
Filed on: [Indigo]<CedarDocs>Language>Concepts.doc, press
Last written: May 29, 1982 5:11 pm
By: Jim Horning

DRATF XXX � DARFT XXX � DRFAT XXX � DRAFTT XXX � DRAFT!

Cedar Language Overview Version 3

Introduction

The programming language of the Cedar Programming Environment (hereafter, Cedar Language,
or just Cedar) has resulted from an evolutionary process in PARC and SDD that spanned more
than a decade. Understanding what the language is, and why it is that way, may be somewhat
easier with a little historical background.

Mesa is a system implementation language in the "Pascal family," with extensive facilities for
modularization and separate compilation, processes and monitors, exceptional-condition
handling, and control of low-level hardware functions. It was initially designed and
implemented in the PARC Computer Science Laboratory, primarily by Butler Lampson, Jim
Mitchell, Ed Satterthwaite, Chuck Geschke, and Dick Sweet. Subsequently, the OPD-OSBU
System Development Department assumed responsibility for development and maintenance. It
has gone through a series of releases; the most recent is Mesa 8.0.
When CSL launched the Cedar Project in 1979, it was decided to use the Mesa language and
system as a starting point. (Mesa 7.0 is its closest relative.) However, Mesa did not have some
of the features that were believed to be important for an experimental programming
environment, so some extensions and changes were designed. The major changes resulted from
adding automatic storage deallocation (garbage collection) and facilities for delaying the
binding of type information, without sacrificing safety in either case.

This Overview is intended to introduce a competent programmer who knows some other language
in the Pascal family to the basic vocabulary and concepts that are needed before plunging into
sources of more detailed information about the Cedar Language. It assumes that you have already
read the Briefing Blurb and Getting Started in Cedar. If you haven’t, read them first and return.

It starts with a brief review of the common concepts that Cedar shares with other members of
the Pascal family, then gives a somewhat less hasty tour of the more novel features of Mesa,
followed by a discussion of the additional changes that produced Cedar. The Cedar Language
Reference Manual defines the Cedar Language by means of desugarings to a kernel language;
we briefly introduce its central concepts and terminology. Finally, there is a guide to sources
of further information.
Most parts of the Cedar 3 documentation, certainly including the language documentation, are
still in an interim form. Comments and suggestions on how it can be made more useful are
welcome at any time. Although we intend to survey student users at the end of the summer to
assess the effectiveness of the various kinds and pieces of documentation, you need not wait
until then to let us know what you think.

Various proposals and descriptions of interim implementations from September 1979 onward have
been given labels such as 5C1, 5C2, 6C2, 6C5, and 7T11. Version 3 of the Cedar language
documentation is intended to supersede all descriptions prior to June 1982. Previous documents
may be read for historical interest, but are believed only at the reader’s peril. This Overview has
been compiled by Jim Horning; wherever possible, still-valid material has simply been lifted from
previous documents.

Review of the Pascal-like features

The following summarizes aspects of Cedar (and Mesa) that are basically similar to those of other

1



members of the "Pascal family" of languages (e.g., Euclid, Modula, Ada). If there are any concepts
in this section that are not already familiar to you, you should probably find a Pascal textbook and
study it before proceeding to further material on Cedar.
An algorithm or computer program consists of two essential parts, a description of actions that are
to be performed, and a description of the data that are manipulated by these actions. Actions are
described by statements , and data are described by type definitions .

Data and types

Data are represented by values, which are immutable; they are not changed by computation. A
constant always denotes the same value within a scope. A variable is a value that may contain
another value; assignment changes the value contained by a variable, but not the value that is
the variable.
A value used in a program may be represented by a literal constant , the identifier of a constant
or variable, or by an expression , which will itself contain other values. Every identifier
occurring in the program must be introduced by a declaration. A declaration associates with an
identifier both a data type and a constant value (which may itself be a variable, and contain a
non-constant value).
A data type defines both a set of values and the actions that may be performed on elements of
that set. It may either be directly described in a declaration using it, or it may be referenced
by a type identifier, introduced in a type declaration. The type of every constant, variable, and
expression can be deduced from static analysis. This analysis is performed by the compiler to
ensure that all programs are type-correct; thus the language is said to be strongly typed.
An enumerated type definition indicates an ordered set of values, i.e., introduces identifiers
standing for each value in the set. The simple types are the enumerated types, the subrange
types, and the built-in types, including BOOL , INT , REAL , and CHAR . There are standard
denotations for literal constants of the built-in types: TRUE and FALSE for BOOL , numbers for
INT and its subranges and for REAL , quotations for CHAR . Numbers and quotations are
syntactically distinct from identifiers�as are the "reserved words" of the language. The set of
values of type CHAR is an 8-bit variant of the ASCII character codes.
A type may be defined as a subrange of a simple type by indicating the smallest and largest
value of the subrange.
Structured types are defined by describing the types of their components, and indicating a
structuring method: ARRAY or RECORD . These differ in the mechanism for selecting a
component of a value of the structured type.

