FSM
 163 RxCollision Receiver-detected collision
 164 PDCarrier The Ether is in use
165:166 PDEvent[0:1] PD output (no event, collision, 0, and 1)
 167 RxSRFull’ Receiver shift register is full
 170 RxEOP Marks status word terminating a packet
 171 RxSync’ True for one cycle triggering write of SR into Fifo
 172 RxIncTrans Receiver incomplete transmission
 173 RxCRCReset Resets receiver CRC chip
 174 RxCRCClk Clocks receiver CRC ship
 175 RxData Serial data output from RxFSM
176:177 RxSRCtrl[0:1] Receiver shift register control

Dorado Hardware Manual Ethernet Controller 14 September 1981 131

IOB Registers

TIOA equals 158 selects the IOB registers (called EthD). The transmitter bus register is
loaded by Output_B and the receiver bus register is read with Pd_Input. At end-of-packet,
after the last data word, the receiver delivers first the CRC word and then a status word
containing the following bits:

RxCollision Receiver-detected collision occurred (can happen only if ReportCollisions has
been set in the control word).

RxDataLate Receiver data-late occurred�one or more words of the last packet were lost.

RxCRCError CRC was incorrect in last packet.

RxIncTrans Last packet did not end on a word boundary.

Control Register

TIOA equals 168 selects either the (write-only) control register (EthC), discussed here, or
the (read-only) status register (also called EthC), discussed in the next section. The control
register has three fields: transmitter, receiver, and test. Bits in a field are decoded only if
the command-enable bit for the field is true. Control bits with a single quote as their last
character are true when zero.

TxCmdEnbl’ enables decoding of transmitter commands.

TxOn enables the transmitter. The transmitter may be reset at any time by clearing
this bit. Cleared by IOReset.

TxEOP disables transmitter wakeups. EOT sets this bit after outputing the last word of
a packet. It is cleared by the controller when the PE shuts down after an abort
or normal end. Cleared by TxOn=0.

TxCntDwn disables transmitter wakeups. Set by EOT to time a retransmission interval after
a collision; cleared by the controller when the next rising edge of Pendulum
occurs (period = 16 ms). N.B. the binary exponential backoff is done by
firmware. Cleared by TxOn=0.

RxCmdEnbl’ enables decoding of receiver commands.

RxOn enables the receiver, which may be turned off at any time by clearing this bit.
Cleared by IOReset.

RxBOP’ disables receiver wakeups. Cleared by EIT to discard the currently arriving
packet; set by the controller when the first word of the next packet is available.
Cleared by RxOn=0.

TestCmdEnbl’ enables decoding of test commands

LoopBack disconnects the transceiver, loops PE output to PD input, and enables TestColl’.
Cleared by IOReset.

SingleStep disables the 23.53 mHz oscillator. Changing this bit can produce a runt clock.
Reset the transmitter first and expect an occasional bad receiver status.
Cleared by IOReset.

NoWakeups disables all controller wakeups. Cleared by IOReset.

TestClock injects a single Dorado clock pulse (t3 of the Output instruction) into the

EtherClk logic. SingleStep must already be set.

TestColl’ injects a single Dorado clock pulse (t3 of the Output instruction) into the

collision synchronizer. LoopBack must already be set.

TestData wire ORs with PD input. LoopBack must already be set and TxOn must already

Dorado Hardware Manual Ethernet Controller 14 September 1981 132

be false. Do not issue TestClock in an instruction that changes TestData.
Cleared by IOReset.

ReportCollisions allows the PD to report malformed bits as collisions. Cleared by IOReset.

Status Register

TIOA of 168 also selects the (read-only) status register. The bits in this register are the
most interesting to the microcode. Less interesting state is available from the mufflers.

Host Addr the host address set by pullups on the backplane.

RxOn the receiver is enabled.

TxOn the transmitter is enabled.

LoopBack the interface is looped back.

TxColl the current output packet was aborted by a collision.

NoWakeups all wakeups are disabled.

TxDataLate the current output packet was aborted by a data late.

SingleStep the 23.53 mHz oscillator is disabled.

TxFifoPE the current output packet was aborted by a parity error.

Dorado Hardware Manual Other IO and Event Counters 14 September 1981 133

Other IO and Event Counters

In addition to the disk, ethernet, and display controllers discussed in earlier chapters,
Dorado contains a general input/output interface and a junk task wakeup located on the
IFU board; the two registers used in this interface may alternatively be used as event
counters in performance monitoring, and that use is also discussed here.

Since the IFU board is not interfaced to the IOB, it cannot use the slow io system to control
these features, so functions are used instead.

Junk Task Wakeup

The IFU board contains a circuit which wakes up the junk task (task 1) every 32 ms. The
wakeup is dismissed by the AckJunkTW_B function; this function interprets B[15] as follows:
a 1 enables wakeups; a 0 disables them; B[0:14] are ignored. The junk task can dismiss the
wakeup by doing IFUTest_B with any value on B (but B[15] must be 0 to reenable the
wakeup at the next 32 ms tick).

Junk task microcode will, among other things, maintain a Real Time clock.

General IO

A 16-bit register called GenIn (synonym EventCntA) is used for general input; it can be read
with the B_GenIn (synonym B_EventCntA) function but cannot be written by firmware.
When used for general input, GenIn is written with information that is TTL-to-ECL converted
from the backpanel.

A 16-bit register called GenOut (synonym EventCntB) is used for general output; it can be
either read with the B_GenOut (synonym B_EventCntB) function or written with the
GenOut_B (synonym EventCntB_B) function. GenOut is connected to the backpanel
through ECL-to-TTL converters.

The plan is that devices such as Diablo printers can be connected to the GenIn and/or
GenOut signals via backpanel connectors.

The choice of using one of these registers for general io or for event counting is determined
by the InsSetOrEvent_B function discussed below.

