
XEROX Internal Memo

To BCPL Programmers From Richard Sauvain
CSIA
WRC/ISL
W128 - 8*222*5298

Subject XM Display Stream Package Date February 22, 1980

Filed on: [ERIE]<AltoDocs>XMDStream.press

This memo describes a BCPL-callable XM display stream package for the Alto. The package
allows you to keep display bitmaps in the upper memory banks of an XM Alto, thus making
more space in bank zero available for programs, virtual memory buffers, and the like. It is
designed to be as compatible as possible with the standard OS display stream package (see
the Alto Operating System Reference Manual, pp. 57-59). Notable differences are: a
different stream creation call, use of a strike font instead of a .al font, and a few un-
implemented features.

Where to get it : BR files for the package and several utilities and accoutrements can be
found in dump file form in [ERIE]<Alto>XMDStream.dm. Load this file with FTP to get the
package onto your disk. Documentation (this memo) is in
[ERIE]<AltoDocs>XMDStream.press, while source files are collected in
[ERIE]<Alto>XMDStreamSources.dm.

Differences from the OS display stream package : most of the procedure names are the
same as those in the OS version. Hence when you load the XMDS package, references to
the OS display package automatically get satisfied by XMDS routines - which work just like
the OS versions except:

1. There is no CreateDisplayStream(). Instead, you call:

 sPtr = XCreateDisplayStream(dsPlace,BitmapPlace,wWidth,BitmapSize,FontPlace,Bank)

dsPlace is the address of a 60 word block of memory supplied by the caller in bank
zero, to hold the displaystream structure used by this package.

BitMapPlace is the word address (must be even) of the first word of the memory area to
be used for the display bitmap

wWidth is the display line width, in Alto screen units divided by 16 (wWidth of 38 is full
width).

BitmapSize is the size in words of the first word of the memory area reserved for the
display bitmap.

FontPlace is the word address (must be even) of the first word of the area into which a
strike font has been read. This must be in the same bank as the display bitmap. See
the description of XReadFile below for a way to read the font in.

Bank is the memory bank in which the bitmap and font reside. Banks are numbered
0,1,2 & 3. Not all XM Altos have banks 2 & 3 - hence bank 1 is the usual choice.

XCreateDisplayStream returns as value a display stream pointer, which is used just like the
result of CreateDisplayStream. I.e. you can Gets or Puts to it, use Wss, set its margins, etc.

2. SetLinePos will work to lines that have not been written on; the only reason that it can
fail is if line number requested is greater than number of lines in the window.

XM Display Stream Package 2

3. InvertLine ignores the second argument (lpos); inverts entire window.

4. CharWidth can’t handle a font pointer as the first argument as can the OS version.
Results are unpredictable if a font pointer is in fact given.

5. EraseBits cannot invert (third argument a -1), will call Swat if you try.

6. SetFont and Scroll are dummys which call Swat; you cannot change the font after the
stream has been created.

7. GetFont and GetHeight are not present in this package. If you reference them, you will
get the OS display stream versions!

Operating Environment

In order to use this package, you must do some setup work that is not required when using
the OS display stream package. I suggest you look at the beginning of XMDSDriver.bcpl for
examples while reading the following.

1. The IFS microcode must be loaded (in order to get BitBlt microcode available). This
requires that you do a LoadRam(IfsRamImage) before calling any of the XMDS routines.

2. It’s a good idea to call CountBanks() to verify that the Alto you’re running on has the
bank you anticipate using , and to clean up parity in the XM banks. This procedure returns
the number of banks available: 1 thru 4 (zero if not an XM alto).

3. You have to manually allocate your upper memory bank, i.e. assign non-overlapping
areas for a font, all your display bitmaps, and anything else you need to put there.

4. A strike font must be read into the memory bank you are using for bitmap storage. Strike
fonts may be found by sniffing around your local file server looking for files whose names
end in ".strike". A generally useful one, StSerif.strike, is included in XMDStream.dm. A
utility to read such a file into an XM bank is available in XReadFile.br. Call
XReadFile(filename,bank,wordaddress) to read in the strike font.

5. The bank register for the display word task must be set to indicate the bank you’re using.
This register is at location 177751b. Set the ’normal’ bank , not the alternate (see p. 9 of the
Alto Hardware Manual for more details on this). Before finishing, set it back to zero.

6. If you expect to use Swat to debug, it’s a good idea to attach a Swat context proc that
will switch the display word task bank register back to bank 0 when you enter Swat and
back to whatever you’re using when you exit. If you don’t, the display looks mighty funny
whenever you Swat. Such a proc is available in XMDSUtilsA, and is called SwatProc. You
set @lvSwatContextProc to the name of your procedure.

Loading

Your load command should include the modules XMDStream, and XMDSUtilsA (and if you
use CountBanks, XMUtils). All of these modules are included in XMDStream.dm. You will
also need IFSmc and LoadRam from the <Alto> directory.

Disclaimer:

This is an augmentation of a package originally written by Peter Deutsch for DLisp. I’ve
been using it in one fairly complex application for some months with no problems, and am
willing to answer questions. I cannot guarantee that it’s well checked out or that
maintenance support will be available.

