Cleared version of May 24, 1981

ALTO SUBSYSTEMS

Compiled on: May 24, 1981

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

¢ Xerox Corporation 1981

Cleared version of May 24, 1981

Alto Subsystems May 24, 1981 2
Alto Subsystems

This document is a directory of major Alto BCPL subsystems. Mesa subsystems are collected together and
documented el sewhere.

Binary versions of these programs are available on the <Alto> directory. If the documentation for the
subsystem is short, it isincluded in thisfile directly. If it is somewhat longer, the documentation is stored
separately and the entry is marked with a*. The documentation for these objectsis available on
<AltoDocs> in .TTY files. Programsthat have quite bulky documentation are denoted by **. These
programs have separate documentation on <AltoDocs>, usually as <AltoDocs>Name.press. Some of the

most common ones (e.g., Bravo) are documented in the Alto User’s Handbook.

If you would like afull listing of documentation for all but the ** programs give the command "Press
<AltoDocs>Subsystems.press'.

The person last known to be responsible for each subsystem is also given.

* ASM: an assembler for Alto machine language, producing object files compatible with the Bepl
loader. (Ed McCreight)

**BCPL: acompiler for the Bepl language. (Dan Swinehart)

**BLDR: aloader for object files produced by Bepl and Asm. It is documented in the Bepl manual.
(Dan Swinehart)

**BRAVO: adisplay editor. Documentation isin the Alto User’s Handbook. (no longer
maintai ned)

*BUILDBOOQT: aprogram for constructing Alto boot files. (David Boggs)
*CHAT: establishes PUP Telnet connections between a pair of cooperating parties. (Ed Taft)

CL EArl]\I DIR: does a garbage collection on afile directory (not on the disk space, though). Call it
wit
>CLEANDIR directory-namen
to clean up the specified directory. The system directory iscalled SYSDIR. The second
parameter, n, tells how much extra space to append to the directory. Thereason foritis that
extending the directory in this way will tend to get the pages allocated to consecutive disk sectors,
so that subsequent lookups will go faster. Note that the cleanup function of CLEANDIR is
superceded by the "WriteDirectory” command of the EXECUTIVE; CLEANDIR is now useful
only for extending a directory. (David Boggs)

*COPY DISK: copies whole Diablo and Trident disk packs from one drive to another on the same
Alto, or through the net between two Altos, or to and from a disk image stored on an IFS.
(David Boggs)

*CREATEFILE: creates afile of agiven size, trying to alocate it contiguously. (David Boggs)

*DDS: The Descriptive Directory System isafront end for the Alto file system, providing a
relational data base management system and facilities for displaying information related to Alto
files. (Peter Deutsch)

*DMT/PEEK/PEEK SUM: Alto memory diagnostic program and related statistics-gathering
programs. (David Boggs)

*DPRINT: Prints disk files on the Diablo Printer. (Ed Taft)

Cleared version of May 24, 1981
Alto Subsystems May 24, 1981 3

**DRAW: Anillustrator. Documentation isin the Alto User’s Handbook. (Patrick Beaudelaire)

EMPRESS: Converts ordinary text files to Pressfiles, and performs simple formatting operations,
intended for listing programs. (David Boggs)

*EXECUTIVE: The Alto command processor. (Richard Johnsson)

*FIND: a program to search text files for user-supplied strings. This program originated as a
demonstration of the power of compiling microcode from the given problem. (Peter Deutsch)

*FTP: a Pup-based File Transfer Program for moving filesto and from an Alto file system. (David
Boggs)

*LISTSYMS: converts the .Symsfile produced by BLDR into human readable form. (Peter
Deutsch)

*MAILCHECK: A program that will check for waiting mail on Maxc. (Larry Masinter)

**MARKUP: A document illustrator. Documentation isin the Alto User’s Handbook. (William
Newman)

** MICRO: The microcode assembler for Maxc, Dorado, DO, and other machines. Basic
documentation is available only in the CSL archives. It iscaled "Maxc document 9.2". Recent

changes are documented in <AltoDocs>Micro.tty. (Peter Deutsch)

MICROD: Loads, binds, and determines absolute placement of Dolphin and Dorado
microprograms. (Peter Deutsch)

MOVETOKEY S: Moves page 1 of the named file to the appropriate page of the disk so that
depressing the key-combination and the boot button will boot-load the file. (Roy Levin)