Event Counters

The GenIn and GenOut registers can alternatively be used as event counters. They cannot,
of course, be used simultaneously for general io. The registers are setup for either io or
event counting by the InsSetOrEvent_B function, where B[0:15] are interpreted as follows:

Dorado Hardware Manual Other IO and Event Counters 14 September 1981 134

If B[0] is 1, then InsSet[0:1] are loaded as discussed in the "Instruction Fetch Unit" chapter.
If B[0] is 0, then its the general io/event counters as follows:

B[4] enables counting of EventCntA

B[5] enables counting of EventCntB

B[8:10] select the event type to be counted by EventCntA as follows:

0 True (i.e., every cycle)
1 Hold
2 Processor memory reference (not held)
3 Good IFUJump (i.e., not held and not an exception)
4 Miss
5-7 Backpanel events A, C, and E, respectively

B[12:14] select the event type to be counted by EventCntB as follows:

0 True
1 Hold
2 Successful IFU memory reference
3 IFUJump that wasn’t ready
4 Miss
5-7 Backpanel events B, C, and D, respectively

B[15] causes the event to be counted for all cycles if 1 or only for emulator or fault task cycles if 0.

To use the event counters, you first stop them counting and read their current values; then
you tell them what to count and start them counting and your system running. Note that
they never get reset, but just keep counting from wherever they are�it’s up to the user to
worry about counter turnover.

The expected mode of operation is that the junk task will detect counter overflow and
update double or triple-precision vectors in RM that count events; even if the counter is
counting once per 60 ns cycle, counter wraparound only occurs every 3.93 ms, so a
double-precision vector could count for at least 255 seconds and triple-precision for 228
days. Sample microcode for maintaining a double-precision counter is given in the
example below:

*The double-precision vector consisting of two RM locations, CountHi and CountLo
*is initialized such that CountHi eq 0 and CountLo contains minus the value in
*the event counter, and another RM location called CountFlag is initialized to 0.
*The microcode below increments CountHi whenever the event counter cycles.
*At any instant, the high part of the total count is in CountHi and the low part
*is CountLo+event counter; CountHi has to be incremented by 1 if the counter
*just overflowed.

(CountLo) - (EventCntB’) - 1; *CountLo + event counter
Pd_CountFlag, Branch[.+2,alu>=0];
CountFlag_T-T-1, Branch[.+3]; *Set CountFlag to -1 in 2nd half of the counter cycle.
CountFlag_T-T, Branch[.+2,alu>=0]; *Set CountFlag to 0 in 1st half of the counter cycle,
CountHi_(CountHi)+1; *and increment CountHi, if we were in the 2nd half
. . . *of the counter cycle last time.

The microcode for reading the counter when it is updated like this is as folows:

*Return to caller high part of event count in T, low part in Q.

TaskingOff, Pd_CountFlag;
T_(CountLo) - (EventCntB’) - 1, Branch[.+3,alu>=0]; *CountLo + event counter = low part of result
TaskingOn, Branch[.+3,alu<0]; *Low part ovf iff CountFlag<0 and low sum >=0
T_(CountHi)+1, Q_T, Return; *High part of result = CountHi+1
TaskingOn; *High part of result = CountHi

Dorado Hardware Manual Other IO and Event Counters 14 September 1981 135

T_CountHi, Q_T, Return;
. . .

Dorado Hardware Manual Error Handling 14 September 1981 136

Error Handling

In addition to single-error correction and double-error detection on data from storage,
Dorado also generates, stores, and checks parity for a number of internal memories and
data paths. The general concepts on handling various kinds of detected failures are as
follows:

(1) Failures of the processor or control sections should generally halt Dorado because
these sections must be operational before any kind of error analysis or recovery firmware
can be effective.

(2) Failures arising from memory and io sections should generally result in a fault task
wakeup and be handled by firmware. In some situations, such as map parity errors, it is
especially important to report errors this way rather than immediately halting because
firmware/software may be able to bypass the hardware affected by the failure and continue
normal operation until a convenient time for repair occurs. In other situations, the firmware
may be able to diagnose the failure and leave more information for the hardware
maintainers before halting.

(3) IFU section failures and memory section failures detected by the IFU should generally
be buffered through to the affected IFUJump, then reported via a trap; in this way, if it is
possible to recover from the failure, then it will be possible to restart the IFU at the next
opcode and continue.

(4) Memories and data paths involving many parts should generally be parity checked. It
is not obvious that this is always a good idea because extra parts in the parity logic will be
an additional source of failures, but instantly detecting and localizing a failure seems
preferable to continuing computation to an erroneous and undetected result.

(5) When Dorado halts due to a failure, information available on mufflers and in the 16-bits
of passively available error status (ESTAT) should localize the cause of the error as
precisely as possible.

Since the MECL-10K logic family has a fast 9-input parity ladder component, the hardware
uses parity on 8-bit bytes in most places; there is usually insufficient time to compute parity
over larger units. IM and MIR, two exceptions, compute parity over the 17-bits of data in
each half of an instruction; and the cache address section computes parity over the 15
address bits and WP bit.

Odd parity is used throughout the machine, except that the cache address section and
IFUM use even parity. Odd parity means that the number of ones in the data unit,
including the parity bit, should be odd, if the data is ok.

The control processor (Midas or the baseboard microcomputer) independently enables
various kinds of error-halt conditions by executing a manifold operation discussed in the
"Dorado Debugging Interface" document. It also has to initialize RM, T, the cache address
and data sections, the Map, and IFUM to have valid parity before trying to run programs.
Reasons for this will be apparent from the discussion below.

When Dorado halts, error indicators in ESTAT indicate the primary reason for the halt, and

Dorado Hardware Manual Error Handling 14 September 1981 137

muffler signals available to the control processor further define the halt condition; ESTAT
also shows the halt-enables. Midas will automatically prettyprint a message describing the
reasons for an error halt. The exact conditions that cause error halts are detailed in the
sections below; the table here shows the ESTAT and muffler information which is relevant.

Table 27: Error-Related Signals

ESTAT ESTAT Task
 Error Enable Experiencing Related Muffler Signals
 Bit Bit Halt and Meaning

RAMPE RAMPEen Task2Bk STK, RM, or T parity failure.
RmPerr and TmPerr mufflers on each processor
board indicate which byte of RM/STK or T had a
parity failure. StkSelSaved indicates that RmPerr applies
to STK rather than RM.

