
CSL Notebook Entry

To CSL Date January 16, 1981
Cedar Reviewers

From Cedar Language Features Design Committee Location PARC/CSL, Palo Alto

Subject Cedar Mesa�Version 6T5 Files [Ivy]<CedarDocs>Lang>6T5>
*.bravo, Design.press

XEROX

Archive ID: yyCSL-xxx

Attributes: technical, Cedar, Mesa, Programming research

References: [Ivy]<CedarDocs>Lang>6C2>Design.press (February 15, 1980)
Mesa Language Manual, Version 5.0, CSL-79-3, April 1979
[Iris]<Mesa>Doc>Compiler60.press (October 27, 1980)

Abstract: This document reports the current state of the design and implementation of the Cedar
Mesa language. It is a snapshot prepared in mid-January 1981 for the Cedar Internal Design
Review. To provide some background, the motivation and required properties of the language are
briefly described. Specific changes to Mesa fall into three major areas: safe language, delayed
binding, and exported types. The currently implemented language, called Mesa 6T5, is specified
below. Mesa 6T5 is a partial implementation of Mesa 6C2; working notes on the status of the still-
missing features and on open design issues are also included.

TABLE OF CONTENTS

Introduction �2

Current Status �8

Language Changes

Safe Language 11
Delayed Binding 20
Exported Types and Objects 23

Cedar Mesa�Version 6T5, January 16, 1981 1:20 PM 2

INTRODUCTION

The design for the Mesa 6C2 language evolved through considerable discussion, taking into account
reactions to several design documents circulated to CSL and the Cedar Interest group. The Cedar
External Design Review in September 1979 provided additional feedback. Mesa 6T5 is the currently
implemented step toward 6C2. We have focused upon early implementation of features essential for
the construction of Cedar itself. Our design and implementation work subsequent to 6C2 has also
suggested minor revisions and, in a few cases, raised some as yet unresolved issues regarding the 6C2
design. These issues, as well as projections for implementation progress, are discussed below.

Cedar Mesa is very closely related to current Mesa, as implemented and supported by SDD. This
document assumes knowledge of Mesa Version 6.0. In fact, a number of proposals originally made
in 6C2 have already appeared in Mesa 6 and are not described in detail here.

Probably the largest single extension is the provision of garbage-collected dynamic storage (and a
concomitant reduction in the role of heap storage). We intend that most code will be written in the
safe subset, which imposes a number of restrictions to ensure the safe operation of the garbage
collector and introduces some new (safe) features to make these restrictions tolerable. The full
(unsafe) language is generally "upward compatible" with Mesa 6.0.

We have generated many further ideas for the improvement of Cedar Mesa and have received large
numbers of suggestions. However, we believe that the present design addresses the most pressing
issues in (at least) a satisfactory manner, and that it is more important to continue with the timely
implementation of this design than to refine it further.

The remainder of this introduction summarizes the required properties of Cedar Mesa and briefly
enumerates the specific changes and additions that we propose for the langauge. Next we provide
an overview of our progress. The final section is a detailed description of the language changes that
are currently implemented or about to be implemented.

SAFE LANGUAGE

Motivation

A desirable property of a high-level language is implementation independence, which means that the
effects of each program are explicable in terms of the language (rather than its
implementation)�even if the program is erroneous. Mesa comes rather close to meeting this goal
(as evidenced by the fact that most Mesa programs can be debugged "at the Mesa level," without
ever worrying about the format of stack frames or the details of storage management), but it does
contain some "unsafe" features whose use can lead to messy implementation dependencies.

It would be desirable to reduce implementation dependencies in Cedar on general grounds.
However, the decision to include facilities for automatic storage deallocation ("garbage collection")
within Cedar Mesa makes a shift in this direction imperative. The collector can cause storage to be
deallocated (permitting its subsequent reallocation and re-use) at times that are completely
unpredictable from examination of the source program. A single programming error that smashes a
reference used by the collector can effectively bring the whole system down in a rubble of bits, from
which it is difficult to reconstruct any evidence of the cause of the crash.

Cedar Mesa�Version 6T5, January 16, 1981 1:20 PM 3

One of the major goals of the Cedar Language Features Design Committee has been to design a
subset of Mesa for which it is safe to do automatic storage deallocation. To first approximation, the
"safe subset" is that part of the language where even incorrect programs cannot interfere with the
reliable operation of the collector.

We intend that the vast majority of programs will be written primarily in the safe subset. However,
we recognize that it is not presently feasible to provide acceptably efficient substitutes for all uses of
Mesa’s unsafe features. Instead, we provide textual means for indicating that some regions of a
program are unchecked. This will inhibit compiler enforcement of the safety restrictions and
simultaneously indicate that the programmer has assumed the additional responsibility of ensuring
that these regions of the program cannot violate the integrity of the system.

Invulnerability, Safety, and Checking

An obviously desirable property of a programming system is that no user programming error can
reduce its world to a rubble of bits. We will call this property invulnerability. In general, it can be
ensured only by maintaining the integrity of certain data structures known to the runtime system
(e.g., dispatch vectors, core maps). Collectively, the properties that must be maintained to ensure
invulnerability are called the safety invariants; each portion of the system is responsible for ensuring
that they are not destroyed and is free to assume that the rest of the system does likewise.

Invulnerability is not a local property. If any part of the system fails to maintain the invariants, the
entire system (including regions that are themselves correct) is potentially vulnerable. We use the
term safety for the property that the invariants cannot be invalidated locally (even by incorrect
programs). Checked program regions are portions of a system where safety is guaranteed by
language-enforced restrictions. Even unchecked regions are supposed to preserve the invariants, but
the guarantee must be provided by the programmer, rather than by the language and its
implementation. If a system consists entirely of checked regions (and the invariants hold initially),
then by induction the program is invulnerable. However, an error in an unchecked region could
make even the checked regions vulnerable. Thus the checked/unchecked boundary limits
responsibility but not vulnerability.

Unchecked regions may use unsafe language features, and errors may cause violation of system
invariants. These regions are sometimes called "trusted regions," because confidence in the correct
operation of the system must be based on trust that they are free of such errors. By contrast, our
confidence that errors in checked regions will not cause system crashes is based on the knowledge
that the safety restrictions have been mechanically enforced.

Type Confusion

A breach of the type system causes a safety problem if it allows mis-typing of some piece of memory
(i.e., if the target type contains an address, such as a reference or a procedure value); other uses of
loopholes introduce implementation dependencies but do not threaten safety. We have formalized
the distinction between these two sorts of breaches. We call the former loopholes; the latter, puns.
Loopholes are not allowed in the checked language.