In an array strucure, all components are of the same type. A component is selected by a
computable selector, or index . The index type, which must be simple, is indicated in the
array type definition. It is usually a programmer-defined enumerated type, or a subrange
of INT . Given a value of the index type, an array selector yields a value of the component
type. Every array structure value can therefore be regarded as a mapping of the index type
into the component type.
In a record structure , the components (called fields) are not necessarily of the same type. In
order that the type of a selected component be evident from the program text (without
executing the program), a record selector is not a computable value, but must instead be
an identifier uniquely denoting the component to be selected.

A record type may be specified as consisting of several variants. This allows different
record values of the same type to have structures that differ in the number of
components, their types, or their identifiers. The variant describing a particular value
is indicated by a special field, called its tag. Variants of a type may also share fields in
addition to the tag.

Explicitly declared variables are called static. The declaration associates an identifier with the
variable, which may be used to refer to it in expressions. Variables may also be generated by
executable statements. Such dynamic variable generation yields a pointer or reference value that

2



subsequently serves to refer to the variable, in place of an identifier. Because dynamically
generated variables may occur as values of components of structured values contained by
variables that are themselves dynamically generated, finite graphs in their full generality may
be represented using pointers or references.

Statements

The most fundamental statement is the assignment statement . It specifies that a newly
computed value be assigned to a variable (or a component of a variable). The value is
obtained by evaluating an expression . Expressions consist of variables, constants, operators, and
procedure values operating on arguments to produce new values. Constants are literal or
declared; variables and procedures are built-in or declared; the set of operators is defined
within the language, and includes operators for arithmetic, comparison, and logical operations.
The procedure statement causes the application of a designated procedure value to the values of
its arguments .
Basic statements are the components of structured statements , which specify sequential,
selective, or repeated execution of their components. Sequential execution of a sequence of
statements is specified by separating them by semicolons; conditional or selective execution by
the if statement and the select statement; and repeated execution by loop statements .
A block can be used to associate declarations with statements. The identifiers so declared have
significance only within the block. Hence, the block is the scope of these identifiers, and they
are said to be local to the block. Since a block may appear as a statement, scopes may be
nested.
A block can be the body of a procedure value. A procedure has a fixed number of parameters,
each of which is denoted within the procedure by an identifier called the formal parameter.
Actual argument values are supplied for parameters at each application.
Procedures may also have results; applications of such procedures may appear within
expressions.

From Pascal to Mesa

Mesa extended Pascal in a number of directions intended to make it more effective for the
development of large systems. Students of programming languages will discern influences from
Algol 68, BCPL, and several other system implementation languages. It is a larger language, and is
rather more difficult to master in its entirety, than Pascal. It is intended for professional
programmers, not for beginning students.
Mesa includes a form of module that allows separate compilation of program units without
sacrificing strong typing; mechanisms for systematic handling of exceptions; processes and
monitors; procedures as first-class values that can be assigned to variables; and a fair number of
syntactic and semantic amenities intended to make programming more convenient.
The following sections introduce each of the major conceptual extensions, but do not explain them
in great depth. See [Geschke, et al.] for a more extensive rationale, and CSL-79-3 for full details.

Modules

Mesa modules are a "programming in the large" mechanism for partitioning a system into
manageable units. They can be used to encapsulate abstractions, to provide a degree of
protection, and to enforce "information hiding." They are also the units of separate
compilation.
There are two kinds of modules: DEFINITIONS modules, which define interfaces, and PROGRAM

modules, which contain the executable code to implement these interfaces.
DEFINITIONS modules define interfaces to abstractions. They typically declare some shared
types, useful constants, and the argument and result types of a set of procedure identifiers.
They compile into symbol tables, which are shared by both clients and implementations . Checks

3



are performed when modules are bound into a system to ensure that separately compiled
pieces have used consistent versions of the shared definitions. DEFINITIONS modules produce
no executable code and "exist" at run-time only in the sense that their symbol tables are
accessible (e.g., for debugging).
PROGRAM modules provide implementations of abstractions. They typically declare collections
of variables that define their local state and provide bodies for the procedures of their
interfaces. Viewed as source text, they are similar to Pascal procedures and Simula class
definitions. They can be loaded and interconnected to form complete systems.
At run-time, one or more instances of a PROGRAM module may be created. A separate global
frame (activation record) is allocated for each, containing storage for its global variables (those
which are declared outside its procedures), which persist between applications of its
procedures. The lifetimes of module instances (unlike those of procedure applications) are not
restricted to follow any particular discipline. Communication paths among modules are
established dynamically and are not constrained by any (static or dynamic) nesting
relationships; lifetimes and access paths are completely decoupled.
A module that relies on declarations from a DEFINITIONS module (e.g., using a type or calling
a procedure in its interface) must explicitly import it. This makes its symbol table available
when the importing module is compiled. Unless the importing module specifies that it SHARE s
the interface, only the PUBLIC identifiers are accessible to it. If a program module implements
any part of an interface (e.g., by supplying the value of a procedure or type that it declares), it
must explicitly export it. The compiler will check that the implementations of items declared
PUBLIC are type-consistent with the declarations in the exported interface(s). Modules that
import or export other modules must include DIRECTORY statements associating their Mesa
identifiers with file names.
Importation introduces dependencies into the compilation order of modules. Since it needs
their symbol tables, each module must be compiled after the modules it imports (and
recompiled if they change). But information does not flow in the other direction. PROGRAM