MdPE MdPEen processor-detected Md parity failure
Task2Bk if immediate _Md (_MDSaved false)
Task3Bk if deferred _Md (_MDSaved true)

MdPerr muffler on each processor board
shows which byte of Md failed.

IMrhPE IMrhPEen CTD parity failure of IM[17:33]

IMlhPE IMlhPEen CTD parity failure of IM[0:16]

IOBPE IOBPEen Task2Bk Pd_Input parity failure if IOBoutSaved false
Task2Bk Output_B parity failure if IOBoutSaved true

IOPerr mufflers on each processor board show
which byte failed.

MemoryPE MemoryPEen � cache address section parity failure,
cache data parity failure on write of
dirty victim or dirty Flush_ hit, or
fast input bus parity failure.

Processor Errors

The processor has parity ladders on each byte of the following:

input to RM/STK generate parity for write of RM/STK
input to T generate parity for write of T
B generate parity for DBuf_B, MapBuf_B, Output_B, IM_B
IOB check parity for Pd_Input and Output_B
Md check parity for _Md
R check parity for _RM/STK (unless bypassed from Pd or

Md or replaced by _Id)
T check parity for _T (unless bypassed from Pd or Md or

replaced by _Id)

Input ladders to RM/STK and T generate parity stored with data in the RAM; these ladders
are not used for detecting errors.

The processor computes parity on its internal B bus (alub). The generated parity may be
transmitted onto IOB when an Output_B function is executed; Store_ references write B
data and parity in the cache; parity for IM writes and map writes is computed from B parity.
None of the other B destinations either check or store B parity. External B sources do not

Dorado Hardware Manual Error Handling 14 September 1981 138

generate parity.

Parity on the R/T ladders is checked only when the R/T data path is sourced from the
RAM, not when bypassing from Md or Pd is occurring, and not when R/T is sourced from
Id. A detected failure causes the RAMPE error halt, which indicates that some byte of RM,
STK, or T had bad parity. The muffler signals that further describe this error are in the
PERR word: StkSelSaved is true if the source for R was STK, false if the source for R was
RM; each processor board has RmPerr and TmPerr signals; RmPerr is true if the RM/STK
byte on that board had bad parity, TmPerr if the T byte had bad parity. Note that if an
instruction beginning at t0 suffered an error, Dorado halts immediately after t4; the muffler
signals apply to the instruction starting at t0. The Task2Bk muffler signals show the task
that executed the instruction at t0.

Md parity is checked whenever _Md is done; a failure causes the MdPE error-halt when
enabled. The _MDSaved muffler signal in PERR is true when a deferred _Md caused the
error (T_Md, RM/STK_Md), false when an immediate _Md (A_Md, B_Md, or ShMdxx)
caused the error. On a deferred _Md error, Dorado halts after t6 and Task3Bk shows the
task that executed the instruction starting at t0; on an immediate _Md, Dorado halts after
t4, and Task2Bk shows the task. The MDPerr muffler signals on each processor board
show which byte of Md was in error.

Io devices (optionally) compute and send odd parity with each byte of data; the processor
checks parity when the Pd_Input function is executed, but not when the Pd_InputNoPE
function is executed. When enabled, an IOBPE error halts the processor at t4 of the
instruction that suffered the error; Task2Bk shows the task that executed the instruction.
The processor also checks IOB parity on Output_B, and an error halts at t4 as for
Pd_Input. The IOBoutSaved muffler signal distinguishes Pd_Input from Output_B errors;
an IOPerr muffler signal on each processor board shows which byte of IOB was in error; all
of these are in the PERR muffler word.

The processor generally does not pass parity at one stage through multiplexing to the next stage, so
any failure in the multiplexing between one stage and the next will go undetected (exception: B
parity passed through to IOB).

For example, the processor could write Md parity sent by the cache into the T RAM, when T is
being written from Md. Instead, however, it checks Md parity independently, but then recomputes
the parity written into T with the input ladder. Hence, a parity failure detected on a byte of T can
only indicate a failure in either (1) the input parity ladder; (2) the output parity flipflop; (3) the output
parity ladder; (4) one of three 16x4 T RAM’s; (5) one of two 4-bit latches clocked at t1 (Figure 3)

through which the output of the T RAM passes; (6) one of two 4-bit latches clocked by preSHC’.

Parity is handled similarly for writes of RM/STK.

Parity is similarly recomputed on B.

The processor does not generate or check parity on the A, Mar, or Pd data paths. Any
failures of the A, Mar, B, Pd, or shifter multiplexing or of the ALU go undetected; failures of
Q, Cnt, RBase, MemBase, ALUFM, or branch conditions go undetected.

Remark

Since 256x4 and 16x4 RAM’s are used for RM, STK, and T, and since the processor is implemented with the
high byte (0:7) on ProcH and the low byte (8:15) on ProcL, byte parity requires an additional 4-bit storage
element on each board, of which only 1 bit is used. We could conceivably have used all 4 bits to implement a
full error-correcting code for each byte of R and T data. However, there is insufficient time to correct the
data. (Also, we use 256x1 RAM’s instead of 256x4 RAM’s for the RM and STK parity bits.)

Dorado Hardware Manual Error Handling 14 September 1981 139

Alternatively, parity could be computed over each 4-bit nibble rather than each 8-bit byte; the MC170
component allows nibble parity to be computed just as economically as byte parity. If this were done, then a
parity failure would be isolated to a particular nibble. With byte parity, a detected failure could be any of 9+
components; with nibble parity, it would be isolated to one of 6+ components. Implementing nibble parity for
RM/STK and T would require about 4 more ic’s per board than byte parity.

It is hard to say whether the additional precision of nibble parity would be worth the additional parts.

Control Section Errors

The control section stores parity with each 17-bit half of data in IM. When IM is written,
the two byte-parity bits on B are xor’ed with the 17th data bit to compute the odd parity bit
written into IM. It is possible to specify that bad (even) parity be written into IM, and this
artifice is used to create breakpoints; bad parity from both halves of IM is assumed to be a
deliberately set breakpoint by Midas.