Cedar Mesa�Version 6T5, January 16, 1981 1:20 PM 4

Narrowing

Our design introduces a number of new type distinctions into Mesa, frequently leading to a number
of separate but closely related types. It is often desirable to coerce a value of one of these types into
a value of a related type. If there is a guarantee that no information can be lost by such a
conversion, we call it a widening. Widening is performed automatically whenever demanded by
context�this is analogous to lengthening an INTEGER to a LONG INTEGER. In general, conversion in
the other direction requires a runtime check to ensure that information is not being lost. For each
such narrowing described below, we indicate the nature of the necessary check; if the check fails, an
error is raised.

References and Garbage Collection

Although Mesa pointers are nominally typed, they provide a rich source of opportunities for type
confusion, including�but not limited to�the classical "dangling pointer" problem, where a pointer
persists after the storage it refers to has been deallocated. We are introducing a new class of
reference types that refer to garbage collected (automatically deallocated) storage.

VAR Parameters

One common use of pointers in current Mesa is to pass parameters "by reference," rather than "by
value"�either to allow the results of assignments to the formal parameters to be visible in the
calling context or to avoid the cost of copying large arguments. Mesa 6C2 provides a special
parameter attribute, VAR, for this purpose. In checked regions, the "address of" operator, @, is only
allowed in the construction of arguments for VAR parameters. This restriction greatly simplifies and
reduces the cost of the storage reclamation mechanism.

DELAYED BINDING

Motivation

A desirable property of a high-level language is that it allow a wide range of binding times: that is, it
should allow the programmer maximal control over when the attributes of a particular variable are
determined, with different choices not requiring changes at each occurrence of the variable’s
identifier. Examples of attributes include type, storage allocation method, implementation (of
abstract objects), and actual value; examples of binding times include program-writing time,
compilation, program initialization, block entry, and dynamic assignment. Generally speaking,
deferring the binding of an attribute leads to greater generality in the program at the cost of
decreased static checkability and (often) runtime efficiency.

Experience with languages like Lisp and Smalltalk, which provide only very late binding, suggests
that even though late binding may actually be required only in few situations and have significant
runtime cost, there are certain kinds of programs that are extremely clumsy to write if late binding
of type or implementation is not available. In particular, programming tools (debuggers,
performance monitors) and knowledge representation systems seem to be of this nature. Thus, in
addition to wanting more binding time flexibility in Cedar Mesa on general grounds, we believe
such flexibility will greatly simplify the writing of an important class of programs.

Cedar Mesa�Version 6T5, January 16, 1981 1:20 PM 5

Dynamic typing

Current Mesa provides very limited variability in the binding time of an object’s type. Variant
records allow a deferred choice between specific enumerated alternatives, and sequences and array
descriptors allow deferring the choice of an object’s length. Otherwise, all types must be fixed at
compile time. This requirement makes it impossible to avoid LOOPHOLEs and ad hoc type tagging
schemes when writing schedulers, searchers, printers, etc. that must operate on objects of
unpredictable type. Our solution to this problem requires two new mechanisms: a runtime
representation for types, and a way to associate a type with an object at runtime that is guaranteed
consistent with the type system established at compile time. Note that we explicitly embrace the
traditional view that an object’s type is inherent in the object itself (rather than the Russell view that
its type is a syntactic property of the variable through which it is referenced).

Runtime Types

In Mesa 6C2, we have kept the current limitation that types used in declarations must be compile-
time constants. Cedar provides several library packages that manipulate and interpret the runtime
representations of types. We have extended Mesa to allow conversion from a type constant to an
ordinary Mesa value that is understood by these packages.

Atoms and Lists

The languages, such as Lisp that provided our models for delayed binding derive part of their
power from the easy availability of lists and atoms and from the flexible packages that can be built
around them. We have extended Mesa by adding a new type constructor, LIST OF, for conveniently
creating list types, and a predeclared type ATOM.

EXPORTED TYPES AND OBJECTS

Motivation

Current Mesa systems are constructed by binding together collections of separately written and
compiled modules that communicate through explicit and precisely specified interfaces.
Specifications of operations, which appear in interfaces, are decoupled from their implementations,
which are hidden within program modules. In versions of Mesa prior to Mesa 6, specifications of
types did not have similar properties; all information about types used in interfaces appeared within
the interface definitions themselves and had to be fixed before any client code could be compiled.
This shortcoming violated the principle of information hiding and also created awkward compilation
dependencies. Exported types were introduced in Mesa 6 to address this problem, but they impose
a number of restrictions and are insufficiently flexible for some applications.

Support of the so-called "object-oriented" style of programming, as developed in such languages as
Simula and (especially) Smalltalk, is an important goal of Cedar. Attempts to use Mesa for such
programming particularly suffer from the inability to hide representational detail. In addition, Mesa
does not distinguish between abstract and concrete types. The result is that dealing with an abstract
class of objects with multiple and coexisting concrete implementations requires considerable
circumlocution; the code is awkward and error-prone.

Cedar Mesa�Version 6T5, January 16, 1981 1:20 PM 6

Opaque Types

Types may be exported from implementors into interfaces, just as procedures are. An interface may
contain a declaration of an opaque type, the structure of which is largely unspecified and thus
invisible to importers of that interface. Every implementation of the interface must supply a fully
specified concrete type for each opaque type in the interface, as well as a set of procedures
implementing the operations of that type.

We propose changing the type checking rules of Mesa to avoid type confusion even when several
distinct concrete types correspond to a single opaque type.

Notational Conventions

The notation used for object-oriented programming in Mesa depends upon the degree of generality
anticipated by the programmer. If only one implementation is anticipated, he uses standard
functional notation, e.g., Interface.Op[object, args]. If multiple implementations are anticipated, an
object-oriented notation, e.g., object.Op[args] is more appropriate. We introduce conventions that
allow these notations to be used interchangeably, given suitable declarations. This allows the
programmer to adopt a uniform style and thereby to delay decisions about representation.

Generic Types

Opaque types do not handle the situation in which multiple implementations of an abstract type
coexist within a system and clients wish to use the various implementations interchangeably.

We would like to extend the opaque type mechanism to allow the dynamic intermixing of different
implementations and thereby accommodate a more general style of object-oriented programming.
For each opaque interface type, we introduce a generic type, the values of which can have any of the
concrete types supplied for the opaque type. Such a value is represented by a value of the concrete
type plus an interface providing its operations.

Subclasses

Sometimes several classes of objects share a number of abstract operations; these can all be viewed
as subclasses of some other class for which just the common operations are defined. Algorithms
applicable to the superclass automatically extend to all the subclasses. Part of our design is a means
for defining an interface as an extension of other interfaces. The effects of a subclassing can be
achieved if one of the interfaces being extended includes an opaque type.