modules are imported only in very unusual circumstances; those that are not may be freely
recompiled without invalidating previous compilation and checking of any other modules.
A PROGRAM module is effectively parameterized by a set of interface records, one for each
interface it imports, and supplies a set of export records, one for each interface it exports.
Binding a group of modules together into a system involves assigning values from the export
records to the corresponding fields in the interface records.
Types, as well as procedures, can be declared in DEFINITIONS modules and subsequently
bound to concrete values supplied by PROGRAM modules. This makes the internal structure of
the type invisible to clients of the interface, and ensures that there can be no compilation
dependencies between the definition of the concrete type and the interface module. The
definition of the type can be changed at any time without requiring recompilation of the
DEFINITIONS module or any clients of the interface.
Effective use of Mesa requires a thorough understanding of modules and their use. They have
significantly influenced our program design and construction techniques. Programs are almost
never self-contained modules; the importation and re-use of existing code is considered to
have all the advantages of theft over honest toil (without the moral stigma). Considerable
emphasis is laid on the careful design of interfaces, and on their documentation. Since it is
only interface changes that force recompilation (or perhaps even rewriting) of client programs,
it is important that interfaces remain stable for substantial intervals, even while their
implementations are undergoing change.
A very common approach is to define, comment, and circulate for review, all of the interfaces
in a (sub)system before writing any of the PROGRAM modules. DEFINITIONS modules play
much the same role as "program design languages" in other environments, with the additional
advantages of being precisely defined and mechanically enforced.
The Mesa language definition does not contain many features commonly expected in

4



programming languages, such as input/output and string-manipulation operations. Of course,
these facilities are available to Mesa programmers, but they are provided by packages written
in the language itself. The descriptions of standard packages in the Mesa Programmer’s
Manual, Version 8.0, run to more than 300 pages.
When managing large collections of modules (and in systems like the Mesa Development
Environment and Cedar they run into the thousands), module names become very important.
The use of cryptic or acronymic names is discouraged. By convention, source file names have
the extension .mesa, and object file names have the extension .bcd (for Binary Configuration
Description). If an interface Xyz is implemented by a single module, the PROGRAM module is
named XyzImpl.

Exceptions

Mesa provides a way to indicate when exceptional conditions arise in the course of execution
and an orderly means for dealing with them that is inexpensive if they do not arise. Exceptions
cause a transfer of control from the program that raises them to another, dynamically-selected
program intended to handle the situation. They may be raised in response to the detection of
"impossible" situations, invalid inputs, the inability of an abstraction to supply its specified
service, or simply unusual events.
Mesa exceptions are conceptually similar to procedure calls, except that the binding to the
handler is determined by searching the catch phrases in the call stack of the process in which
the exception is raised; the dynamically innermost handler that accepts the condition is
applied. Like normal procedures, handlers can take parameters and return values. They are
written in a distinctive syntax that clearly identifies them as code for the exceptional case.
Catch phrases are syntactically and semantically similar to SELECT statements, with test items
indicating the exceptions for which the associated handler should be applied. A series of catch
phrases may be associated with a procedure application, or enabled throughout a block.
A handler is like a procedure body, but when it completes, there are a number of additional
control options: GOTO , EXIT , LOOP , RETRY , CONTINUE , REJECT , and RESUME . Resumption is
analogous to returning from a procedure, possibly with a result. Exceptions are divided into
SIGNAL s, which may be resumed, and ERROR s, which may not; in common parlance they are
generally all called signals.
Since handlers may take parameters and return results, each exception type must be declared
in a scope that includes both all points where it is raised and all catch phrases that accept it.
The cost of raising an exception is significantly higher than the cost of procedure application,
but it shouldn’t happen very often. The system guarantees that all exceptions are handled at
some level; those that the program fails to catch are accepted by the debugger, keeping intact
the state of the program that raised it.
Exceptions can be used in very intricate ways to achieve subtle effects (e.g., by raising another
exception within a handler). Experience has shown that this is almost always a mistake. Some
call it elegance, others call it incomprehensible: "For the programmer, the main import of
nested signals is that one needs to consider, when writing a routine, not only what signals can
be generated, directly or indirectly, by the called procedures, but also those which can be
generated by catch phrases in that procedure or even the catch phrases of any calling
procedures, also both directly and indirectly."
Although its language proposals have not yet been implemented,
[Indigo]<CedarDocs>SignallingGuidelines.press is the best source of guidance on tasteful and
appropriate uses of exceptions . The most important point is that the exceptions a procedure
may raise must be considered part of its interface, and documented as such. The language
should enforce this, but it currently doesn’t.

Processes

Mesa provides for concurrent execution of multiple processes within a single system. This
makes it natural to structure programs to reflect their inherent concurrency. Mesa also

5



provides facilities for process synchronization and mutually exclusive access to resources by
means of entry to monitors and waiting on condition variables.