IM RAM output is loaded into MIR and parity ladders on each 17-bit half give rise to error
indicators that, when enabled, will halt the processor after t2 of the instruction suffering an
error. For testing purposes, halt-on-error can be independently enabled for each half of
MIR. Both the unbuffered output of the MIR parity ladders and values buffered at t2 appear
in ESTAT. The buffered values show the cause of an error halt, and the unbuffered signals
allow Midas to detect parity errors in MIR before executing instructions or when displaying
the contents of IM.

The special MIRDebug feature discussed in the "Dorado Debugging Interface" document
prevents MIR from being loaded at t2 when MIR parity is bad. In other words, when the
MIRDebug feature is being used, all of the t2 clocks in the machine will occur except the
ones to MIR. This feature prevents the instruction that suffered an error from being
overwritten at the expense of being unable to continue execution after the error.
MIRDebug can be enabled/disabled by the control processor.

IFU Errors

The IFU never halts the processor; any errors it detects are buffered until an IFUJump
transfers control to a trap location. The errors it detects, discussed in "IFU Section", are
parity failures on bytes from the cache, IFUM parity failures, and map parity failures on IFU
fetches.

Memory System Errors

There is no parity checking on Mar or on data in BR, so any failure in the address
computation for a reference goes undetected. However, valid parity is stored with VA in
the cache, and any failure detected will cause the MemoryPE error to occur, halting the
system (if MemoryPE is enabled).

Parity is also stored in the Map (computed from B parity) and an error causes a fault task
wakeup in most situations (Exceptions: IFU references and Map_ references do not
wakeup the fault task when a map parity error occurs).

Dorado Hardware Manual Error Handling 14 September 1981 140

The cache data section stores valid parity with each byte of data. When a munch is loaded
from storage, the error corrector carries out single-error correction and double error
detection using the syndrome and recomputes parity on each 8-bit byte of data stored in
the cache. When a word from B is Store_’d in the cache, byte parity on B is stored with
the data.

A MemoryPE error occurs if, when storing a dirty victim back into storage, the memory
system detects bad parity on data from the cache.

The IFU and processor also check parity of data from the cache, as discussed previously.

Sources of Failures

In a full 4-module storage configuration, Dorado will have 1173 MOS storage, about 700
Schottky-TTL, 3000 MECL-10K, and 60 MECL-3 DIPs, and about 1500 SIPs (7-resistor
packages). This logic is connected with over 100,000 stitch-welded or multiwire
connections to sockets into which the parts plug; logic boards connect to sidepanels
through about 2500 edge pins. Sockets are used for all the RAM DIPs in the machine;
other parts are soldered in. Given all these potential sources of failure, reliable operation
has been a surprising achievement.

Initial debugging of new machines has been slow and difficult, requiring expertise not easily
available in a production environment. In addition to mechanical assembly, board stuffing,
and testing for shorts and opens both before and after stuffing, each machine has
averaged about one man month of expert technician time to repair other malfunctions
before it could be released to users.

Once released, the Dorados have been pretty reliable. During a 100-day period (6 October
1980 to 14 January 1981) the CSL technicians kept records of service calls made for
approximately 15 Dorados in service at that time. The following summarizes the 43 service
calls that were made.

37 days mean time between service calls per machine.

45 days mean time between failures (some service calls were for microcode or
software problems).

2.5 hours per machine per month average service time.

13% of failures and 5% of time reseating logic boards in the chasis (connectors not
making contact).

11% of failures and 17% of time on open nets.

13% of failures and 12% of time repairing 16k MOS RAM failures (standard
configuration was 2 modules).

37% of failures and 28% of time replacing other DIPs and SIPs.

5% of failures and 10% of time on T80 problems.

Dorado Hardware Manual Error Handling 14 September 1981 141

13% of failures and 11% of time on power supply failures.

2% of failures and 2% of time on Terminal and display problems.

4% of failures and 20% of time on repairing boards damaged during manufacturing
or overheating.

The power supply failures were due to problems that have since been corrected, and most
of the service calls for microcode or software problems would not happen in the more
mature environment we have today. However, the other failures are believed to be
representative. Note that none of the MOS RAM failures was the reason for a service call.
These were found when testing a machine with diagnostics after a service call had been
made for some other reason.

Error Correction

Reliability has been improved by error-correction on storage. The Dorado error-correction
unit of 64 data and 8 check bits (quadword), guards 1152 MOS RAMs from single failures,
but almost no other parts on storage boards or in the error corrector are guarded.

Our Alto experience suggests that some machines repeatedly fail under normal use due to
undiagnosable failures. For this reason, error correction should be viewed as guarding not
only against new failures but also against imperfect testing of parts that are either already
bad or subject to noise (e.g., cosmic rays) or other kinds of intermittent failure. The latter
may be more important in our environment.

The failure summary above indicates, for a small sample, that 16k MOS RAMs, accounting
for 6% of all DIPs and SIPs (because the 15 Dorados had 2-module configurations, half the
maximum) average about 4 times the failure rate of other parts and account for about 1.5
failures/year/Dorado�this would become 3 failures/year with a 4-module configuration. If
we continue to do this well, a Dorado with error correction should run for years without
uncorrectable MOS RAM failures. The manufacturer’s literature indicates that the dominant
failure mode appears to be single-bit failures with row and column addressing failures
affecting many bits somewhat less frequent, but we don’t know the distribution of these.

If MOS failures do become significant, different strategies may be needed for single- and
multi-address failure modes. With a multi-address failure, another failure in the same
quadword causes a double error; but many single-address failures can occur in the same
quadword without double errors.

The failure model used below shows that with no periodic testing and replacement of bad
MOS RAMs, fatal failure statistics of the 1152 RAMs would approximate those of a 108
RAM uncorrected store. By thoroughly testing storage and replacing bad parts 4 times
more often than the mean time to total failure of a part (defined below), the likelihood of an
uncorrectable RAM failure crashing the system can be made insignificant compared with
other sources of failure.

Although system software could bypass all pages affected by a multi-address RAM failure,
the entire module, 25% of storage, would be eliminated, so this is impractical except on an
emergency basis. Continuing execution despite a multi-address RAM failure will result in a
double error when any other coincident storage failure occurs in the same quadword; 1/16

Dorado Hardware Manual Error Handling 14 September 1981 142

of future failures will do this.

