
Inter-Office Memorandum

To Cedar Users Date December 18, 1981

From Ed Satterthwaite Location Palo Alto

Subject Cedar 7T10 Language and Compiler Changes Organization CSL

XEROX

Filed on: [Indigo]<CedarDocs>Lang>Cedar7T10.Bravo DRAFT

The document [Indigo]<CedarDocs>Lang>Cedar6T5.press describes the Cedar language. This memo
summarizes the significant changes to the language and compiler since that document was prepared.

Types in Cedar

This section sketches some current thinking about the Cedar type system and might help you to
understand the motivation for some of the changes described below. (See also Lampson, Cedar
abstract machine [CedarAM.memo, February 1980].)

Types as Predicates

Every type is characterized by some predicate; a value x has type T iff x satisfies the predicate for
T. In general, such predicates are defined in terms of a set of marks (tags, etc.) carried by each
value; however, the Mesa type system is designed so that most mark manipulation can be done
statically (by the compiler), and the usual representations of most values do not include explicit
marks.

A given expression has some fixed syntactic type that depends upon the form of the expression and
the declared types of constituent identifiers. The value denoted by an expression always satisfies the
predicate characterizing its syntactic type, but such a value will often satisfy predicates characterizing
other types as well. In this sense, a Cedar value may have an arbitrary number of types. For
example:

If Thing is a variant record type with a variant red, a reference to a Thing might simultaneously
satisfy the predicates for REF ANY, REF Thing, and REF Thing[red] (formerly REF red Thing, see
below).

An opaque type and the corresponding concrete type are distinct, even within an exporter of the
concrete type, but the predicates for the two types are identical.

Roughly speaking, the primary job of the predicates associated with types is to provide correct
answers to questions about low-level representational conventions so that, e.g., the Cedar garbage
collector can operate correctly.

The form ISTYPE[x, T] returns the result of applying the predicate characterizing T to the value x.
In Cedar 7T10, ISTYPE has been redefined to work in a somewhat more general and uniform way,
and the operations of NARROWing and (type-based) SELECTion have been defined in terms of ISTYPE.

Cedar 7T10 Changes 2

Types as Clusters of Operations

In addition to its predicate, a cluster of operations (sometimes called a group) can be associated with
a type. The main purposes of this grouping are to provide a number of packaging conveniences
and to support so-called "object oriented" notation. If x has (syntactic) type T, x.Op[args] means
Op[x, args] where Op is found by looking in the cluster associated with T. Two types may be
characterized by the same predicate but have different associated clusters; in current Cedar, this is
true of, e.g., an opaque type and the corresponding concrete type.

Each of the type constructors in Cedar supplies a standard and implicitly defined cluster for each
type that it constructs. The only mechanism currently available for the explicit construction of such
a cluster is the interface module, and previous versions of Cedar have limited support of this
mechanism to opaque types. If T is an opaque type declared by, e.g.,
 T: TYPE;
in some interface Defs, operations (procedures) declared in Defs become components of the cluster
associated with T and may be invoked using object notation. Cedar 7T10 extends this support to
allow construction of similar clusters for record types. If T is declared in Defs by
 T: TYPE = RECORD [...];
the operations declared in Defs become part of the cluster associated with T. In this case, however,
they augment the operations already supplied for T by the RECORD type constructor.

Defining clusters in this way has some drawbacks. The use of interfaces as the units of grouping
somewhat overloads the existing notion of an interface; note that all operations declared in an
interface become parts of the clusters of all types declared in that interface. Also, requiring a type
and the operations in its cluster to be defined in the same interface occasionally conflicts with other
criterea for partitioning interfaces. On the other hand, this method of defining clusters seems to
cover the important cases well enough to be acceptable in practice. In addition, there is a fairly
well worked-out plan for supporting clusters in a comprehensive, uniform way and for using them
to explain parts of the Cedar abstract machine. We therefore recommend the following style
guidelines for your Cedar programming:

Partition interfaces so that a single interface defines both a main type T (record or opaque) and
all the operations to be provided in the cluster of T (or REF T). Define multiple main types
within an interface only if the sets of meaningful operation names for those types are disjoint.