The FORK pseudo-procedure makes it possible to start the execution of another procedure
concurrently with the program that applies it. It returns a result of a process type, which is
declared similarly to a procedure type, except that only the type of the result is specified.
There is no rule against multiple coexisting instances of a procedure, either forked or called,
although care must be taken to ensure appropriate discipline on accesses to shared global data.
The JOIN pseudo-procedure takes a single argument of process type. When the forked
procedure has executed a RETURN and the JOIN has been executed (in either order), the
returning process is deleted, and the joining process receives its results and continues
execution.
Generally, two or more cooperating processes need to interact in more complicated ways than
simply forking and joining. The interprocess synchronization mechanism provided in Mesa is a
variant of "monitors" adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The
underlying view is that interaction among processes is always based on access to shared
resources (e.g., data) and that a proper vehicle for this interaction must unify the
synchronization, the shared data, and the procedures which perform the accesses.
A MONITOR is a module instance. It thus has its own data in its global frame, and its own
procedures for accessing that data. Some of the procedures are public, allowing calls into the
monitor from outside. Obviously, conflicts could arise if two processes were executing in the
same monitor at the same time. To prevent this, a monitor lock is used for mutual exclusion. A
call into a monitor (to an entry procedure) automatically acquires its lock (waiting if necessary),
and a return releases it. The lock makes it possible for the programmer to ensure the integrity
of the monitor’s global data (i.e., that it satisfies a monitor invariant ) simply by making sure
that every entry procedure restores it before returning.
Of course, a process may enter the monitor and find that the monitor data is in a good state
but indicates that the process may not proceed until some other process enters the monitor
and changes the situation. The WAIT operation allows a process to release the monitor lock
temporarily (and suspend execution) without returning. The WAIT is performed on a condition
variable, which is associated by agreement with the actual condition needed. After making the
condition true, some other process must perform a NOTIFY on the condition variable; this
allows a waiting process to reacquire the lock and resume execution. Note that the monitor
invariant must be restored before any WAIT , since it releases the lock.
The procedures of a monitor are classified as ENTRY , INTERNAL , and EXTERNAL . INTERNAL

procedures may only be called by ENTRY or INTERNAL procedures of the same monitor, since
they are intended to be executed within the monitor’s mutual exclusion, but do not acquire the
monitor lock. EXTERNAL procedures are logically outside the monitor, but are declared within
the same module for reasons of logical packaging. Being outside, they must not reference any
monitor data nor call any internal procedures; they are often used to provide a convenient
interface that "hides" one or more calls on ENTRY procedures.
The attributes ENTRY and INTERNAL are associated with a procedure’s body, not with its type;
thus they do not appear in DEFINITIONS modules. From the client side of an interface, a
monitor appears like any other module.
In simple cases, a monitor’s data comprises its global variables, protected by an implicit lock
that is automatically allocated in its global frame. However, many applications deal with
multiple objects, represented, say, as records accessed through pointers. It may be necessary to
ensure that operations on these objects are atomic , i.e., once the operation has begun, the
object will not be otherwise referenced until the operation is finished. It is possible to associate
a lock with the data, rather than with the module’s global frame, by declaring the data as a
MONITORED RECORD . A single module instance can then implement each operation as an
ENTRY procedure, taking the object as a parameter. Locking is specified in the module heading
by a LOCKS clause.

6



Control constructs

Mesa’s facilities for ordinary sequential "programming in the small" are extensive, but fairly
conventional. The syntax is not exactly like that of any other language, but for the most part it
can be picked up easily with a few minutes study of the grammar. (In fact, since most program
text is produced either by editing existing programs or by the use of the Tioga editor to
expand syntactic templates, you may be able to just "fake it.") This section mentions a number
of areas where Mesa provides "convenience" extensions or conceptually small changes.
SELECT statements generalize Pascal’s "case" construct by allowing several ways to specify how
one statement is to be chosen for execution from an ordered list. The most common form is
based on the relation between the value of a given expression and those of expressions
associated with each selectable statement. The relation may be equality (the default), any
relational operator appropriate to the types of the values involved, or containment in a
subrange. A single selection may be prefixed by several selectors, and an optional ENDCASE

statement is selected only if none of the others are. Selection can also be based on the type of
a variant record (and in Cedar, on the current type referred to by a REF ANY ). SELECT

expressions are analogous, but choose from an ordered list of expressions.
Iteration is provided by loop statements in which several different kinds of control can be
freely intermixed. A loop has a control clause and a body. The control clause may specify a
logical condition for normal termination, possibly combined with a range or a sequence of
assignments. In addition to ordinary statements, the body may contain EXIT or GOTO

statements to forcibly terminate its execution, and may be followed by an EXITS clause that acts
like a selection on the GOTO used to terminate the loop. (GOTO cannot be used to synthesize arbitrary

control structures. It is much more like a "local" exception.)

In Pascal, procedure execution must proceed somehow to the end of the body before
terminating; in Mesa, it can be terminated anywhere by executing a RETURN statement. If the
procedure’s type includes a result, the RETURN statement may supply the value to be returned
(which is otherwise taken from the result variables named in the type). Each procedure body is
followed by an implicit RETURN .
Pascal procedures are not values that may be assigned to variables; Mesa procedures are. In
most cases, the programmer still thinks of a constant association between a procedure name
and its body, but to truly understand what is going on when interface records are bound it
helps to realize that procedure values from the export records are being assigned to
appropriate fields of the import records. This same power is available to the Mesa
programmer; one popular form of "object-oriented programming" is based on the creation of
an explicit record of procedures for each kind of object, and passing this record and the object
around together.
Procedure constants may be declared in DEFINITIONS modules or locally. Unlike procedure
variables, they may have the INLINE attribute. This is an instruction to the compiler to expand
the body inline for each application, rather than compiling a call to out-of-line code. This
attribute is intended to improve the speed without changing the semantics of the procedure
(although it may do so in obscure cases, e.g., exception handling). It should be considered a
form of tight binding best reserved for late stages of system tuning.
In addition to procedures and exceptions, Mesa has a third mechanism for transfer of control,
called a PORT . When used in pairs, PORTS can provide a very general form of coroutine
implementation. In some circumstances, coroutines have advantages similar to processes at
somewhat lower cost, but they are not currently much used in Mesa or Cedar.