Cedar Mesa�Version 6T5, January 16, 1981 1:26 PM 7

CURRENT STATUS

This section summarizes the current (mid-January 1981) state of our design and implementation. In
general, we have focused upon early implementation of those features thought essential for the
construction of Cedar itself; we are aware of a number of temporary inelegances and loose ends that
have resulted from this approach. We have also been influenced by our desire to remain compatible
with Mesa 6.0 and to take advantage of the system software supplied by SDD for as long as possible.
A certain number a changes or new features with straight forward implementations have been
deferred simply to avoid compatibility problems.

Note also that Mesa 6.0 adopted, at least in part, a number of the additions to Mesa proposed in
6C2. These include the ability to control the initialization of a variable according to its type, generic
NIL, zones with NEW and FREE operations, sequence types, and a restricted form of opaque types.

Descriptions of restricted and unimplemented features in 6T5 are repeated as fine points in the
section Language Changes, which we intend to use as an interim programming manual for Cedar
Mesa.

SAFE LANGUAGE

We have placed highest priority upon implementing automatic storage management. We believe
that this is the most important single change proposed in 6C2 and that its performance will be
critical to the success of Cedar Mesa. Implementation involves not only the garbage collector itself
but also a fairly pervasive set of changes to the compiler, both to gather the information needed by
the collector and to generate modified code for counted operations. By focusing upon an early
implementation, we have been able to identify the areas critical to performance, to demonstrate the
feasibility of garbage collection in Mesa and to begin experimenting with alternative strategies and
algorithms.

We have been more concerned with understanding safety than enforcing it. We believe that we
understand the system invariants and the restrictions to be applied to checked regions, and the
following section documents them. The 6T5 compiler does not yet support checked regions, and
most of the checks required to identify safety violations remain unimplemented. In essence, all code
is unchecked; users of Mesa 6T5 must maintain the required invariants themselves and, where
possible, heed the restrictions that will be applied to safe regions. We have found that this is not a
major problem for current Cedar implementors, but this area obviously requires attention before
Cedar receives widespread use. We see no serious problems in this area.

References and Other Address-Containing Types

Automatic Deallocation and Reference Counting

Mesa 6T5 supports frame, heap and collectible (counted) storage. A debugged garbage collector
with reasonable (and improving) performance is part of its runtime support. The language provides
references (addresses to be traced by the garbage collector) as proposed in 6C2, and the compiler
generates code to initialize and update counted references in the manner required by the collector.

In the current implementation, the static links embedded within procedure and signal values are not
treated as counted references. We have arranged to give global frames "infinite" reference counts.

Cedar Mesa�Version 6T5, January 16, 1981 1:26 PM 8

Thus assigning procedures or signals declared at the module level to collectible storage cannot create
dangling references in 6T5 (unless the programmer explicitly destroys the global frame). We plan to
detect assignments of nested procedures that are potentially "out of scope" when we implement
enforcement of the safety restrictions in checked regions. Proper retention and subsequent collection
of retained local frames will be provided in conjunction with the implementation of VAR parameters.

Variants of Reference Types and Values

Mesa 6T5 recognizes the distinction between counted and uncounted references and provides a
universal reference type (REF ANY). The runtime system implements both the prefix and quantum
encodings of the types of universal references.

We have chosen to defer relative counted references. Relative references with bases other than
MDS or with offsets packed into fields smaller than a word, have a high implementation cost and
may be deferred indefinitely.

Bases and Zones

Mesa 6T5 does not support BASE types (although the runtime does); at the language level, they are
needed only to describe relative references, which we are deferring. The ZONE types of Mesa 6.0
have been extended to allow counted zones; the runtime provides standard implementations of zones
with a variety of attributes.

VAR Parameters

We have not yet implemented VAR parameters, and Mesa 6T5 retains the Mesa 6.0 interpretation of
@ and DESCRIPTOR. VAR parameters and parameters with procedure types provide a mechanism by
which the retention of a local frame can require retention of other local frames in its call chain. We
have devoted considerable effort to working out several designs that deal with this related set of
issues. These designs differ in their performance trade-offs; we plan to choose the simplest and to
implement it.

Persistent Closures

Mesa 6T5 does not have persistent closures (but global frames are forced to be persistent). We plan
to implement VAR parameters and retained frames at the same time, as described above.

Other Safety Changes

PUN and NARROW

We do not currently enforce the distinction between safe and unsafe type breaches, and the current
langauge does not recognize PUN. We plan to remedy these defects when we implement checked
regions.

In Mesa 6T5, NARROW may be applied only to values with type REF ANY, and the NARROW
operation must be explicit.

Cedar Mesa�Version 6T5, January 16, 1981 1:26 PM 9

Variant Records

The various loopholes associated with variant records have been long-standing problems. We have a
design (inspired by Euclid) that appears to be sound. Unfortunately, it is semantically incompatible
with Mesa 6.0; certain existing constructs are given a subtly different interpretation. The 6T5
version of Cedar Mesa does not implement the new design. The runtime system does, however, deal
with part of the safety problem by disallowing any assignment to an RC variant record in collectible
storage that would change the tag of that record.

Strings, Text, and Sequence Types

Sequence types were introduced by Mesa 6.0, and its restrictions on sequence usage are retained in
6T5. We do, however, guarantee that all elements of RC sequences are set to NIL upon allocation.

We have provided string constants (TEXT literals) that are compatible with collectible storage; our
attempts to build more elaborate string packages have raised several langauge issues regarding the
proper treatment of the attribute READONLY (and possibly of a new CONST attribute).

DELAYED BINDING

Type Values

The 6C2 design proposes making types full-fledged values, with the restriction that type expressions
appearing in declarations must be compile-time constants. It also suggests unifying the syntax of
expressions and type expressions. While we believe that both of these changes are desirable, we
have deferred them, primarily because of the syntactic problems that arise without some
(incompatible) changes to the syntax of type expressions.

Our interim solution provides a bracketing operator (CODE) that allows a type expression to stand as
an ordinary expression. This operator both avoids the syntactic problems and generates the
representation of the type that is assumed by the Cedar runtime. We have not yet implemented the
similar operator TYPE, proposed in 6C2 for extracting the type attribute of an arbitrary variable.

Dynamic typing

Universal references (type REF ANY) have been implemented essentially as proposed in 6C2. We
have redesigned the language form for discriminating a universal reference so that the value is
always copied to a discriminated variable before it is used.

Atoms and Lists

Mesa 6T5 implements atoms and lists essentially as proposed in 6C2.