Use object notation in clients of interfaces designed to support it; i.e., use x.Op[args] in
preference to Defs.Op[x, args].

(For Humus veterans) Avoid interface designs that require clients to write x.Op[x, args],
x.ops.Op[x, args] or the like. Use an inline definition of Op within Defs to achieve such an
effect.

LANGUAGE CHANGES

Syntax for Discriminated Types

If V is a type expression designating some variant record type with variant a, V[a] is a type
expression designating the discriminated type. Thus forms such as

Object[red] Object[red][short] Object[red][long][80]
are equivalent to the old forms

red Object short red Object long red Object[80].

Cedar 7T10 Changes 3

In Cedar 7T10, both forms are acceptable, but you will eventually have to convert to the former as
Cedar moves toward a unified syntax for expressions and type expressions.

Type Discrimination

Cedar 7T10 unifies the mechanisms for discriminating variant records with those for discriminating
values with type REF ANY. This unification affects the operators ISTYPE and NARROW as well as
discriminating selection.

Type Testing

The primitive function ISTYPE tests whether a given value satisfies the predicate characterizing a
specified type. You will probably have little direct use for ISTYPE; its importance lies in its use to
define other, more common operations as described below. Let x be an expression with syntactic
type S. In Cedar 7T10, the value of ISTYPE[x, T] is determined as follows, where V is any variant
record type:

(1) It is TRUE (at compile time) if

S and T are equivalent types; or
S is an opaque type and T is the corresponding concrete type; or
S is a concrete type exported as the opaque type T.

The last two cases are recognized only within program modules that export the concrete type.

(2) It is determined dynamically by a test of the value x, yielding TRUE or FALSE, if

S is REF ANY and T is REF U for any U except ANY; or
S is equivalent to V and T is equivalent to V[a]; or
S is equivalent to REF V and T is equivalent to REF V[a]; or
S is equivalent to (LONG) POINTER TO V and T is equivalent to (LONG) POINTER TO V[a];

where V[a] is a particular variant of V, perhaps discriminated to several levels. Note that the result
is TRUE if the value of x is NIL.

(3) In all other cases, ISTYPE is unimplemented and is treated as a compile-time error.

Subsequent versions of Cedar will provide a more general definition and implementation of ISTYPE.
Note in particular that ISTYPE cannot currently be used to test a value for membership in a
subrange.

Narrowing

NARROW[x, T] allows a value x to be viewed as a value of type T and succeeds iff ISTYPE[x, T] is
TRUE. More precisely, NARROW[x, T] has (syntactic) type T, and its value is given by

IF ISTYPE[x, T] THEN x ELSE ERROR <Error>

where <Error> is

RTTypesBasic.NarrowRefFault[x, CODE[T]] if ISTYPE[x, REF ANY]
RTTypesBasic.NarrowFault[] otherwise.

Cedar 7T10 Changes 4

The following situations correspond to the three cases enumerated in the definition of ISTYPE above:

(1) NARROW[x, T] is guaranteed (at compile time) to succeed.
(2) NARROW[x, T] may succeed or fail at run time.
(3) NARROW[x, T] is unimplemented.

Case (2) arises only when the syntactic type of x is related to T in one of the ways described above
for ISTYPE. In Cedar 7T10, case (3) is treated as a compile-time type error. Fine point: NARROW[x, T]
is also considered a compile-time error if the only possible value of x yielding TRUE is NIL. Use x = NIL instead.

In case (1), NARROW is an identity operation but can be useful to change the (syntactic) type of x
without using a LOOPHOLE or requiring any code to be executed. Example:

Defs: DEFINITIONS = {
 T: TYPE;
 R: TYPE = RECORD [g: REF T, ...];
 Pn: PROC [r: REF R];
 ... }.

Impl: PROGRAM EXPORTS Defs = {
 T: PUBLIC TYPE = RECORD [n: NAT, ...];
 Pn: PUBLIC PROC [r: REF Defs.R] = {
 r.g.n _ 0; -- invalid; r.g^ is opaque, with no field selection operations
 NARROW[r.g, REF T].n _ 0; -- valid (because Impl exports Defs)
 ...};
 }.