Miscellaneous

Every expression in a Mesa program has a type that can be deduced by static analysis of the
program text. Such analysis is called type determination . The language imposes constraints on
the type of each expression according to the context in which it is used, even in separately
compiled modules. In principle, every identifier and every expression has an inherent type

7



derived from its structure. The inherent type of an identifier is established by declaration; the
form of a literal implies its type, and each operator produces a result with a type that is a
function of the types of the operands. The type rules in Mesa take two general forms:

The exact type required by the context is known, and a given expression must conform to
it. The required type is called the target type. Examples include assignment, initialization,
record construction, array construction, argument list construction, and array subscripting.
Several coercions (e.g., pointer dereferencing, base/subrange conversion, single-component
record to field) will be applied if needed to convert a value whose inherent type is not its
target type to one that is.
The exact type is not implied by context, but a relation that must be satisfied by a set of
types is known. The process of finding types to satisfy that relation is called balancing .
Examples include generic operators (such as relationals) that require two operands of the
same type, conditional expressions, and SELECT expressions. The common type selected
will be the one requiring the fewest coercions.

A sequence in Mesa is an indexable collection of objects, all of which have the same type. In
this respect, a sequence resembles an array; however, the length of the sequence is not part of
its type. The (maximum) length of a sequence is specified when the object containing that
sequence is created, and it cannot subsequently be changed.
Mesa allows a default initial value to be associated with a type. If a type is constructed from
other types using one of Mesa’s structures, such as RECORD , an implicit default value for the
constructed type is derived from the default values of the component types, but it can be
overridden with an explicit default value. Default values for arguments can simplify procedure
calls; default fields of records make the corresponding constructors more concise and more
convenient; default values are also useful to ensure that the corresponding storage is always
well-formed, even before the variable has been used by the program.
Dynamic variables in Mesa are allocated in zones. These are not necessarily associated with
fixed areas of storage; rather, they are objects characterized by procedures for allocation and
deallocation. There is a standard system zone, but programs that allocate vast quantities of
similar dynamic variables can often improve performance by segregating each kind into its
own zone. The operator NEW is used to create a dynamic variable in a zone, and FREE to
release it.
The MACHINE DEPENDENT attribute allows precise control of the representation of values at
the bit level.

From Mesa to Cedar

The Cedar Language is very closely related to Mesa. The most radical change is the provision of
automatic deallocation of dynamic storage, or garbage collection. Several other changes extend the
range of binding times available for such important attributes as the types of variables.
It is intended that most Cedar programs will be written in the safe subset, which imposes a number
of restrictions not present in Mesa to ensure the safe operation of the garbage collector, and
introduces some new (safe) features to make these restrictions tolerable. The full (unsafe) language
is generally "upward compatible" with Mesa.

Garbage collection, collectible storage, and REF s

Although Mesa POINTER s are typed, they provide a rich source of opportunities for creation of
safety problems, including the classical dangling pointer problem, where a pointer is used after
the storage it refers to has been deallocated, and the opposite storage leak problem, where
storage becomes inaccessible without being deallocated for reuse. Freeing the programmer
from responsibility for deallocating storage at just the right time was a major goal of Cedar. It
adds a new class of REF types that are just like the corresponding POINTER types except that
the system is responsible for freeing the dynamic variable it refers to after it has become
inaccessible.

8



Cedar provides three types of storage:
Frame: This is storage that is implicitly allocated by procedure application and module
instantiation to hold variables declared in the corresponding scope. It is also implicitly
deallocated, upon exit from the scope.
Collectible: This is storage that is explicitly allocated by NEW , and implicitly deallocated
after there are no more accessible REF s to it. FREE applied to a REF variable will cause it
(and REF fields in the dynamic variable it points to) to be "NIL ed out," but the dynamic
variable will only be freed when no other REF s to it remain.
Heap: This is storage that is explicitly allocated by NEW , and deallocated by (unsafe) FREE

statements, as in Mesa. Heap storage is referenced by POINTER s.
POINTER s may not be used in CHECKED regions, and may not refer to dynamic variables
containing REF s.

The introduction of collectible storage has substantially revised programming style and
interface design in Cedar. When the project was being contemplated, some Mesa programmers
indicated that as much as 40% of their time went into designing and checking the code to
avoid dangling POINTER s and "storage leaks," to tracking errors in this code, and to wasting
time in tracking other errors by suspecting storage deallocation problems. With REF s and a
reliable garbage collector that all goes away.
Frame (static) variables are still less expensive than dynamic variables, since entire frames are
allocated and freed on procedure entry and exit (and the mechanism for doing it has been
rather carefully tuned). However, it is entirely reasonable to use dynamic variables for data
whose lifetime is not closely connected to a particular procedure application or module
instance. Objects of large or varying size are almost always passed across interfaces by
reference. Definitive measurements on the cost of garbage collection have not yet been made,
but preliminary data indicates that it is generally less than 20%. Only in very special
circumstances is heap storage worth the added program complexity and potential for errors.

