Name: WriteFormatted
Maintainer: Eric Schmidt, Larry Stewart
Date: June 5, 1980 8:34 PM

Purpose: WriteFormatted is afamily of procedures to write strings on an output stream. The user may
also define his own formats and incorporate them into WF via procedure calls.

WriteFormatted is based on the UNIX printf routine for C programs, Ed McCreight’'s FORMAT
routines and Ed Taft's TEMPLATE routines for BCPL, and the BCPL string conventions.

Note: The DEFINITIONS file has been renamed "WF.bcd" and its implementor is now
"WFImpl.bcd" to conform to the Pilot and Cedar naming conventions.

General Format:
WFn["string with escapes’, argl, ..., argn];

where n (between 0 and 4) is the number of substitutionsinto the string by values of argl, ...
Substitution positions in the string are of the form %z, where z is an expression composed of:

- An optional minus sign (’-") which specifies | eft-adjustment instead of the normal right adjustment
of the argument.

- An optiona zero ('0’') which indicates afield that, if necessary, will be filled with leading zeroes
rather than with leading blanks.

- An optional number specifying afield width; i.e. the number of digits for a number, or the
maximum number of characters to be printed from a string.

- The field width number may be of the form xx.yy for use by a user supplied floating point output
routine. (See Real Defs.)

- Anoption letter 'I" for long (32-bit) numbers.

- A character indicating the conversion to be applied to the argument.

The conversion characters are (upper-case is also allowed):

b - Print one word quantity as octal number (unsigned). No trailing'B’ is supplied.
¢ - Theargument isinterpreted as a CHARACTER and printed.

d - Treat as INTEGER, print decimal number.

s- The argument isinterpreted asa STRING and printed.

u - The argument isinterpreted asa CARDINAL and printed (unsigned).

X - Print one word quantity as hexadecimal number (unsigned).

If no recognizable character follows the %, and it is not a user-supplied routine (see below), then it
isprinted. Thus % may be printed by %%.

¢ Xerox Corporation 1980

If the optional letter 'I’ precedsoneof 'b’,'d’, 'r", 't', "u’, or 'x’ WF treats the corresponding
parameter as a POINTER TO a 32-hit quantity:

Ib - Treat as POINTER to 32-bit quantity, print in octal (unsigned). No leading O's or trailing ' B’
are supplied.

Id - Treat as POINTER TO LONG INTEGER, print 32-bit integer.

Ir - Treat as POINTER to 32-bit quantity which is the difference between two
TimeDefs.PackedTime's, print in "hr:mn:sc” format.

It - Treat as POINTER to TimeDefs.PackedTime, print in TimeDefs.AppendTime[] format.
lu- Treat as POINTER TO LONG CARDINAL, print 32-bit unsigned integer.

Ix - Treat as POINTER to 32-bit quantity, print in hexadecimal (unsigned).

Soecial Characters

Characters preceded by an * are special, and have the following interpretations (upper-case is also
allowed):

*n (12B,newline): Print a newline character.

*b (10B,backspace): Print a backspace character.

*t (11B,tab): Print atab character.

*f (14B,formfeed): Print a new page (formfeed).

*Nnnn (nnn is precisely three digits): Print a char. whose ASCII codeis Octal nnn.

Unrecognizable characters are simply printed, so * may be obtained by saying **.
User-Supplied Conversions

WriteFormatted maintains a table of 26 conversion routines, one for each letter of the a phabet.
The string is scanned | eft to right and characters are output until a% is reached. The conversion
code is used to select the routine to interpret the corresponding argument. Users can set a
conversion escape using

SetCode[c: CHARACTER, p: PROCEDURE[d: UNSPECIFIED, form: STRING, wp:
PROCEDURE[CHARACTER]]];

which sets character ¢ to be interpreted by procedure p. disthe argument to be interpreted, form
isthe string of characters between the % and the character char (i.e. "-nnn"), and wp isthe
procedure that should be used to output characters (i.e. the prevailing output). Default conversions
may be overwritten, and should be reset to their original when finished by

ResetCode[char: CHARACTER];
which resets the code of char to the default. In the case of multi-word items, the procedure must
use apointer to the items. The user-supplied conversion procedure may call WF for any output, as

long asit does not use the conversion it isimplementing!

Examples:

Print asimple string:
WFQ["atab *t is before a carriage return*n"];
Print the values of a, b, ¢, and a string:
WFA["print a string %s, followed by three numbers %d, %d, %d*n",str,a,b,c];
Use the formatting information to left justify and specify field widths:
WF2["%-14sisfollowed by %6d*n",s,d];
Use user supplied routines:
SetCode[’ m,PrintStrange];
WEF2["print afew strange things %m and %m* n",@StrangeThingl, @StrangeThing2];
ResetCode[' m];
WFQ["now %m just printsan m"];
Print 32-bit quantities:
m: LONG INTEGER _ 50000;
WF2["Try %ld, %lb",@m,@m];
Other Procedures:
WFC[CHARACTER]; printsasingle character.
WFCRY[]; printsacarriage return.
WEFN[STRING, DESCRIPTOR FOR ARRAY OF UNSPECIFIED]; isageneralization of WF0-4
that takesits argumentsin an array.
Formatted Output to Srings and Streams:

Routines SWFOQ[] through SWF4[] and SWFN[] are available to put the output that would have
goneto the termnal on astring. For example:

str: STRING _ [20];
SWF1][str," one %d two",5];

will copy the string "one 5 two" onto string str. Any previous contents of str are lost.

Likewise FWFQ[] through FWF4[] and FWFN]] take a StreamHandle parameter and do a stream
"put" on each character. No other Stream operations are called. For example:

sh: StreamDefs.StreamHandle;
FWF1[sh,"one %d twao",5];

will write the string onto the stream sh.

If you don’t like WriteChar:

A procedure identifier is used by WF to output each character. 1f P and OP are procedures with a
character as arguments, the procedure identifier used by WF can be changed via:

OP _ SetWriteProcedure[PJ;

so that P will be called for each character (SetWriteProcedure returns the previously used
procedure). This can be used to write to other streams or to strings.

Calling
OP _ WriteToString[s: STRING];

will cause subsequent WFn callsto append thingsto string s (note the length is never reset and OP
isthe previously used procedure).

The statement
[1 _ SetWriteProcedure] OPY;
will reset to write back to the default stream.

Bugs:

Files: On [ivy]<cedarlib>writeformatted> you will find the source and object for WF and WFImpl.