Some interesting questions are: How does MTBF vary with the EC arrangement? MTBF is
pertinent if we let Dorados run until they fail. Alternatively, how likely is a failure in the
next day, week, or month, if we test the memory that often and replace bad RAMs? These
questions can be asked assuming perfect testing (no failures at t=0) or imperfect testing
(some likelihood of failures at t=0 because diagnostics didn’t find them).

To answer them, MOS RAM failures are modelled as one of two types: those affecting a
single address in the RAM (called SF’s), and those affecting all addresses (called TF’s).
We assume that TF’s occur about 1/4 as often as SF’s in 4Kx1 RAM’s. RAM failures are
assumed exponentially distributed, correct if the failure rate doesn’t change with time; over
the time range of interest, this is reasonable. Finally, perfect testing is assumed, so there
are 0 failures at t=0. These assumptions give rise to the following:

let p = prob that an ic has a TF = 1 � e�at

let q = prob that an ic has a SF = 1 � e�bt

let n = number of MOS RAMs in the memory

Without error correction, MTBF is the integral from 0 to infinity of [(1�p)(1�q)]n =
1/n(a+b). With b = 4a, in our 4-module system with n = 1024, this is 1/5120a =
.00018/a.

With error correction, failure occurs when, in a single EC unit, a TF coincides with either
another TF or an SF. This ignores two coinciding SF’s which is about 4000 (16k RAMs) or
16000 (64k RAMs) times less likely.

let n = number of RAMs in an error correction unit
then Prob[no failure] = Prob[no TF] + Prob[1 TF and 0 SF]

Prob[no TF] = (1�p)n

Since failure modes are independent,
Prob[1 TF and 0 SF] = np[(1�p)(1�q)]n�1

Prob[no failure] = Pok = (1�p)n + np((1�p)(1�q))n�1

Pok = e�nat + n(1�e�at)(e�(a+b)(n�1)t)

This is the probability for a single EC unit, so mean time to failure for all MOS storage is
Pok raised to a power equal to the number of EC units. In other words, the argument of

the integral for a 4-module x 4 quadwords/module system is Pok
16 with n = 64+8; it is

Pok
4 with n = 256+10 for a one munch EC unit.

Then, expected time to failure for our 16 x n=64+8 memory system, is about:

(1/n) * (1/16a + 16a/(16a+b)2 + 240a2/(16a+2b)3 + 3360a3/(16a+3b)4)
= (1/an) * (1/16 + 1/25 + 5/288 + 105/17208)
= (1/16an) * (1 + .64 + .28 + .006) = 1.93/16an
= 1.93/16*72*a = .00168/a

In other words, mean time to failure is about 1.93 times longer than the time to the first TF
= 9.5 times better than with no error correction = as often as 1024/9.5 = 108

Dorado Hardware Manual Error Handling 14 September 1981 143

uncorrected storage ic’s.

The results don’t change much when imperfect testing is assumed. The effect of this is to
replace densities for p and q by 1 � Ae�at, where A would be .999 if there was a 1/1000
chance of a MOS ic being bad at t=0.

Remarks

On each storage board, data from MemD is transported to a shift register consisting of 8 flipflops which are
then written into the MOS RAM’s after transport has been completed. This arrangement is unfortunate�any
failure in one of these components will cause a multiple error, and there are about 250 of these parts in a full
storage configuration.

One way to eliminate this problem while simultaneously reducing the part count on each storage board would
be to make modules consist of four storage boards, rather than two, so that only four flipflops receive data on
each bit path during transport; since each of these is in a different quadword, single failures would not cause
multiple errors.

The Dorado EC operates on quadwords, requiring 8 check-bits/64 data bits, or a 12.5% storage penalty.
Alternative schemes are: 10 check bits/256 data bits (3.9%); 9 check bits/128 data bits (7.4%); 7 check bits/32
data bits (22%); and no error correction at all (0%).

The implementation of the EC pipeline is such that wider correction units significantly increase the time for a
miss. The current quadword error corrector requires 7 clocks (3 clocks for setup and correction, 1 clock per
word of the quadword); this would become 11 clocks with a 128-bit EC scheme or 19 clocks with a 256-bit EC
scheme. Although cache hit rate seems to be above 99%, some implementation avoiding this delay would still
be needed to make larger correction units attractive.

If our quadword correction unit were replaced by a 4 x n=256+10 scheme:

1/4na + 4a/n(4a+b)2 + 3a2/2n(2a+b)3, where for b = 4a this is
(1/4na)*(1 + 1/4 + 1/36) = 1.28/4na = .0012/a

In other words, MTBF is about 1.28 times longer than the time to the first TF. So error correction has
increased MTBF by a factor of 6.2 over no error correction; alternatively, a 1064-RAM corrected memory fails
as frequently as a 1064/6.7 = 159 RAM uncorrected memory.

Surprisingly, the 64+8 EC scheme has only 42% longer MTBF than a 256+10 EC scheme. This improvement
may not be worth the 96 additional MOS RAM and 80 other DIPs required for address buffering; the 80
additional DIPs might cause more failures than they save, being a net loss.

The other method of maintaining our systems is to regularly test storage and replace bad RAMs. Then the

likelihood of no double error before replacement is simply the value of the probability distribution (Pok
4 and

Pok
16 above) at the selected instant. This reduces to an approximation of the form Pok = [e�x + xe�x]m

where x = nat, m is 4 or 16, and n = 72 for m=4 or 266 for m=16. If this is evaluated at t = 1/mna,
1/2mna, 1/4mna, etc. the following results are obtained:

Table 28: Double Error Incidence vs. Repair Rate

 m 1/mna 1/2mna 1/4mna 1/8mna

 4 .52 .81 .94 .98
16 .79 .84 .98 .99

The interpretation of this table is as follows: Measure mean time to total failure (TF) of a MOS RAM and call
this time 1/a; then assume 4 SF’s per TF. Then the rate at which TF’s occur in storage will be 1/mna. So
the above tables show probability that the Dorado hasn’t suffered a double error when tested and fixed as
often, 1/2 as often, 1/4 as often, or 1/8 as often as the mean rate of TF’s.