*MU: The microcode assembler for the Alto. (Ed Taft)
Neptune: A program for listing, copying, and deleting files. It is capable of dealing with both drives

of atwo-drive Alto, and also with Trident disks. The program offers help on its use.
Documentation isin the Alto User’s Handbook. (Keith Knox -- WRC)

*NETEXEC: This subsystem, which is bootstrapped over the Ethernet, provides a convenient
interface to the other systems available from "boot servers' on the network. (David Boggs)

NEWOS.BOOT: isthe name of aready-to-install Operating System. Retrieveit, say "Install
NewOS.boot" to the Exec, and then delete it (it writes itself out on the file Sys.boot) (David
Boggs)

*OEDIT: allows you to look at and modify arbitrary filesin octal. (Lyle Ramshaw)

*ORAM: A scheme for overlaying several segments of microcode in the Alto RAM. (Peter
Deutsch)

*PACKMU/RPRAM: These two subsystems, in conjunction with the subroutine ReadPRAM or
LoadRam, allow programs using the RAM to check the constant memory and load the RAM as a

part of their initialization. (Peter Deutsch)
* PEEK PUP: a Pup software debugging aid. (David Boggs)
**PREPRESS: A program for manipulating font files. (Lyle Ramshaw)

*PRESSEDIT: combines, merges, and performs various other operations on Pressfiles. (William
Newman)

Cleared version of May 24, 1981
Alto Subsystems May 24, 1981 4

PROOFREADER: Proofreader for English text. (Ed McCreight)

*RAMLOAD: aprogram for loading the Alto RAM from the files produced by the microcode
assembler, MU. (Dave Boggs)

READPRESS.: reads Press files and displays a text-listing of the entity commands, DL strings, etc.
Command lineis of the form: "ReadPress Test.Press’. (Joe Maleson)

*SCAVENGER: a subsystem for repairing a damaged Alto file system. (Richard Johnsson)

**SIL, Analyze, Route, Build, NetDelays, etc.: A system for automating logic design, including an
illustrator specialized to logic drawings. (Roger Bates, Ed McCreight)

*SWAT: adebugger for Bepl programs. (David Boggs)
SYS.BOOT: isthe name of the boot file for the operating system on the Alto disk. (David Boggs)

*Trident disk software: TFU, TRIEX and the TFS software package. The Bepl software package
and utility programs for driving Trident disksinterfaced to the Alto. (Ed Taft)

*VIEWDATA: asubsystem that displays 2D projections of 3D data on the Alto screen. (Dick
Lyon)

Cleared version of May 24, 1981
Alto Subsystems May 24, 1981

MISCELLANEOUS PROCEDURES AND INFORMATION
***FOR PARC ALTO USERS **

*NEWDISK: aprocedure for creating a virgin disk and getting fresh, up-to-date software
MAXC. (David Boggs)

*PARCALTOS: adocument containing miscellaneous information for Alto users and
at PARC.

from

maintainers

Cleared version of May 24, 1981

ASM February 10, 1979 6
ASM

This assembler, written in BCPL, runs on the Alto and produces BCPL-compatible relocatable binary

output files, suitable for input to BLDR, the BCPL loader. The Alto Hardware manual describes the

source language and the virtual machine.

1. Symbals

Symbols may be up to 130 charactersin length, and every character of a symbol must be used to identify it.
By default upper- and lower-case characters are different, and two character strings represent the same
symbol only if the same |etters and cases are used in both. However, the /U switch causes all lower-case
lettersin symbols to be changed to upper case (even in external symbols). Thusif you want an assembly-
language program to link to symbols containing lower-case letters, you must either default lower-case

conversion in ASM or map al symbolsto upper casein BLDR using its/U switch.

2. Strings

Strings follow BCPL conventions. They may not extend from one line to the next.

3. Assembly Regions

This assembler can assemble into three regions: two static regions (one in page 0) and one code region.
The directives .NREL, .SREL, and .ZREL cause the assembler to begin placing code in the code region,
the non-page-0 static region, and the page O static region, respectively. The BCPL |oader causes the
restrictions that the code area may not contain pointers into the code area, that the first word of the code
areamay not point to a static area, and that no static area may contain pointersto a static area. The only
external symbols are statics.