Cedar Mesa�Version 6T5, January 16, 1981 1:26 PM 10

EXPORTED TYPES AND OBJECTS

Most of the 6C2 proposals related to exported types and objects have been deferred or withdrawn
for reconsideration. We still believe that these are important areas that must be addressed, and we
intend to propose revisions or replacements of the 6C2 features. Our current thinking builds upon
some ideas about polymorphism, but we do not currently have a complete and coherent design.
Furthermore, any implementation would appear to require a substantial revision of the Mesa 6
implementation framework from which 6T5 was derived. This is an area of ongoing research.

Opaque Types

The opaque types in Mesa 6T5 are identical to the exported types of Mesa 6. In particular,
guaranteeing type safety still requires the restriction that, within any system, there must be a unique
concrete type for each opaque type. We would like to allow different implementations to supply
different concrete types and to modify the type checking rules to prevent unintentional mixing of
different concrete types. Work on this area has been deferred; there is considerable interaction with
issues raised by system modelling.

Notational Conventions

The proposed convention for object-oriented notation has been implemented only for objects with
types that are (references to) opaque types. A more general implementation requires further
understanding of the interaction between types defined in interfaces and the imported instances of
such interfaces. There is considerable interaction with system modelling.

Generic Types and Subclasses

The specific 6C2 proposals for generic types and subclasses have been withdrawn for reconsideration.
Our design for polymorphism, if successful, may dominate those proposals.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 11

LANGUAGE CHANGES

The changes described here are for Mesa 6T5 and its immediate successors. Omission or deferral of
a feature does not imply it will not be included in some future extension.

SAFE LANGUAGE

General Principles

System Invariants

Basically, the invariants that must be preserved are

the integrity of the code and the various data structures maintained by the present runtime
system for storage management, process scheduling, control links, etc.

the integrity of the new data structures introduced for garbage collection (reference counts,
symbol table information, etc.).

the type integrity of all RC storage.

the accessibility of all active reference-containing (RC) storage to the collector by tracing
links, starting from a known set of locations.

An elaboration of the last two points, precisely stating the invariants required for safe garbage collection, appears in the
6C2 document.

Checked and Unchecked Regions

We believe that we understand the restrictions to be applied to checked regions and their implications for the compiler.
Users of Mesa 6T5 should heed the restrictions described below in their programming. The 6T5 compiler generates range,
bounds and NIL checks by default but does not otherwise enforce the restrictions or check for violations.

Each block of a program will belong to a checked or unchecked region, with checked being the
default. An unchecked region may contain embedded checked regions, but not conversely. Our
goal is to have checked regions predominate, and to make it easy for the reader to locate all
unchecked regions.

We have added the key words CHECKED and UNCHECKED to the language, to precede the BEGIN of
a block. Unless a module body’s block begins with UNCHECKED, it is automatically checked. Unless
a nested block in an unchecked block begins with CHECKED, it is automatically unchecked.
UNCHECKED may not appear within a checked block.

The key words CHECKED and UNCHECKED are not recognized in 6T5.

Within a checked block, all the restrictions imposed on the safe subset will be enforced by the
compiler (possibly generating some runtime checks for such things as array bounds). In unchecked
regions, the full language may be used, but the programmer is responsible for ensuring that he both
understands and preserves all the system invariants. Even in unchecked regions it is likely that the
bulk of most programs can be in the safe subset, and features outside the subset should be used only
for good reasons and with due caution, since an error in an unchecked region can bring down all of
Cedar.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 12

Unchecked Regions Providing Safe Interfaces

Although a checked module is not allowed to contain any unchecked regions, it may import
interfaces to unchecked modules. We distinguish between unchecked procedure bodies and unsafe
procedure calls. A procedure that uses unsafe features to accomplish some safe operation (i.e., one
that will not violate the safety invariants, even in the presence of errors in the calling program) has a
safe interface, and such procedures may be called from within checked regions. Of course, the
compiler cannot guarantee that an unchecked procedure body actually provides a safe interface; this
is the responsibility of the programmer who declares the interface to be safe.

The key words SAFE and UNSAFE are new access attributes. Preceding a procedure, port, process, or
signal type constructor, SAFE indicates an interface that may be used within checked regions. Unsafe
interfaces are private to unchecked regions, and invocation from checked regions is prohibited.
Interfaces declared in checked regions are automatically safe, while those declared in unchecked
regions are unsafe unless declared SAFE.

The key words SAFE and UNSAFE are not recognized in 6T5.

Signals are like procedures: checked regions are not allowed to raise unsafe signals, and unchecked
regions may only catch safe signals with safe catch phrases, i.e., those whose statement is a block that
is preceded by SAFE. Note that this SAFE applies to the interface. If the block is to be a checked region, it must
be preceded by CHECKED (which implies SAFE). An UNWIND, however, may be caught anywhere, because
the region that raised it is being terminated.

References and Other Address-Containing Types

AC Types

We need to impose restrictions on the creation and use of values of address-containing (AC) types,
which are either reference-containing (RC) or pointer-containing (PC).

References (addresses) are AC.

String, procedure, frame, descriptor, signal, port, and list types implicitly contain addresses and
are therefore AC.

Counted AC types (the default) are RC and are the primary concern of the collector.

Uncounted AC types (including pointer types) are PC.

Arrays whose component type is RC (PC) are RC (PC).

Records with any RC (PC) fields are RC (PC).

In 6T5, there are no RC descriptor or port types and no PC list types. Procedure and signal types are RC by default but
are treated as PC by the compiler; i.e., creating dangling references by assigning procedure values out of scope remains
possible. See the discussion of persistent closures.

Whenever an RC value is created, all its address fields must be validly initialized (possibly to NIL) to
avoid assigning through, tracing, or deallocating, non-existent structures. If an RC type has variants,
the tag fields of the corresponding values (sequences or variant records) must also be initialized. In
Cedar Mesa, all address fields of RC types that are not explicitly initialized will be implicitly
initialized to NIL (or to a non-NULL default value specified in the corresponding type definition).

In Mesa 6T5, procedure and signal variables do not have automatic initialization to NIL.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 13

To free the garbage collector from concern for PC values, pointers may not refer to RC values; i.e.,
if T is RC, then POINTER TO T is not a valid type. Conversely, PC types may not be declared or
used in checked regions.

We must also guard against both "forgery" of AC values and the preservation of RC values in
locations unknown to the collector. The immediate implication is that we must prohibit LOOPHOLE
and restrict UNSPECIFIED in checked regions.

As long as there is no mechanism for later converting them back to AC values, there is no
safety problem in allowing AC values (indeed, any values) to be interpreted as non-AC
values, and we provide PUN as the safe replacement for LOOPHOLE.