As before, NARROW[x, T] may be written as NARROW[x] when the target type T is implied by
context.

Discriminating Selection

The syntactic form of WITH ... SELECT that is currently used for REF ANY discrimination has been
extended to discriminate any value for which ISTYPE performs a dynamic test of that value (see case
(2) in the discussion of ISTYPE). The form

WITH v SELECT FROM
 v1: T1 => s1;
 v2: T2 => s2;
 ...
 vn: Tn => sn;
 ENDCASE => se;

is, by definition, equivalent to

u: T = v;
IF u # NIL AND ISTYPE[u, T1] THEN {v1: T1 _ NARROW[u]; s1}
ELSE IF u # NIL AND ISTYPE[u, T2] THEN {v2: T2 _ NARROW[u]; s2}
 ...
ELSE IF u # NIL AND ISTYPE[u, Tn] THEN {vn: Tn _ NARROW[u]; sn}
ELSE se;

where T is the (syntactic) type of v. The tests against NIL are omitted if T does not have a NIL

value.

Cedar 7T10 Changes 5

Note that this form always copies the discriminated value. Thus

r: REF V;

. . .

WITH r SELECT FROM
 x: REF V[a] => { ... x ...}; -- x is a copy of r with type REF V[a]
 ...
 ENDCASE;

WITH r^ SELECT FROM
 x: V[a] => { ... x ...}; -- x is a copy of r^ with type V[a]
 ...
 ENDCASE;

Contrast these with the old form of variant record discrimination, which does not copy the
discriminated value and reevaluates the discriminating expression each time that it is used:

WITH x: r SELECT FROM

 a => { ... x ... }; -- x is a synonym for r^ (but with syntactic type V[a])
 ...
 ENDCASE;

The new forms are easier to make type-safe, and you should use them whenever possible.
Unfortunately, the old form is still required, at least outside the checked language, for dealing with computed variants
and with pointers having non-standard dereferencing operations, such as the current relative pointers).

Interaction with Opaque Types

If T is any exported type, REF T must have the "standard" implementation of type discrimination.
We impose this requirement in anticipation of making REF ANY discrimination work correctly with
opaque types (it still doesn’t in 7T10). As a consequence, discriminated variant record types cannot
be exported as the concrete values of opaque types.

Object Notation

The form x.Op[args] is interpreted as Defs.Op[x, args] if the type of x is (REF | POINTER TO)* T
for some opaque type T declared in an interface, the principal instance of which is Defs. In other
words, all the operations defined in Defs become part of the cluster of the type T.

This convention applies within the corresponding DEFINITIONS module (for writing inlines, etc.) as
well as within importers of such modules. This is only a notational extension; the bindings of
implicitly imported values are determined as before.

The clustering mechanism has also been extended in Cedar so that all operations declared in an
interface become components of the clusters of any record types defined in that interface. With this
extension, Op can be inline in more interesting ways. In addition, you may now be able to use
object notation more extensively to invoke operations in existing interfaces, many of which are
written in terms of (concrete) record types.

Note that every operation declared in an interface module becomes part of the cluster of every
(record or opaque) type declared in that interface. Although the type of a particular operation
normally will make it a useful component of only one cluster, its name appears in every other
cluster and potentially hides or precludes a more appropriate definition of that name for that
cluster. You therefore should define more than one main type per interface only if the sets of
meaningful operation names for those types are disjoint.

Cedar 7T10 Changes 6

Other points to note when using this convention with record types include the following:

In determining the binding of Op, the field identifiers declared in T take precedence over the
identifiers declared in the interface Defs.

A value x with a record type T having a single component can be coerced to a value with the
type of that component. In the form x.id, the lookup of id considers first the field identifier of
the single component, then identifiers declared in the interface defining T, and finally any
interpretation given to id by applying the coercion. You abuse this feature at your own risk
(but see the discussion of clusters above). Example:

Defs1: DEFINITIONS = {
 ...
 T1: TYPE = RECORD [f1: REF Defs2.T2];
 ...
 OpN: PROC [self: T1, ...];
 ...}.