Arithmetic is not allowed on symbols denoting statics, and the symbol "." is undefined in .SREL and
ZREL. Any absolute or code- relative expression (including such goodies as IMP@ 62) may be placed in
.SREL or .ZREL. Any absolute expression, static reference, or instruction reference to .ZREL may appear
in .NREL.

4. Text

There are two text modes, .TXTM B and .TXTM L. Mode B causes the generation of standard BCPL
strings. M oge L causes the generation of long strings, a full word length followed by the string characters,
two per word.

5. .GET

Cleared version of May 24, 1981
ASM February 10, 1979

The directive .GET "FOO" causes the file FOO to be inserted into the source text at that point. .GET
be used up to two levels deep. Its primary utility islikely to be for lists of externals and for canned
and exit sequences.

6. .GETNOLIST

Works exactly like .GET, except that the "gotten” file is not included in the listing, nor are any files
it .GET's.

7. .BEXT

In addition to .EXTN and .EXTD and .ENT, | have added two directives . BEXT and .BEXTZ which

entry

which

work

exactly as BCPL's External works for non-page-0 and page O statics, respectively. This should increase the

utility of the .GET feature above.

8. Expressions

Parentheses (but not precedence) are supported. Constructslike"K and $*N and 5 and 17. and 3B10 are
all primaries. Most BCPL and customary assembler operators are allowed. The construct 1B10 means
40(octal), unlike BCPL's convention. | am willing to be convinced on this point.
9. Predefined Symbols
All predefined symbols and directives and opcodes are defined both in al upper-case and all lower-case
letters. For example, both LDA and Ida are predefined, but Ldais not. The following Alto-specific
opcodes are preloaded in the symbol table:

JSRII JSRIS CYCLE CONVERTDIR EIR BRI

RCLK SIO BLT BLKS SIT RDRM WTRM

JMPRM MUL DIV
In addition, the following pile of skips which test various conditions has been added, courtesy of Dan

Ingalls. Only the names have been changed to confuse the innocent:
Two operands:
SZE SZ SNZ SP SGZ SN SEQ
SE SNE SLT SLE SGT SGE SGTU
SLEU SGEU SLTU SODD SKEVEN SNIL SNNIL
MKZERO MKONE MKNIL MKMINUSONE

No Operands:
NOP SKIP

It should be explained that U stands for unsigned, and that Dan thinks of NIL as-1.

Cleared version of May 24, 1981
ASM February 10, 1979 8

10. Operation

If the sourcefileis called FOO.ASM, type

ASM FOO.ASM
If you just type ASM FOO it will first try to use FOO and, failing in that, try FOO.ASM. The assembl er
will usually want to construct severd files, which it will do by substituting various extensions on FOO

unless you specify otherwise. There are alot of switches which apply to ASM:
/L Construct alisting file
/S Include the symbols defined by the user, for what they’ re worth
/A Include al symbols, even the predefined ones
/R Include aprintout of the .BR file
/N Don’'t make a.BR file
/E Makean .ER filewhichisacopy of the error messages
sent to the terminal
/D Print debugging messages (as errors, in fact)
/P Pause after printing each error message (continue with CR)
/U Map dl lower-case letters in symbol s to upper-case

There are also alot of switches which apply to file names, and which tell the assembler to use this name
instead of the one it was about to invent:

/L Namesthelisting file

/E Namesthe error file

/S Names the sourcefile (also no switches)

/T Namesthe temporary file

/B Namesthe relocatable binary file

Cleared version of May 24, 1981
Boot Files February 17, 1979 9

Alto Boot Files: Formats and Construction

The process of "booting" the Alto is one of setting some or all of the Alto’s state either by reading a file
from the disk or by accepting packets from the Ethernet. This document attemptsto explain the various
ways that state is restored, and the formats of "boot files' built by various programs.

There are four basic stepsin "booting" the Alto: (1) the tasks in the microprocessor are reset; (2) a 256-
word "boot loader” is loaded into main memory and started; (3) the boot loader |oads a portion of Alto
main memory from a"boot file" and finishes by transfering to a known place; (4) the user’'s program

loaded by the third step can restore even more of the Alto’s state.