In checked regions, values of type UNSPECIFIED will not conform to any AC type, although
values of AC types may be coerced to UNSPECIFIED. REF ANY provides type-carrying
references, which can safely be used to replace many uses of UNSPECIFIED.

Automatic Deallocation and Reference Counting

Cedar Mesa provides three kinds of storage:

Frame: This is storage that is implicitly allocated upon procedure activation to hold variables
declared in the corresponding scope. It is also implicitly deallocated�normally on scope
exit, although other cases will be discussed below.

Heap: This is storage that is explicitly allocated by NEW and deallocated by (unsafe) FREE
statements. Heap storage is referenced by pointers, which may declared and used only in
unchecked regions.

Collectible: This is storage that is explicitly allocated by NEW, and is implicitly deallocated
after there are no more accessible references to it. FREE applied to a collectible reference
will cause it (and its RC fields) to be "NILed out," but the object will only be freed when no
other references to it remain. Collectible storage is accessed through references, which are
described below.

For all three types of storage, the smallest unit of deallocation is an entire allocated object.

Mesa 6.0 provides the first two kinds of storage. Freeing the programmer from the necessity of
explicitly deallocating storage (and the possibility of making mistakes in such deallocation) has been
one of the major goals in the design of Cedar Mesa. We expect the efficiency of automatic
deallocation ("garbage collection") to be good enough that collectible storage will replace most
present uses of heap storage.

Variants of Reference Types

Cedar Mesa provides a new type constructor, REF, for creating AC types. REF types provide indirect
access to objects and generalize the POINTER types of current Mesa. Each such type includes a
distinguised value NIL that designates no object. If the type of x is REF T and its value is not NIL,
x^ designates a variable of type T. The READONLY attribute may be used in constructing REF types;
if the type of x is REF READONLY T, x^ cannot be used as the target of an updating operation. The
representation of a REF value is a (virtual) address.

Two aspects of each reference are part of its type:

Counting option = {counted, uncounted}: The default for AC types is counted; however, in
unchecked regions, UNCOUNTED may be applied to any AC type to produce the corresponding PC
type; LONG POINTER TO is synonymous with UNCOUNTED REF.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 14

Mesa 6T5 does not recognize COUNTED or UNCOUNTED as an attribute of REF. A type constructed using REF is
always RC; one using POINTER, always PC. The Mesa 6 operator POINTER TO constructs a PC type that is an
UNCOUNTED MDS RELATIVE REF; relative reference types are not otherwise supported in 6T5 (see below).

@ produces an uncounted reference, and hence cannot be used in checked regions (except when
creating a VAR parameter, as explained below).

Uncounted references should either refer to heap storage, which is freed explicitly, or be
"redundant," i.e., refer to objects that are guaranteed to be kept in existence by other (counted)
references.

Objects containing pointers (uncounted references) may only be declared and used in unchecked
regions. Furthermore, pointers may not refer to objects whose type is RC (although counted
references may�in unchecked regions�refer to PC objects).

Static typing = {specific, any}: Cedar Mesa does not allow "universal" variables whose type is not
known statically. However, universal references may be specified by REF ANY, which indicates that
the value will be a reference whose type is determined dynamically. REF abbreviates REF ANY.

The only operations on universal references are allocation and deallocation, extraction of the current
value’s type, discrimination on the current type (in a SELECT statement as described below),
narrowing to a particular reference type, assignment (including parameter passing), and test for
equality. A REF READONLY ANY may only be narrowed to a particular READONLY reference type.
Note that undiscriminated universal references may not be dereferenced.

Counted references of any specific type may be widened to universal references. REF T conforms
freely to REF ANY or REF READONLY ANY, and REF READONLY T conforms freely to REF READONLY
ANY. Narrowing a universal reference to a specific reference type is subject to a runtime type
identity check. See the section on delayed binding for further details of the use of universal
references.

The type REF ANY is RC; Mesa 6T5 does not support PC universal references.

The 6C2 proposal also defines a packing attribute for references, use of which declares causes the values of the
corresponding type to be relative to a specified base. Mesa 6T5 does not provide counted relative references and
continues to support the Mesa 6.0 version of uncounted relative references.

We plan to implement (counted) MDS RELATIVE REF types. Other relative reference types, particularly those packed
into less than 16 bits, have a high implementation cost compared to the expected benefits and may be deferred
indefinitely.

Variants of Reference Values

One aspect of the representation and use of references is a property of particular reference values
and not part of their type:

Dynamic type encoding mechanism = {unencoded, prefix, quantum}: This is an aspect of the runtime
representation of references that is of concern only to the storage management and reclamation
subsystem. From the zone into which a reference points, it is possible to determine its type
encoding mechanism.

When collectible storage is allocated by NEW, its type is recorded by either the prefix word or the
quantum map mechanism; in the former, an extra word containing the type is allocated just before
the object, in the latter, the object is allocated with an address in a range containing only objects of
that type, so the high-order part of the address implies the type. Uncounted (heap) references are
not required to conform to this scheme and may have the unencoded attribute.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 15

The dynamic type encoding mechanism for a zone is specified when it is created. Generally, prefix
is preferable for large objects, and quantum for numerous or small ones.

Zones

The ZONE type constructor specifies heap or collectible management (i.e., explicit or automatic
deallocation), with the default being collectible. Heap zones are specified by the adjective
UNCOUNTED as in Mesa 6; the type of a counted zone is simply ZONE.

The system provides a standard counted zone, which is the default zone for allocation of collectible
storage and which uses the prefixed type representation. Other zone values are obtained by calls on
standard library packages specifying the desired attributes of the zone.

A constructor-like notation for generating such calls appears in the 6C2 proposal. Mesa 6T5 does not provide such
notation.

The 6C2 proposal also defines a BASE type constructor. BASE types are to be used for limiting the storage available to
zones and for defining RELATIVE REF types. Mesa 6T5 does not have BASE types; however, the runtime system does
provide base objects to serve the first of these functions.

VAR Parameters

@ is frequently used in Mesa programs to pass parameters "by reference," rather than the "by
value" default, either because assignments to the formal parameter should affect the argument, or to
avoid the overhead of copying the argument. In Cedar Mesa we raise this usage to the level of a
language feature by introducing a VAR attribute for formal parameters.

Operationally, specifying a parameter to be VAR is equivalent to adding REF to its type, and
following each use of its name by ^. Note that this implies that the procedure does not have access
to the reference created for the argument, but only to the value referenced; in particular, the
procedure cannot either change the reference or copy it into a reference variable. It is this
restriction that allows VAR parameters to be implemented safely at a lower cost than unrestricted
references.

A formal parameter declared to be DESCRIPTOR is similar except that an argument may have any
index type that is a subrange of the index type declared for the formal, and the length of the
argument is passed with the reference. The argument may be an explicit descriptor (in unchecked
regions) or the result of applying DESCRIPTOR to an array or sequence variable.