Dorado Hardware Manual Performance Issues 14 September 1981 144

Performance Issues

This chapter discusses two issues:

(1) How rapidly will Dorado be able to execute Mesa, Lisp, SmallTalk, etc. macroprograms;

(2) What relationship do some of the design parameters bear to performance;

Cycle Time

The first issue is cycle time. Dorado was designed for a 50 ns cycle time; the first three
prototypes used stitchweld technology for interconnections and operated correctly at 55 ns
cycle time; however, subsequent machines are being built using multiwire technology and
will not operate faster than about 60 ns cycle time. The baseboard at present initializes the
clock period to 64 ns for all machines during a boot, although there is some indication that
design changes made recently and repair of a few lingering slow path problems would
permit 5 to 10 ns faster operation.

With respect to achievable cycle time, the two important differences between stitchweld
and multiwire technology are that stitchweld uses point-to-point wiring and has wire
impedance of about 100 ohms (which is ideal), but multiwire uses Manhattan (square-
corner) wiring with wire impedance of about 50 ohms on the inner layer and 70 ohms on
the outer layer of wiring (Most signals are in the outer layer.); longer wires and imperfect
impedance matching result in slower speed.

Emulator Performance

Gene McDaniel’s measurements of the Alto Mesa compiler have been adjusted to make
them compatible with Pilot Mesa and are summarized below. It must be pointed out that
the compiler makes heavier use of short pointers than do Pilot Mesa programs; programs
being developed now are heavily biased toward long pointers and would be slower than the
execution rate below indicates. Average execution rate was about 5.6 cycles/opcode
excluding disk wait. About 38% of all cycles are consumed by XFER opcodes (i.e.,
subroutine call or return) and account for about 6% of opcodes executed. If these are
excluded, the remaining 94% average about 3.1 cycles/opcode; if jumps and conditional
jumps are also excluded (about 14% of executions), the others average 2.5 cycles/opcode.
These times include all memory and IFU delays.

These excellent results indicate that there are no unusual delays due to problems with the
memory or IFU and that the processor is completing most opcodes quickly. Since XFER
opcode take 34 (local) to 54 (external) cycles/opcode excluding memory delays, speeding,
respecifying, or reducing executions of XFER seem to be the most promising ways of
improving performance.

In the above results, instruction forwarding has saved an average of about .25
cycles/opcode or about 4% overall, in agreement with our expectations.

Dorado Hardware Manual Performance Issues 14 September 1981 145

For SmallTalk and Lisp instruction sets, performance is much worse than Mesa (averaging
over 30 cycles/opcode on Smalltalk 76). Careful studies should be made to understand the
reasons for this fully, but one reason is that the 16-bit word size is a serious limitation.
Long storage pointers are used extensively, so execution would be substantially faster on a
machine with, say, 32-bit data paths.

IFU Not-Ready Wait

For the Mesa compiler, 19.5% of all cycles were in IFU not-ready wait; 16% due to
incorrectly predicted jumps, 2.5% to cache miss wait, and 1% to other causes. The 16%
due to incorrectly predicted jumps might be improved.

The Mesa microcode presently predicts that all conditional jumps will not jump; it is
desirable to predict not-jump unless more than 75% of executions jump due to the
overhead of restarting the IFU an extra time. 40% of the time the prediction is wrong and a
jump occurs, so it seems that the microcode is doing the best it can.

However, some loops ("while J ne 0 do," for example) are compiled as a normally-false
conditional jump at the beginning of the loop and an unconditional jump from the end of
the loop back to the beginning; a faster sequence is a normally-true conditional jump at the
end of the loop, eliminating the unconditional jump altogether. The general objectives in
changing the compiler would be as follows: (1) Eliminate unnecessary jumps and
conditional jumps; (2) Make the jump/not-jump execution of conditional jumps be as
predictable as possible; and (3) Make the not-jump path be the most likely, unless this
conflicts with objective (1).

Microstore Requirements

Speed is not the only issue�some reduction in microstore requirements might be possible
through design changes. Space requirements for a 1981 release of the Alto/Mesa
emulator system were as follows:

Table 29: Utilization of the Microstore

Mesa basic opcode set 20248
Cedar allocator & collector �5768
Floating point �4578
Alto opcode set 11638
Alto BCPL Runtime �2268
BitBlt subroutine �4168
Fault handling ��658
Ethernet driver �2558
Disk driver �4308
Display driver �5008
Junk io driver ��768
LoadRam �1008
Initialization �1508

Dorado Hardware Manual Performance Issues 14 September 1981 146

Total 76738 leaving 1058 free locations

Since we do not require that more than two emulators be loaded in the microstore at one
time, there is presently a little space left for extensions. MicroD is able to utilize well over
99% of the available microstore.

The third performance issue is cache efficiency and miss wait; the fourth is available io
bandwidth and io task cycle consumption. These are discussed in sections below.

Cache Efficiency and Miss wait

The value of shortening the wait for a storage read is roughly proportional to miss
likelihood. Suppose that the prototypical opcode was a one-byte opcode implemented by
the following microcode:

Fetch_Id, StkP+1;
Stack_Md, IFUJump[0];

For this example, execution time on a hit is 2 cycles; on a miss, 28 cycles. Delay for IFU
misses must be added to this. Since the IFU is 6 bytes ahead of the current opcode, its
misses delay 28 cycles less execution time for preceding 6 bytes; if any of the 6 bytes itself
causes a miss, IFU delay will be 0 because it will catch up; the IFU never gets two misses
(in this example) because it crosses at most one munch boundary. Hence, execution time
will be 2 + 26*(1�H) + (28-12)*H6*(1�H), with the following results:

Table 30: Execution Time vs. Cache Efficiency

Hit Execution IFU % Miss
% Cycles Cycles Wait

100 2.00 .00 �0
 99 2.26 .15 17
 98 2.52 .28 29
 96 3.04 .50 44
 94 3.56 .67 53
 92 4.08 .79 59

This crude analysis shows the importance of cache efficiency in determining system
performance. Fortunately, measurements made by Doug Clark and Gene McDaniel
indicated the following surprisingly high cache hit statistics:

Overall cache hit rate on three Mesa programs was 99.2% to 99.8%. 4.9% to 8.1%
of all cycles were held. 10% to 19% of references were Store_’s, the rest fetches.
16% to 66% of misses had dirty victims, which cause additional cycles to be held
while the cache address section is busy.