Safety

A desirable property of a high-level language is implementation independence , which means
that the effects of each program are explicable in terms of the language�rather than its
implementation�even if the program is erroneous. Mesa comes rather close to meeting this
goal (as evidenced by the fact that most Mesa programs can be debugged "at the Mesa level,"
without ever worrying about the format of frames or the details of storage management), but it
does contain some unsafe features whose use can lead to messy implementation dependencies.
It was desirable to reduce implementation dependencies in Cedar on general grounds.
However, the decision to include facilities for garbage collection made it imperative. A
collector can cause storage to be deallocated (permitting its subsequent reallocation and re-use)
at times that are completely unpredictable from examination of the source program. A single
programming error that smashes a REF used by the collector can destroy data structures in
ways that make it difficult to reconstruct any evidence of the original cause of the crash.
A major goal for the Cedar Language was that it contain a useful subset for which garbage
collection was safe. The safe subset of Cedar is basically that part of the language where even
incorrect programs cannot interfere with the reliable operation of the collector. The vast
majority of Cedar programs should be written primarily (or entirely) in the safe subset. Cedar
does not provide acceptably efficient substitutes for every use of Mesa’s unsafe features, but it
provides a means for indicating that some regions of a program are trusted . This inhibits
compiler enforcement of the safety restrictions and indicates that the programmer has assumed
the additional responsibility of ensuring that these regions of the program do not violate the
integrity of the system.

Invulnerability, safety, and checking

It is an obviously desirable property of a programming system that no user programming

9



error can "break" its abstract machine and reduce its world to a rubble of bits. We call this
property invulnerability . In general, it can be ensured only by maintaining the integrity of
certain data structures known to the run-time system. Collectively, the properties that must
be maintained to ensure invulnerability will be called the safety invariants; each part of the
system is responsible for ensuring that they are not destroyed, and must assume that the
rest of the system does likewise.
Unfortunately, invulnerability is not a local property. If any part of the system fails to
maintain the invariants, the entire system (including programs that are themselves correct)
is potentially vulnerable. We use the term safety for the property that the invariants cannot
be invalidated locally, even by incorrect programs. Cedar operations, both built-in and
programmer-defined, are classified as SAFE or UNSAFE . Most of the Cedar Language is
SAFE . UNSAFE constructs include LOOPHOLE , POINTER (but REF is SAFE ), JOIN , @ (address
of), and non-copying variant discrimination.
A region of program text, bracketted to form a block, may be prefixed with CHECKED ,
TRUSTED , or UNCHECKED . In CHECKED program regions, language-enforced restrictions
guarantee safety. If a block is CHECKED , then within that block only SAFE operations may
be used, and the block itself implements a SAFE operation.
Even UNCHECKED regions are supposed to maintain the safety invariants, but the
guarantee must be provided by the programmer, rather than the system. If a block is
UNCHECKED , UNSAFE operations may be used internally, and the block itself is considered
to implement an UNSAFE operation. Generally even UNCHECKED regions can be composed
primarily of SAFE operations; UNSAFE operations should be used only for good reasons
and with due caution.
A TRUSTED block may also invoke UNSAFE operations, but it is assumed to implement an
operation that is SAFE by programmer guarantee. TRUSTED is a programmer assertion that
cannot be checked by the compiler, and therefore represents a special kind of LOOPHOLE .
For easy upward compatibility from Mesa, the following defaults have been adopted: If a
module is prefixed with CEDAR , then the outermost block is CHECKED and all interfaces
are assumed to be SAFE ; otherwise, the outermost block is UNCHECKED and all interfaces
are assumed to be UNSAFE . The checking attribute is inherited; unless a nested block is
explicitly prefixed, it is CHECKED or UNCHECKED like the textually enclosing block.
If a program consists entirely of safe regions (and the invariants holds initially), then by
induction the program is invulnerable. However, an error in an UNCHECKED region can
make even the CHECKED regions vulnerable. Thus the CHECKED / UNCHECKED boundary
limits responsibility, but not vulnerability. Confidence that errors in CHECKED regions will
not cause system crashes is based on the the automatic enforcement of safety restrictions.
Confidence that UNCHECKED regions will not cause system crashes is based on trust that
they are free from errors that violate the safety invariants.

Type confusion

Mesa is a strongly typed language, which means that the types of variables are declared,
and that the language imposes restrctions to keep values of one type from being
accidentally interpreted as values of another. Because knowledge of the type structure of
values in memory is so essential to the garbage collector (it must locate and follow REF s in
order to determine current storage usage), it is particularly vulnerable to any operations
that cause data in memory to be interpreted as having other than their declared types.
Thus, much of the effort in designing the safe subset went into identifying all the features
in Mesa that allow type-checking to be circumvented (accidentally or deliberately) and
designing safe replacements for the important uses of those features.
LOOPHOLE is a "type converter" in Mesa that allows any value to be treated as having any
specified type; it is the most obvious breach of type security. It causes a safety problem
only if it allows mistyping of some piece of memory (i.e., if the target type contains an

10



address, such as a POINTER or procedure value); other uses will introduce implementation
dependencies, but not threaten safety. Within CHECKED regions, LOOPHOLE is not allowed
to produce a value of an address-containing (AC) type.