@ may be used in checked regions only to create VAR arguments. That is, it may appear only in
arguments corresponding to VAR formal parameters. Similarly, the operator DESCRIPTOR may be
used in checked regions only to create DESCRIPTOR arguments.

Mesa 6T5 does not have VAR parameters and retains the Mesa 6.0 interpretation of DESCRIPTOR. Adequate and
detailed designs of several possible implementations, with differing performance trade-offs, have been worked out and we
expect to add VAR parameters.

The "Pointer to" Operator, @

In unchecked regions, @ may be applied to any variable to produce a pointer that refers to it, and
DESCRIPTOR may be applied to any array or sequence variable to produce a (PC) descriptor.

As in current Mesa, @ may be applied to a component of a (record, sequence, or array) value only if it is
word-aligned.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 16

It is a safety requirement�to be ensured by the unsafe language programmer�that these pointers
not dangle:

A heap object that (has a component that) is the referent of an accessible pointer may not be
freed.

A procedure may not return leaving any accessible pointers to its local variables.

If @ or DESCRIPTOR is applied to (a component of) a collectible object, a reference to the entire
object must remain accessible for at least as long as the pointer does.

Reference Assignment

For safety in the presence of multiple processes, reference assignment (including any required
reference-counting transactions) is made into an atomic (non-interruptible) operation.

NEW

Cedar Mesa extends the NEW and FREE operations to deal with collectible storage. We view NEW as
an operation associated with a zone. As in Mesa 6.0, the argument of NEW is a type, with an
optional initial value, and its result is a reference with attributes determined by the zone. The NEW
operation of a (counted) ZONE returns REFs, with the type encoding specified for the zone, while the
NEW operation of an UNCOUNTED ZONE returns LONG POINTERs.

NEW’s value is a reference that points to a properly-initialized object of the argument type. Each
zone’s allocator must ensure that the storage for a newly allocated object does not overlap with any
other currently allocated storage. The new object is in the specified zone, and the reference is
counted or uncounted, depending on the zone. The default zone is a counted prefix zone
automatically supplied by the system.

When creating an immutable object of some variant record type, the argument type should be fully discriminated (using
"adjective" notation). When creating a mutable object (disallowed in the checked language; see below), the argument type
should not be discriminated.

As in Mesa 6.0, explicit initialization of sequence elements cannot be specified in the argument of NEW; however, all
elements are set to NIL if the sequence is RC.

Examples:

... NEW[T] ... --Returns a REF T in systemZone

... zone1.NEW[T] ... --Returns a REF T in zone1

... zone1.NEW[TEXT[ln]] ... --Returns a REF TEXT of length ln in zone1

FREE

Cedar Mesa includes the FREE statement of Mesa 6.0. FREE will usually be applied to pointers,
which are allowed only in unchecked regions. (It would be unsafe to free storage if pointers to it
had been passed to checked regions, since there is no way to ensure that copies of pointers will not
be kept; unchecked regions must be "trusted," anyhow.)

Storage should only be freed if all code that has access to it is trusted. Although this is a strong
restriction, and makes the use of pointers much less attractive, we have not found any acceptable
alternative restrictions that make it possible to explicitly and safely free storage. This is the cost of
allowing pointer assignments.

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 17

FREE may also be applied to counted references, but in this case serves only as a hint to the
allocator that the programmer believes that this is the last accessible reference. FREE’s argument
(which is passed as a VAR) and any component RC fields of the object it refers to will be reset to
NIL, but the storage will only be freed when no accessible references to it remain. This is a safe and
useful way to break circular structures.

Persistent Closures

Mesa currently allows local procedure values to be assigned to global procedure variables and to be
returned as the results of procedures. However, if such a local procedure references non-local
variables, the result can be arbitrary, since the frames referenced via the its static links may have
been deallocated on return from its enclosing procedures. Rather than outlaw the technique, we will
make it safe in Cedar Mesa. Procedure values, static links and VAR parameters will be treated as
references, and frames will (conceptually) be reference counted like other collectible objects.

Mesa 6T5 does not have persistent closures; however, detailed designs of several possible implementations have been
worked out and we expect to add them. There are interactions with the design of VAR parameters.

Since procedure values are RC but treated as PC in 6T5, it currently is possible to create dangling references by assigning
such values "out of scope." However, global frames are treated as collectible objects with infinite reference counts,
however, and procedures declared at the module level can safely be assigned to variables in collectible storage.

Other Safety Changes

Bounds and NIL Checking

The Mesa compiler has options for generating bounds checking for all assignments to subrange
variables and all indexing operations, and NIL checking for all dereferencing operations. In Cedar
Mesa, the compiler will generate checks (except those it can prove redundant) for all indexing and
dereferencing operations in checked regions that are used to access RC types or to store values,
whether these options are selected or not.

In Mesa 6T5, bounds and NIL checks are selected by default but are not mandatory.

PUN and NARROW

Although LOOPHOLE is prohibited in checked regions, there is no safety problem in allowing one
type to be interpreted as another as long as

both types occupy the same amount of storage, and

each AC field of the target type conforms freely to the corresponding field in the source type.

An opaque type from an unsafe interface may not be the target type of a PUN, since the concrete type is
potentially PC.

If these conditions are met, PUN may be used as a type transfer function, even in checked regions.
Like LOOPHOLE, it merely causes a reinterpretation of the type of a value, it does not cause any code
to be generated.

Mesa 6T5 does not recognize the key word PUN.

NARROW, on the other hand, causes a runtime check that a value known statically to be of some
general type (e.g., REF ANY), actually contains a value of a specified type. If the test fails, the signal
RangeError is generated. The type need not be specified explicitly if it can be statically inferred
from the context; in such cases the explicit NARROW is optional (unless a catch phrase for the signal

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 18

is to be attached).

Widening is always implicit, and supplied automatically when demanded by context.

In Mesa 6T5, NARROW may be applied only to values with type REF ANY. The NARROW operation must be
explicit, but the target type may be omitted when it can be inferred from context.

Variant Records

COMPUTED and OVERLAID variant record types provide another way to achieve the effect of a
LOOPHOLE. Such types may be used in checked regions only if each of the variants may be PUNned
into each of the others, i.e., if confusion about the variant cannot change the interpretation of the
RC fields.

In current Mesa, even ordinary variant record types with tag fields provide opportunities for type
confusion within the scope of a discriminating selection. Although Mesa prohibits direct assignment
to the tag field, there are a number of underhand ways of causing either the tag or the identity of
the designated record to change, such as calling a procedure that changes a global variable or
accessing the record through a different name (aliasing). Even worse, such actions may be triggered
by interrupts even if the selection appears perfectly innocuous. Changing the language to prohibit
all such possibilities would have required a rather more thorough redesign than we were prepared to
attempt.