Another measurement showed a 99.7% hit rate for IFU references.

The processor obtains a word from the cache in 16% of all cycles and the IFU in
32% of all cycles; the processor actually shuts out the IFU by making its own

Dorado Hardware Manual Performance Issues 14 September 1981 147

reference about 20% of the time.

Provision has been made to expand the Dorado cache to 16k words, when 4k x 1 MECL
RAM’s are economically available, but the existing cache is so efficient that this may never
be necessary.

Performance Degradation Due to IO Tasks

To first approximation, only the display controller word task (DWT) uses enough storage
bandwidth to interfere significantly with emulators. Since it uses the fast io system, DWT
requires service once/munch and will require two instructions/wakeup in the ordinary
case. In addition, if the next instruction (by another task) issues a memory reference, it will
always be held one cycle while the DWT’s IOFetch_ advances ASRN.

A quick calculation shows that at an io bandwidth of 256 x 106 bits/sec (106 munches/sec)
the display controller will use 48% of storage bandwidth and 12% of processor cycles at 60
ns/cycle.

The earlier example showed that with no io interference and a 99% hit rate, the emulator
spent 17% of cycles in miss wait, 83% in useful execution. With a 256 x 106 bit/sec display
active, emulator misses are slowed about 2 cycles each, so the overall effect of the display
would be that about 78% of all cycles are emulator executions, 12% display task
executions, and 16% hold; the one cycle holds for IOFetch_ would make performance
somewhat worse than this.

An IOFetch_ by the display task to the same cache row as an emulator miss will remain in
the address section, increasing display task latency and requiring more buffering.
However, this won’t degrade emulator performance.

The Alto monitor only uses 14.7 x 106 bits/sec (1/17 of the above) and would not interfere
appreciably with emulators.

The disk controller is the fastest "slow" io device among standard peripherals. When
running, its word interrupt task reads a double word from the cache every 3.2 ms in a 3
instruction/interrupt inner loop, consuming about 5.6% of all cycles at 60 ns/cycle. Its
memory references consume the cache at a rate of .04 munches/ms, low enough that
storage interference with the emulator isn’t significant. However, a 256-word disk transfer
displaces about 1/16 of the cache entries, so the emulator may experience a lower hit rate.

Cache and Storage Geometry

The current geometry was chosen without measurements or simulation of programs, but
measurements made since then have indicated a surprisingly good cache performance, so
not much could be gained through changes.

The following parameters are relevant:

1 word as the unit of storage inside the memory pipeline;
16-word munch;

Dorado Hardware Manual Performance Issues 14 September 1981 148

256 munches in the cache (expandable to 1024);
4 columns in the cache.

Munch Size

A 16-word munch size was chosen primarily because 8 cycles for transport balances 10
cycles for storage access, avoiding loss of bandwidth. The use of 256x4 RAM’s to
implement the cache address section allows the original 4k-word cache (implemented with
1kx1 RAM’s) to be expanded to 8k words or 16k words, when 4kx1 RAM’s are economically
available�this is possible because only 64 of the 256 words in the address section are
being used with the 4k-word cache. Miss wait is about 28 cycles and storage bandwidth
about 533 x 106 bits/sec with 16-word munches.

8-word munches would lower the storage bandwidth to about 262 x 106 bits/sec, probably
unacceptable. Also 8-word munches would limit cache expansion to 8k words. However,
miss wait would be reduced to about 24 cycles because transport would require only 4
cycles. 32-word munches would not allow greater storage bandwidth to fast io devices
because bandwidth is already limited by transport with 16-word munches. Nor would it
allow expansion to a larger cache data section because we have no way to build a data
section larger than 16k words. Also, miss wait would be slowed to 36 cycles, so it does not
seem that this munch size is attractive.

For a given size of the cache data section, with smaller munches the cache will tend to
stabilize with a larger amount of useful information; however, when a program is changing
contexts, larger munches might bring the new context into the cache more quickly. Also,
fast io tasks will interfere less with the emulator on larger munches because fewer wakeups
and IOFetch_’es will be required. However, the extra buffering and longer miss wait offsets
this advantage somewhat.

Considered together, these factors suggest that the 16-word munch we are using is
substantially better than either 8 or 32-word munches.

Data Path Width

Having only 16 bit wide data paths slows misses. Doubling the paths to 32 bits would
reduce EC time by 1 cycle and transport time into the cache by 4 cycles (i.e., delay on
misses would be 23 cycles instead of 28). There were not enough edge pins to do this.
However, if a method of doubling the path width were found, the storage system would
probably be arranged as two modules of four storage boards each rather than four
modules of two boards each, and 32-word munches might be better than 16-word
munches.

Dorado Hardware Manual Performance Issues 14 September 1981 149

Cache Columns

The reason for multiple columns is to approximate LRU reloading; the columns are
moderately expensive because separate hit logic has to be provided for each one; the V-NV
stuff also costs a few ic’s with more than two columns. Altogether the current 64x4 cache
is about 40 ic’s larger than a 128x2 cache (Because of its 50-50 LRU behavior on the
fourth column, our cache is somewhere between the 64x4 and 128x2 or 128x3 caches
below.). The table below shows likelihood that the Nth LRU munch is no longer in the
cache for various geometries:

Table 31: Cache Geometry vs. LRU Behavior

 N 32x4 64x2 128x2 32x3 64x3 128x3 64x4 128x4

 4 .000 .001 .000 .000 .000 .000 .000 .000
 8 .000 .006 .002 .002 .000 .000 .000 .000
 16 .001 .025 .007 .013 .002 .000 .000 .000
 32 .017 .089 .026 .077 .014 .002 .002 .000
 64 .140 .264 .090 .323 .079 .014 .018 .002
128 .570 .596 .264 .767 .323 .080 .141 .019
256 .960 .910 .595 .987 .764 .323 .568 .142
512 � � � � � .763 .959 .567

These numbers are computed from a binomial distribution using the following formulae:

let R = rows in cache
let C = columns in cache
then p = (R�1)/R = probability that a munch of VA is in its row
then q = 1/R = probability that a munch of VA is not in its row
then probability of a miss for the nth element is:

C P(miss)

1 1 � pn

2 1 � pn � nqpn�1

3 1 � pn � nqpn�1 � n(n�1)q2pn�2/2!
4 1 � pn � nqpn-1 � n(n�1)q2pn�2/2! � n(n�1)(n�2)q3pn�3/3!
etc.