Narrowing and type discrimination

Cedar introduces a number of new type distinctions, frequently leading to a number of
separate, but closely related types. It is often desirable to coerce a value of one of these
types into a value of a related type. Where the types are such that it can be statically
guaranteed that no information will ever be lost by the coercion, it is called a widening,
and is performed automatically whenever demanded by context (e.g., lengthening an
INTEGER to a LONG INTEGER ). In general, conversion in the other direction requires a
run-time check to ensure that information is not being lost. To make the possibility of
such failure explicit in the program text, the NARROW type converter may be applied (and
may include a catch phrase to handle the NarrowFault error).
The built-in test ISTYPE can be applied to a value to determine whether it can be narrowed
to a specified type without error.
Implicit narrowing is supplied automatically if the target type is uniquely determined by
context. An explicit narrowing may cause an implicit widening of its argument; the
combination of narrowing applied to widening is never supplied automatically.

Delayed binding

A desirable property of a high-level programming language is that is allow a wide range of
binding times: that is, it should allow the programmer maximal control over when the
attributes of a particular variable are determined, with different choices not requiring changes
in all expressions containing the variable. Examples of such attributes are its type, storage
allocation method, implementation (for abstract objects), and actual value; examples of
binding times include program-writing time, compilation, program initialization, block entry,
and statement execution. Generally speaking, deferring the binding of an attribute leads to
greater generality in the program at the cost of decreased static static checkability and (often)
runtime efficiency.
Experience with languages like Lisp and Smalltalk, in which most binding is done
dynamically, shows that, if type and/or implementation binding can be deferred, it is much
easier to write certain kinds of programs, e.g., programming tools (debuggers, performance
monitors) and knowledge representation systems. But most programs take advantage of this
flexibility only occasionally. Cedar was designed to take advantage of early binding, as Mesa
does, but to allow certain bindings to be explicitly deferred.

Dynamic typing, REF ANY , and dynamically typed procedure variables

Mesa provides very limited variability in the binding time of an object’s type. Variant
records allow a deferred choice between specific enumerated alternatives, and string and
array descriptors allow deferring the specification of an object’s length until it is allocated.
Otherwise, all types must be fixed at compile time. This makes it virtually impossible to
avoid LOOPHOLE s and ad hoc type tagging schemes when writing schedulers, sorters,
output formatters, etc. that must operate on objects of unpredictable type.
Cedar’s solution to this problem requires two new mechanisms: a runtime representation
for types, and a way to associate a type with an object at runtime that is guaranteed
consistent with the type system and checking at compile time. (Note that it adopts the
view that an object’s type ius inherent in the object itself, rather than in the way the object
is referred to.)
TYPE is a type in the Cedar Language. Its "structuring methods" (e.g., ARRAY , RECORD ,
and REF ) are now viewed as operators that take TYPE arguments and return TYPE s. In the
current language, the arguments to such operators must be compile-time constants, but it

11



is likely that this restriction will be removed in the future.
ANY is not a type in Cedar, but can stand in place of a type in the arguments to two
operators: REF and PROC .
A REF ANY value may refer to a dynamic variable of any type whatsoever. Thus a REF T
value, for any T, can be widened to a REF ANY value. But a REF ANY value cannot be
directly dereferenced, because the type of the result would not be statically knowable. The
SELECT statement has been generalized to allow discrimination on the referent type of a
REF ANY ; within each selectable statement, the type is (statically) known to be the type
specified in its test item. NARROW can also be used to safely convert a REF ANY value
back to a REF T value; ISTYPE can be used to check whether NARROW will succeed.
A PROC type may also have ANY in place of the type of either its formal parameter record
type or result record type. PROC values with specific parameter and result types may be
widened to these dynamic types, and later tested and narrowed analogously to REF ANY s.
The APPLY operator can be used to apply a dynamically typed PROC value to a
dynamically typed argument record.
TVs and RTTs XXX.

Miscellaneous

Although Cedar was not intended as a research project in programming languages, its
developers were not completely immune to the temptation to make Mesa better in ways that
were not strictly required to enable the new programming environment. This section discusses
a few of these new features.

Ropes and IO

Mesa STRING s are rather awkward objects, having been tuned for efficiency in a
small-machine (Alto) world, rather than for flexibility and convenience. They are
POINTER s to fixed-length sequences of characters. Considerable care is required to avoid
surprising results, even for rather straightforward string-processing applications. Cedar
Ropes, on the other hand, are somewhat heavier-weight, more convenient to use, and less
prone to surprises. Several different implementations of Ropes, efficient for different
purposes, provide the same interface.
Most of the common operations on input/output streams, plus string conversions that are
commonly used in dealing with input or formatting output, have been collected in the IO
interface. Implementations are available for stream interfaces to all common devices, and
to allow Ropes and streams to be readily interconverted.