We distinguish two different sorts of unbound variant record types: those where the variant is
immutable, i.e., fixed when the object is allocated, and those where the variant is mutable, i.e.,
changeable by assignment to the value. If T is a variant record type, unqualified use of T denotes
the former case, and ANY T the latter. Mutable variant records may not be used in checked regions.

T values may be freely assigned to ANY T variables; assignment in the reverse direction requires a
run-time check that the current tags are equal. However, REF T values (and REF bound T values)
may not be assigned to REF ANY T variables (since this would allow assignments that attempted to
change the tag); assignment in the reverse direction is also disallowed. In the terminology of the
Mesa manual, T (and bound T) conform to ANY T but do not freely conform.

In a discriminating selection, the semantics of the OpenItem will be changed in Cedar Mesa so that
the expression is evaluated only once (not on each use, as in current Mesa). Thus there will be no
possibility that subsequent references to the discriminated object will access a different record.

The scheme described above is semantically incompatible with current Mesa. The 6T5 version of Cedar Mesa does not
implement these changes but retains the Mesa 6.0 treatment of variant records. The runtime system does, however,
disallow any assignment to an RC variant record that would change the tag of that record; i.e., all RC variant records in
collectible storage are forced to be immutable by runtime checks.

Strings, Text, and Sequence Types

Cedar Mesa supports the sequence types introduced in Mesa 6. Sequences are the usual way of
dealing safely with objects in collectible storage that have dynamically computed sizes. COMPUTED
sequence types may not be used in checked regions if the sequence elements are RC.

Mesa 6T5 retains the restrictions on sequence usage found in Mesa 6.0; it does, however, guarantee that all elements of
RC sequences are set to NIL upon allocation. We plan to allow sequences that are not embedded within records and to
provide sequence constructors.

Sequences of characters are a frequently-used programming construct. In present Mesa, STRING
denotes a pointer to such a sequence (generally allocated on the heap). The fact that "strings" are
actually pointers is a frequent source of errors, as is the explicit management of the storage
containing the characters. We expect the availability of garbage collection to substantially change the

Cedar Mesa�Version 6T5, January 16, 1981 1:29 PM 19

normal programming style associated with these sequences.

We have introduced a predeclared type TEXT for a (packed) sequence of characters. REF TEXT will
generally replace most uses of STRING, which, however, remains available in unchecked regions as a
synonym for POINTER TO StringBody. To reduce signed/unsigned number problems, the maximum length of the
sequence in a TEXT value is 2^15.

A "string literals" denotes either a STRING or a REF TEXT constant with the READONLY attribute;
context is used to make the distinction (as with CARDINALs and INTEGERs).

In Mesa 6T5, the type of a string literal in a context requiring a REF is REF TEXT; i.e., the literal is not protected
against updates. There is currently some confusion about the proper interpretation of READONLY and (perhaps)
CONST attributes.

Processes

Process handles offer the same problems as other potentially dangling pointers, but we wish to keep
them in the safe subset. The implementation will be changed to include additional checking for
erroneous situations (e.g., JOINing a process more than once). ABORT will be treated as a signal in
the receiving process (with the additional property that the process is awakened to handle it, if it is
waiting on a condition variable); it will cause termination of the process (after unwinding) if there is
no handler for it in the aborted process.

The implementation has not yet been changed.

Unsafe Features

Although some of them have safe uses, the following Mesa language features may be used only in
unchecked regions:

LOOPHOLE

UNCOUNTED, POINTER

Arithmetic to produce references

MACHINE CODE

TRANSFER WITH

RETURN WITH

STATE

Many procedures provided Pilot or by the current (unchecked) Mesa runtime system have unsafe
interfaces, and hence cannot be called from checked regions. Examples are UnNew, UnNewConfig,
and SelfDestruct.

Cedar Mesa�Version 6T5, January 16, 1981 1:45 PM 20

DELAYED BINDING

Type Values

Cedar defines a representation of Mesa types in terms of ordinary Mesa values. For the most part,
such representations are manipulated only by standard library packages, which can, e.g., discover the
internal structure of an existing type or construct a representation of a new type. We extend the
language to interpret a constant type expression as a denotation of such a representation, but we
treat those representations opaquely, with assignment (including argument passing) and comparison
for equality being the only available operations within the language itself.

In Mesa 6T5, the syntactic form CODE[T], where T is any statically evaluable type expression, denotes a value that is the
internal representation of type T; that value has a type compatible with CedarTypes.Type.

We propose a language construct TYPE[x] which gives the type of a variable x as an object of type
TYPE. This computation can always be done at compile time, except that the final mapping to the
run time representation must be done at bind or load time. TYPE[x], however, must still obey
"scope" restrictions: if x’s type cannot be named in a scope (e.g., because it is private), then TYPE
cannot be applied to x.

Mesa 6T5 does not provide the operator TYPE.

Dynamically Typed Entities

We have added dynamically typed entities to Mesa in the form of universal references. Recall that a
universal reference is one with type REF ANY or REF READONLY ANY.

Use of Dynamically Typed Entities

As discussed above, counted references of any specific type may be widened to universal references,
while narrowing a universal reference to a specific reference type requires a runtime check and may
raise the error RangeError. In either case, the type of the target must have the READONLY attribute
if the source does. The value NIL has the same representation for all reference types and can be
narrowed without error to any specific type.

In Mesa 6T5, the narrowing must be explicit.

Cedar Mesa also provides a mechanism for using the dynamic type of a universal reference to select
from an enumerated list of alternatives. We extend the WITH ... SELECT construct to allow the
OpenItem to be a universal reference. The discrimination has the additional effect of copying the
dynamically typed value to a statically typed reference variable.

In this form of selection, the TestList of each arm must be a declaration of a REF variable, the scope
of which is just that arm. The universal reference is first evaluated; then the variables declared in
the TestLists are considered in order. When a variable with a static type equivalent to the dynamic
type of the universal reference is discovered, that reference value is assigned to the variable and then
the corresponding arm is executed or evaluated. For example,

pTC: REF ANY;

WITH pTC SELECT FROM

Cedar Mesa�Version 6T5, January 16, 1981 1:45 PM 21

ri: REF INTEGER => {
--implicit ri _ NARROW[pTC]-- ...};

rr: REF REAL => {
--implicit rr _ NARROW[pTC]-- ...};

ENDCASE => ERROR;

The test being applied to the dynamic type of the universal reference is type equivalence (i.e.,
identical representation at run time). If the value of a universal reference it NIL, its dynamic type is
not equivalent to any specific reference type and the ENDCASE alternative is selected.