Defs2: DEFINITIONS = {
 ...
 T2: TYPE = RECORD [...];
 ...
 OpM: PROC [self: REF T2, ...];
 OpN: PROC [self: REF T2, ...];
 ...}

 r1: Defs1.T1;
 r2: REF Defs2.T2;

 ... r1.OpN[...] means Defs1.OpN[r1, ...] -- from the cluster defined by Defs1
 ... r1.OpM[...] means Defs2.OpM[r1.f1, ...] -- from the cluster defined by Defs2 (after coercion)
 ... r2.OpN[...] means Defs2.OpN[r2, ...]
 ... r1.f1.OpN[...] means Defs2.OpN[r1.f1, ...] -- dubious style

Predeclared Types

To support the currently recommended Cedar standards, the types BOOL, INT and CHAR are
predeclared, with the following definitions:

 BOOL: TYPE = BOOLEAN;
 CHAR: TYPE = CHARACTER;
 INT: TYPE = LONG INTEGER;

Also, the definition of the predeclared type CONDITION has been changed. The default value for
the timeout interval now is effectively infinite; i.e., a WAIT on a condition variable with default
initialization will never time out. (The previous default provided a timeout after 100 ticks.) Use a
runtime procedure such as Process.SetTimeout to change the default setting.

Rope Literals

The Cedar language now provides rope literals. Such a literal is denoted by a quoted string, e.g.,
"This is a rope literal". Its value is a reference to a rope object in the standard (counted) zone
provided by the Cedar system.

The target type established by the context in which a quoted string literal appears determines the
interpretation of that literal. There are three cases:

Cedar 7T10 Changes 7

If the target type is Rope.ROPE, Rope.Ref or Rope.Text, the quoted string denotes a rope literal
and has type Rope.Ref.

If the target type is any other REF type, the literal has type REF TEXT.

Otherwise, the literal has type STRING.

In the first case, the test is actually for equivalence between the target type and either REF Rope.RopeRep or REF
Rope.TextRep. The matching is performed on the names of the interface (Rope) and referent type (RopeRep or TextRep),
not on the structure of the referent type. Since this is a loophole in the type checking, use nonstandard versions of the
Rope interface very cautiously.

Escape Convention for Literals

Cedar provides an escape convention to allow denotations of nonprinting characters in character and
string literals (cf. the escape convention for the language C). The escape character is \, and the
following codes are recognized:

 Code Interpretation

\n, \N, \r, \R Ascii.CR
\t, \T Ascii.TAB
\b, \B Ascii.BS
\f, \F Ascii.FF
\l, \L Ascii.LF -- note that \n = LF in C
\ddd dddC -- where d is an octal digit, ddd < 377B
\\ \
\’ ’
\" "

Anything else following a \ is an error.

You can use the escape convention in character literals (e.g., ’\n or ’\032) or string literals (e.g.,
"abc\ndef").

APPLY and RETURN

Cedar is based upon a model of interprocedural control transfer in which the construction of an
argument record is clearly separated from the actual transfer of control. In the usual forms for
specifying call or return, however, these operations are syntactically indivisible. There are now
alternative syntactic forms that allow you to invoke transfer operations using already constructed
argument records.

This extension is not fully general. The existing record must have a type compatible with the type required by the
transfer operation, and the only types compatible with argument record types are other argument record types. Such
types are defined implicitly by the definitions of transfer types, and they are always anonymous. Thus you cannot
declare variables having such types, nor can you construct values with such types unless the target type is established by
a transfer operation of some sort.

The operator APPLY is used to apply a value with some transfer type to an argument record. The
syntactic form is

Call ::= ...
| APPLY [Expression , Expression]
| APPLY [Expression , Expression ! CatchSeries]

The type of the first Expression must be some transfer type (i.e., a type built using PROC, SIGNAL,
ERROR, PROCESS, PORT or PROGRAM), and the second Expression must have a record type as
good as the argument type required for the transfer (see below). The effect is to invoke the transfer

Cedar 7T10 Changes 8

operation appropriate to the type of the first Expression, i.e., to call a procedure, raise a signal,
join a process, etc. The scope of the optional catch phrase is just the transfer itself.