LIST s and ATOMs

Cedar includes LIST OF as a new type constructor for singly-linked (by REF s) lists, and a
constructor for list values that mimics that of LISP, avoiding the need for a lot of NEW s.
Unlike LISP, Cedar lists are statically typed (although the element type may be REF ANY ).
Cedar also has a built-in type ATOM , which can be used for values that are uniquely
determined by their print names. Any Rope can be converted to an ATOM and conversely;
the advantage of ATOM s is that, unlike Ropes, it is very cheap to compare them for
identity.

Dot notation for object-oriented programming

�xxx�

Interface records

�xxx�

Clusters

12



�xxx�

Kernel Language Concepts And Terminology

Group

�xxx�

Type predicate

�xxx�

Cluster

�xxx�

Mark

�xxx�

Name

�xxx�

Binding

�xxx�

Desugaring as language definition mechanism

�xxx�

For More Information . . .

Annotated Cedar examples

This document contains four complete, runnable Cedar programs chosen to illustrate the use
of most of the major features of the language, and provide an introduction to the style of
programming that is common in Cedar. You should certainly invest time in studying them
before attempting to write Cedar programs. If you are one of those who learns best from
examples, you may find them virtually the only tutorial information you need to learn the
language.
These examples have been chose so that they are also useful prototypes of kinds of programs
you may want to write in Cedar. If you are like most Cedar programmers, you will probably
find it easier to start from such a prototype, and change it to do what you want, than to enter
a whole program "from scratch."

Reference grammar

It seems traditional that the syntax of every programming language is defined using its own
notation. Cedar is no exception. The reference grammar is written in BLOVOBNF (Butler
Lampson’s own variation on BNF). It provides a relatively compact source of information on
the exact form of constructs accepted by the compiler, and will also allert you to the full
variety of the language.
You should be warned that the parsing grammar used by the compiler is somewhat larger and
more complex than the reference grammar. Some of this is for technical reasons associated
with LALR(1) parsing, and some of it to enable the compiler to make certain semantic
distinctions while parsing. The differences should be invisible when dealing with correct
programs, but may affect the error messages given for incorrect ones.

Cedar Style

Because Cedar programmers so frequently read each other’s code, it is considered good

13



citizenship to adhere to certain stylistic conventions. This document discusses the generally
agreed conventions, and provides an annotated prototype that you will probably want to keep
close to hand.
You can save yourself a lot of typing, and produce nicely formatted code at the same time, by
using Tioga’s abbreviation expansion mechanism to generate all the high-level structure of
your program (at least, all the bits that aren’t simply copied). The Cedar Style document also
contains a list of the standard Cedar abbreviations and their expansions.

Reference Manual

Eventually, this is intended to be a full-fledged precise definition of the complete syntax and
semantics of the Cedar Language. What exists at present, however, is just the essence, two
pages of carefully condensed material describing the syntax and semantics of the entire
language, with examples and notes. It is definitely not for those with weak eyes, and should
probably not even be read until you have gotten a fair acquaintance with the language from
other sources.

Cedar Catalog: packages and tools

Since so much Cedar programming is done "at the component level," you need to know what
packages and tools are available and what they do. In general, full documentation (or at least
the best approximation thereto that is available) for each component is stored on
[Indigo]<Cedar>Documentation>.
The problem is finding out which components you should be interested in. That’s where the
Cedar Catalog comes in handy. It contains a somewhat structured list of all the components in
Cedar whose developers consider "interesting." A component may be interesting because of
what it provides, or because of how it does it. In the former case, you may wish to include it
in your program, in the latter you may want to study it, or even take it as a prototype for your
program.
For each entry, the Catalog indicates why it is interesting, and how to acquire documentation
or the component itself. It also identifies the implementor, who is the ultimate source of
advice and help.

Mesa 5.0 Manual

The Mesa Language Manual, Version 5.0, Technical Report CSL-79-3, is the most recent
manual on the Mesa Language. It falls somewhere between a tutorial and a reference manual,
and many users have complained that it isn’t entirely satisfactory for either purpose. But if you
need more information about the Mesa-like parts of Cedar, it may be your best source.

Chapter 4 gives the details of Mesa’s basic control constructs.
Chapter 5 tells all about procedures.
Chapter 7 goes into more detail than you probably want about the fine points of modules,
programs, and configurations. However, you may be better off extrapolating from the
examples in the Cedar Language documentation.
It is easy to get in trouble with signals unless you use them in straightforward ways.
Chapter 8 gives some of the gory details.
Chapter 10 provides a pretty reasonable discussion of how to make effective use of
processes, monitors, condition variables, etc.

Who to see

If you haven’t managed to find information that you want after you have looked in what you
consider to be the obvious places (or if you don’t understand what you have found), don’t
hesitate to ask. Almost anyone in CSL is a fount of wisdom, willing to be asked almost any
question on almost any subject. (Of course, the answers aren’t equally reliable, but you can’t
have everything.) If the first person you ask doesn’t know the answer, chances are good that
you’ll get a pointer to either a person or document that will have the answer.

14



The ultimate authority on exactly what the Cedar compiler will accept, and what code it will
produce is Ed Satterthwaite. Roy Levin knows the Cedar runtime system inside out; Paul
Rovner is the runtime-type system expert; and Russ Atkinson can explain how to use BugBane
to debug those obscure problems.

15


