
Inter-Office Memorandum

To Cedar Users Date December 18, 1981

From Ed Satterthwaite Location Palo Alto

Subject Cedar 7T10 Language and Compiler Update Organization CSL

XEROX

Filed on: [Indigo]<CedarDocs>Lang>Cedar7T10Update.Bravo DRAFT

This memo summarizes the differences between the 7T7 and 7T10 versions of the Cedar language
and compiler. It consists of extracts from the document [Indigo]<CedarDocs>Lang>Cedar7T10.press.

LANGUAGE CHANGES

Predeclared Types

To support the currently recommended Cedar standards, the types BOOL, INT and CHAR are
predeclared, with the following definitions:

 BOOL: TYPE = BOOLEAN;
 CHAR: TYPE = CHARACTER;
 INT: TYPE = LONG INTEGER;

Also, the definition of the predeclared type CONDITION has been changed. The default value for
the timeout interval now is effectively infinite; i.e., a WAIT on a condition variable with default
initialization will never time out. (The previous default provided a timeout after 100 ticks.) Use a
runtime procedure such as Process.SetTimeout to change the default setting.

Rope Literals

The Cedar language now provides rope literals. Such a literal is denoted by a quoted string, e.g.,
"This is a rope literal". Its value is a reference to a rope object in the standard (counted) zone
provided by the Cedar system.

The target type established by the context in which a quoted string literal appears determines the
interpretation of that literal. There are three cases:

If the target type is Rope.ROPE, Rope.Ref or Rope.Text, the quoted string denotes a rope literal
and has type Rope.Ref.

If the target type is any other REF type, the literal has type REF TEXT.

Otherwise, the literal has type STRING.

In the first case, the test is actually for equivalence between the target type and either REF Rope.RopeRep or REF
Rope.TextRep. The matching is performed on the names of the interface (Rope) and referent type (RopeRep or TextRep),
not on the structure of the referent type. Since this is a loophole in the type checking, use nonstandard versions of the
Rope interface very cautiously.

Cedar 7T10 Update 2

Escape Convention for Literals

Cedar provides an escape convention to allow denotations of nonprinting characters in character and
string literals (cf. the escape convention for the language C). The escape character is \, and the
following codes are recognized:

 Code Interpretation

\n, \N, \r, \R Ascii.CR
\t, \T Ascii.TAB
\b, \B Ascii.BS
\f, \F Ascii.FF
\l, \L Ascii.LF -- note that \n = LF in C
\ddd dddC -- where d is an octal digit, ddd < 377B
\\ \
\’ ’
\" "

Anything else following a \ is an error.

You can use the escape convention in character literals (e.g., ’\n or ’\032) or string literals (e.g.,
"abc\ndef").

APPLY and RETURN

Cedar is based upon a model of interprocedural control transfer in which the construction of an
argument record is clearly separated from the actual transfer of control. In the usual forms for
specifying call or return, however, these operations are syntactically indivisible. There are now
alternative syntactic forms that allow you to invoke transfer operations using already constructed
argument records.

This extension is not fully general. The existing record must have a type compatible with the type required by the
transfer operation, and the only types compatible with argument record types are other argument record types. Such
types are defined implicitly by the definitions of transfer types, and they are always anonymous. Thus you cannot
declare variables having such types, nor can you construct values with such types unless the target type is established by
a transfer operation of some sort.

The operator APPLY is used to apply a value with some transfer type to an argument record. The
syntactic form is

Call ::= ...
| APPLY [Expression , Expression]
| APPLY [Expression , Expression ! CatchSeries]

The type of the first Expression must be some transfer type (i.e., a type built using PROC, SIGNAL,
ERROR, PROCESS, PORT or PROGRAM), and the second Expression must have a record type as
good as the argument type required for the transfer (see below). The effect is to invoke the transfer
operation appropriate to the type of the first Expression, i.e., to call a procedure, raise a signal,
join a process, etc. The scope of the optional catch phrase is just the transfer itself.

Note that the first Expression implies a target type for the second, which can be (but normally
would not be) a constructor. For example,

p[x, y] can be written as APPLY[p, [x, y]]
q[x] can be written as APPLY[q, [x]] -- not APPLY[q, x]

Cedar 7T10 Update 3

The corresponding forms for returning an existing record are

ReturnStmt ::= ...
| RETURN Call
| RETURN (Expression)

ResumeStmt ::= ...
| RESUME Call
| RESUME (Expression)

In these forms, the required type is established by the context in which the statement appears. The
type of the Call or Expression must be a record type as good as the result type of the procedure
body in which the ReturnStmt appears (or of the catch phrase in which the ResumeStmt
appears).

An argument record type T1 is as good as an argument record type T2 if both of the following
conditions are satisfied:

T1 and T2 have the same number of fields, say n.

For each i, 1 < i < n, the type of the i-th component of T1 is as good as the type of the i-th
component of T2; in addition, if both these components are named, the names are identical (i.e.,
names of field selectors must match, but an anonymous component matches any named
component).

Note that this rule is more liberal than the rule for explicitly declared record types.

In the terminology of the Mesa 5 manual, T1 is as good as T2 iff T1 conforms freely to T2; e.g., [0..10) is as good as

[0..100). In the new view of types, we would say that T1 is as good as T2 iff the predicate for T1 implies the predicate

for T2.

In Cedar 7T10, the constructs described above do not work for empty argument records; i.e., you cannot nest applications
of procedures taking/returning nothing.

Examples:

P1: PROC [x, y: INT] RETURNS [m, n: INT] = {...};

P2: PROC [m, n: INT] RETURNS [u, v: INT] = {...};

P3: PROC [a, b: INT] RETURNS [u, v: INT] = {
 RETURN APPLY[P2, P1[a, b]]};

i, j: INT;
. . .
[i, j] _ APPLY[P2, IF i < j THEN P1[i, j] ELSE [j, i]];
[i, j] _ APPLY[P3, [0, 0] ! s => {GOTO L}]; -- [i, j] _ P3[0, 0 ! s => {GOTO L}]

COMPILER CHANGES

Tioga Source Files

The compiler and binder ignore text in Tioga trailers. Any occurrence of a pair of NUL characters
(characters with value 0C) in a source file marks the logical end of that source file.

Cedar 7T10 Update 4

File Locking

The Cedar 7T10 compiler is designed to be run under control of the system modeller. It also
exports an interface allowing it to be run from Tajo or from the temporary Cedar executive. When
it is run in this mode, the (rather minimal) facilities in PreCascade for obtaining exclusive access to
a file are bypassed. Use caution.