Alternatively, the programmer who wishes to treat failure of conformity as an exceptional condition
may use NARROW[pTC] or NARROW[pTC, type]. This raises a signal RangeError if pTC is not of the
appropriate type. Thus if the dynamic type of pTC were expected to be REF INTEGER, the above
program fragment could be written as follows:

ri: REF INTEGER;
pTC: REF ANY;

ri _ NARROW[pTC ! RangeError => ERROR];
-- target type for NARROW is REF INTEGER

Note that the above constructs are the only ways to convert a TC entity back to a statically typed
entity, which can be operated on by normal Mesa constructs.

As a syntactic convenience, Mesa 6T5 also provides a predicate for testing the dynamic type of a universal reference. The
value of the expression ISTYPE[x, T] is true iff x is not NIL and the dynamic type of x is equivalent to the type T.

Procedure Application

Current Mesa requires that any invocation of a procedure supply an explicit list of arguments and
result locations: only the identity of the procedure itself is left variable. In Cedar Mesa, the
arguments and results may be manipulated as records (corresponding to the original Mesa
observation that they are just ordinary data objects).

APPLY

APPLY [Proc, ArgRec] will apply a procedure to a pre-constructed argument record. ArgRec must
conform to the declared argument record type for Proc. The conformance rules for procedure
arguments and results have been generalized to allow records in place of explicit lists, with the
record conforming if all its fields do. I.e., if a value of a record’s type (written as a constructor)
would be an acceptable argument list, then the record is an acceptable argument to APPLY; if it
would be an acceptable extractor, the value of APPLY may be assigned to it.

APPLY is not implemented in Mesa 6T5. Note that similar operators are needed to invoke other transfer mechanisms,
such as FORK, SIGNAL and RETURN, with preconstructed argument records.

Cedar Mesa�Version 6T5, January 16, 1981 1:45 PM 22

Lists

LIST OF is a new type constructor. For any type T, LIST OF T and LIST OF READONLY T are also
types. All LIST types are RC; the declaration

L: TYPE = LIST OF T;

is approximately equivalent to the (recursive) type definition

L: TYPE = REF %N;
%N: TYPE = RECORD [first: T, rest: L];

except that the record type %N is anonymous and such record types are not "painted." If T and U
are equivalent types, LIST OF T and LIST OF U are also; in particular, writing LIST OF T in different
places does not give rise to distinguishable types.

If T conforms freely to U, LIST OF T conforms freely to LIST OF READONLY U. (This is an extension of
the standard Mesa rule for conformance of pointer types.) In particular, LIST OF REF T conforms freely to
LIST OF READONLY REF ANY (not to LIST OF REF ANY) for any type T.

The built-in list operators are .first, .rest, CONS and LIST. The first two are analogous to record field
selectors; if tList: LIST OF T, tList.first is a variable with type T and tList.rest is a variable with type
LIST OF T. If trList: LIST OF READONLY T, neither of these variables can be updated. Note that
trList.rest is also of type LIST OF READONLY T and the entire list structure is protected from updates
through tList.

For any list type L, NIL[L] is a constant of type L, designating no list at all, and can be written as
NIL when the context implies the type.

CONS and LIST construct new list values and implicitly invoke NEW operations to create the required
list cells. CONS is a binary operator and creates a single node, initialized with the values of its
arguments. LIST is an n-ary operator an abbreviates a series of CONS operations. If

t, t1, ..., tn: T;
L: TYPE = LIST OF T;
tList: L;

the properties of CONS and LIST are defined by the following identities, where expressions separated
by "==" are equivalent:

CONS[t, tList].first == t
CONS[t, tList].rest == tList
CONS[t, tList] ## NIL[L]

LIST[] == NIL[L]
LIST[t1, t2, ..., tn] == CONS[t1, LIST[t2, ..., tn]]

CONS and LIST may be written as operations of counted zones, e.g., zone.CONS[t, tList], in which case
the NEW operation of the specified zone is used to allocate the list nodes. The standard counted
prefix zone supplied by the system is used if the zone specification is omitted.

CONS and LIST are polymorphic operators; the selection of the list type is governed by context. If
the context does not imply a specific list type, the selected operator is the CONS or LIST that creates
lists of type LIST OF REF ANY.

Mesa 6T5 provides no notational convention for naming the CONS or LIST operation that produces a particular list type.

No further additions to the type system or syntax are proposed for lists. Polymorphism for lists will
not be provided until the problem is solved for the language in general. (Note that the lack of
polymorphic array procedures has not kept ARRAY from being a useful type constructor.)

Cedar Mesa�Version 6T5, January 16, 1981 1:45 PM 23

Atoms

We have introduced a predeclared type ATOM. Each atom has a print name, which is a sequence of
characters, and further attributes defined by the library package that implements operations upon
atoms. An atom is represented by a counted reference to an opaque object and thus is RC. The
library package enforces the following invariant: two atoms are equal as reference values if, and only
if, their print names are identical.

Cedar Mesa provides a denotation of atom literals. If id is any Mesa identifier (including a reserved
word), $id denotes the atom literal with print name id.

EXPORTED TYPES AND OBJECTS

Exported Opaque Types

The opaque types in Mesa 6T5 are identical to the exported types of Mesa 6. In particular, guaranteeing type safety
requires the restriction that, within any system, there must be a unique concrete type for each opaque type. We would
like to allow different implementations to supply different concrete types and to modify the type checking rules to prevent
unintentional mixing of different concrete types. Work on this area has been deferred; there is considerable interaction
with issues raised by system modelling.

Object Notation

We adopt a convention that allows "object-oriented" notation to be used in conjunction with types
imported from interfaces. Let T be a type declared in an interface definition D. If I is some
instance of D and if the type of x is I.T, then x.Op[args] is interpreted as I.Op[x, args] if Op has no
other interpretation as a field of x. (If the argument list uses keyword notation, the keyword
supplied for x is the identifier of the positionally first formal of Op).

Note that x.Op abbreviates x.Op[] according to this convention, but in some instances empty brackets
may be required to resolve ambiguity, e.g., x.ReturnsAProc[][args].

Mesa 6T5 supports the rewriting only if the type of x, perhaps after dereferencing, is opaque. In addition, the procedure
Op is always obtained from the principal imported instance of D as defined in Mesa 6.0. Removal of either of these
restrictions requires resolution of some issues that also involve system modelling.

Generic Types

This heading is a place holder. We are currently reconsidering the 6C2 proposal for generic types.

Subclasses

This heading is also a place holder. We are currently reconsidering the 6C2 proposal for subclasses.