Note that the first Expression implies a target type for the second, which can be (but normally
would not be) a constructor. For example,

p[x, y] can be written as APPLY[p, [x, y]]
q[x] can be written as APPLY[q, [x]] -- not APPLY[q, x]

The corresponding forms for returning an existing record are

ReturnStmt ::= ...
| RETURN Call
| RETURN (Expression)

ResumeStmt ::= ...
| RESUME Call
| RESUME (Expression)

In these forms, the required type is established by the context in which the statement appears. The
type of the Call or Expression must be a record type as good as the result type of the procedure
body in which the ReturnStmt appears (or of the catch phrase in which the ResumeStmt
appears).

An argument record type T1 is as good as an argument record type T2 if both of the following
conditions are satisfied:

T1 and T2 have the same number of fields, say n.

For each i, 1 < i < n, the type of the i-th component of T1 is as good as the type of the i-th
component of T2; in addition, if both these components are named, the names are identical (i.e.,
names of field selectors must match, but an anonymous component matches any named
component).

Note that this rule is more liberal than the rule for explicitly declared record types.

In the terminology of the Mesa 5 manual, T1 is as good as T2 iff T1 conforms freely to T2; e.g., [0..10) is as good as

[0..100). In the new view of types, we would say that T1 is as good as T2 iff the predicate for T1 implies the predicate

for T2.

In Cedar 7T10, the constructs described above do not work for empty argument records; i.e., you cannot nest applications
of procedures taking/returning nothing.

Examples:

P1: PROC [x, y: INT] RETURNS [m, n: INT] = {...};

P2: PROC [m, n: INT] RETURNS [u, v: INT] = {...};

P3: PROC [a, b: INT] RETURNS [u, v: INT] = {
 RETURN APPLY[P2, P1[a, b]]};

i, j: INT;
. . .
[i, j] _ APPLY[P2, IF i < j THEN P1[i, j] ELSE [j, i]];
[i, j] _ APPLY[P3, [0, 0] ! s => {GOTO L}]; -- [i, j] _ P3[0, 0 ! s => {GOTO L}]

Cedar 7T10 Changes 9

COMPILER CHANGES

Version Stamps

In its intermodule type checking, Cedar uses so-called version stamps to identify independently
compiled modules. The version stamps computed by the Cedar 7T10 compiler are functions of the
identity of that compiler and of its inputs. You can now recompile the same source file, with the
same included modules, the same compiler and the same switch settings to get an object file with
the same version stamp.

This stamp, which is essentially a 48 bit hash, is computed recursively as follows. Assume that any
existing derived object (including the compiler itself) has a version stamp. The stamp for a new
derived object is a hash of

the creation time of the source file
the version stamp of each bcd mentioned in the DIRECTORY clause
the version stamp of the compiler
the compiler switches (with those controlling only compile-time feedback masked off)

There is also a 7T10 binder that computes version stamps for its output in the same way.

Note

In the past, the version stamp has been a concatenation of a machine identifier and the creation
time of the derived object. Many existing utility programs therefore print the version stamp
formatted as a machine and network number, a date and a time. These programs give strange-
looking output but, in all cases known to us, perform correctly.

Tioga Source Files

The compiler and binder ignore text in Tioga trailers. Any occurrence of a pair of NUL characters
(characters with value 0C) in a source file marks the logical end of that source file.

File Locking

The Cedar 7T10 compiler is designed to be run under control of the system modeller. It also
exports an interface allowing it to be run from Tajo or from the temporary Cedar executive. When
it is run in this mode, the (rather minimal) facilities in PreCascade for obtaining exclusive access to
a file are bypassed. Use caution.

Compiler Switches

The Cedar compiler is no longer able to generate object code for an Alto (or D-machine emulating
an Alto). The switches /a and /l are ignored.

There is a Cedar switch /c; if it is set (the default), the code for FORK assumes the availability of
the Cedar runtime. If you plan to run your program directly under Pilot, compile with /-c. If
you are in doubt about how your processes will interact with the Cedar runtime, consult a wizard.