Without extensive measurements on programs, it is impossible to know how much better,
say, a 32x4 cache is than a 64x2 cache, or to know whether a 128x2 cache is better or
worse than a 32x4 cache, for example. If a particular program is confining itself to a very
small set of munches, then more closely approximating LRU reloading is most important.
However, if the likelihood of reference flattens out after a small N, then it won’t matter
much that LRU reloading isn’t very well approximated�the total size of the cache will be a
more important determinant of performance.

Dorado Hardware Manual Glossary 14 September 1981 150

Glossary

a - the first 8-bit operand of a two-byte or longer opcode.

b - the second 8-bit operand of a three-byte or longer opcode.

bypassing - a number of memories and task-specific registers in Dorado (RM, STK, and T,
for example) are written with data that might be needed before the write occurs. These are
implemented so that data about-to-be-written is substituted for data read from the register
or memory when appropriate. This substitution is called bypassing and enables Dorado to
run considerably faster than would otherwise be possible.

cache entry - a munch together with VA of the munch and 4 flag bits. For a 64 row x 4
column cache, VA[28:31] are the word in the munch, VA[22:27] address the row, and
VA[7:21] are stored in the cache entry.

column - one of 4 groups of 64 (expandable to 256) cache entries. The cache column in
which a word with VA resides is determined by comparing VA[7:21] with the corresponding
bits stored in the four columns at row VA[22:27]. Thus a memory word may occupy one of
4 locations in the cache.

control processor - the microcomputer on Dorado’s baseboard, or the Midas program
operating Dorado from an Alto.

dirty - a cache entry is dirty if the information in it differs from information in storage,
because a store has been done into the cache, and storage has not yet been updated. A
page is dirty if a store has been done into the page since its map dirty bit was cleared.

emulator - the lowest priority task, number 0, always awake. The emulator is distinguished
by the fact that it cannot block, can use Stk, and has a private pipe entry. Primarily the
emulator task will implement instruction sets.

entry vector - the exit microinstruction of an opcode sends control to the first
microinstruction of the next opcode by means of IFUJump[n] (n = 0 to 3), where n
chooses one of 4 entry microinstructions for the next opcode; these four microinstructions
are the next opcode’s entry vector.

fault task - the highest priority task, number 15, woken whenever a memory fault or stack
error occurs.

hit - a reference which finds the desired word in the cache.

Midas - the Alto program used for loading and debugging Dorado remotely.

miss - a reference which does not find the desired word in the cache.

module - the unit in which storage is packaged, either 64K, 256K, or 1M words. A machine
may have 1 to 4 modules.

Dorado Hardware Manual Glossary 14 September 1981 151

MTBF - mean time between failures.

munch - 256 bits, or 16 machine words; the unit of data for main storage.

parity - the parity of a data unit is the exclusive-or of all bits in the data unit; parity has the
property that changing any single bit in the data unit will also change the parity, so it can
be used to detect single failures. A data unit has odd parity when the number of 1’s in the
unit is odd, even parity when the number of 1’s is even. Dorado uses odd parity
everywhere, which means that the number of 1’s in the data unit including its associated
parity bit should be odd when data is correct.

PC - "program counter". In this manual PC refers to the 16-bit byte displacements relative
to BR 31 (the codebase) which are maintained by the IFU for the current instruction set.
This term should be distinguished from TPC, which refers to the address of the next
microinstruction for a task.

pipe - a 16-entry memory which records the state of the last few storage references.

quadrant - one of the four 4k-word regions in a 16k-word control store.

RAM - "random access memory"; selected words in the memory can be both read and
written.

reference - a reference to the memory, initiated by the processor or by the IFU. A
processor reference transfers a single word between the cache and the processor; an io
reference transfers a munch between storage and an io device.

ROM - "read-only memory"; the contents of the memory are specified when the hardware
is constructed and cannot be modified during program execution. ROM elements used on
Dorado can be reprogrammed with a special device constructed for the purpose.

row - one of the 64 or 256 groups of 4 cache entries. The cache row in which a word
resides is determined by bits 20..27 of its virtual address.

storage - the main memory of the machine, organized in munches of 256 bits, or 16
machine words.

storage reference - a reference to the storage, initiated as a result of a memory reference.
A processor reference causes a storage reference if there is a cache miss or if the FDMiss
control is true in the memory control register; an io reference always causes a storage
reference.

storage reference number (SRN) - an address of a pipe entry which identifies a particular
storage reference.

subtask - a two-bit number presented by an io device to the processor and memory system
while its task is running. The processor OR’s subtask with RBase[3]..RSTK[1] in
determining the RM address and with MemBase[2:3] in determining the base register
selection. The memory system buffers the subtask for fast io devices, and then sends it
over the Fin or Fout bus as part of device identification.

Dorado Hardware Manual Glossary 14 September 1981 152

tag - The extra bit in Md readout which complements for successive Fetch_’es and
Store_’s by the same task. Agreement of the bit in Md with the current value equals
reference finished.

task - one of the 16 priority scheduled tasks. Special tasks are the emulator (task 0, lowest
priority) and the fault task (task 15, highest priority). Other tasks are paired with io
controllers.

VA - virtual address.

Vacant - a cache entry or map entry which does not contain valid data.

Victim (Vic) memory - stores 4 bits for each cache row. Two of the bits specify the victim
which will be chosen if a reference to that row results in a miss, and the other two are the
next victim.

victim - on a processor reference that causes a cache miss, the cache entry chosen to be
replaced by the referenced data.

WP - write protected. Map entries and cache entries have bits with this name.