1. Booting

"Booting" is accomplished either by pushing the "boot button” located on the rear of the keyboard or by
executing the SIO instruction (see Alto Hardware Manual). Unless overridden by the Reset Mode
Register, the emulator task is started in a standard boot program. This program reads location 177034b, a
word whose contents can be altered by pushing various keys on the keyboard. If the <bs> key is depressed
drl].ll’i g%k booting, the machine state will be restored from the Ethernet; otherwise, the state is restored from
the disk.

When booting from the disk, the keyboard word isinterpreted as a disk address where a " disk boot |oader"
islocated. If no keys are depressed, disk address 0 is generated, which is the normal resting place of the
"disk boot loader" for the operating system. The emulator reads a single 256-word disk record into
memory locations 1, 2, ...400b; the 8-word disk label for this page is placed in 402b, 403b, ... 411b. When
the disk transfer is complete, control istransferred to location 1 in the loader. The boot loader uses the
saved label to point to the remainder of a"boot fil€" which is read into main memory and started. The
types of "disk boot loaders" and "boot files" are discussed below.

When booting from the Ethernet, the microcode waits until a"breath of life" packet arrives, containing a
256-word "Ethernet boot loader" which isread into locations 1 - 400b and executed by transferring to
location 3. It isup to thisloader to establish communications with a party willing to deliver the remainder
of the state needed.

2. Boot File Formats and Boot L oaders

There are two basic kinds of boot files, and a variant:
B-File: Built by the BuildBoot program; loader is DiskBoot.
S-File: Built by the OutLd subroutine; "S" loader.
SO-File: Variant of S-File built by the SaveState subroutine.

A B-File can be distinguished from an S-File or SO-File because B-Files have a0 in their second data word.

Words 4 & 5 of B, S, and SO boot files do not contain code and are reserved for holding the (Alto format)
date on which the file was built. Boot servers use thisinformation to propagate the latest versions. Old
format type B files which don’t contain a date have 402b in fileword 0. Old format type Sfiles have 355b

infileword 0.

Cleared version of May 24, 1981

Boot Files February 17, 1979 10
2.1. B-Files

B-Files ("BuildBoot" files) are the smplest sort of boot file. The booting processitself does not restore the
entire state of the machine; page 1 (addresses 400b to 777b) is not restored; no RAM or R-register state is

restored except for the program counter.

A boot loader residesin the first (256-word) data page of aB-File. It isthispagethat isread in by the
booting process. Thefileisformatted asfollows:

Filepagel => DiskBoot loader

Filepage2 => Image of memory page O (0-377b)
Filepage3 => Image of memory page 2 (1000b-1377b)
Filepage4 => Image of memory page 3 (1400b-1777b)

File hége n => Imadé of memory page n-1

Thefile can be of any length, except that n must not exceed 254. After reading the entire file, control is
transferred to the restored state by doing IMP@ 0.

2.2. SFiles

S-Files ("Swat" files) are a somewhat complicated construction that permits more of the Alto state to be
restored: the interrupt system, active display, and so forth are all restored. In order to achieve this, the
restored state must contain a copy of the OutLd subroutine that is responsible for the final stage of the
restore; when the state is fully restored, this subroutine simply returnsto its caller. Thisfull state save and
restore was originally designed for the Swat debugger. (Note: no RAM or R-register state except for the

PC and accumulatorsiis restored by this kind of boot.)

A boot loader resides in the first (256-word) data page of an S-File. Thisisthe page read by the booting
process. Thefilelookslike:

Filepagel => "S'loader
Filepage2 => Image of memory page 2 (1000b-1377b)
Filepage3 => Image of memory page 3 (1400b-1777b)

File page 253 => Imé{ge of memory page 253 (176400b-176777b)
Filepage254 => Image of memory page 1 (400b-777h)
Filepage255 => Image of memory page 0 (0-377Db)

The S-File must contain at least 255 data pages; additional pages are ignored by the booting process, and
can be used to save additional state. When the restoreisfinished, control returns to the caller of OutLd
(see Alto Operating System Manual).

ssec(SO-Files)

SO-Files are aminor variant of S-Files that can be used to restore the Alto state in 2 different ways. The
variation is simply that location O of the restored memory image (i.e., word O of file data page 255) contains
an "alternate starting address." Thefile can be loaded by (1) using it as an S-File, and executing the loader
saved in itsfirst file data page, or (2) by aloading process that 1oads all memory but page 1 (file page 254)

and doesa IMP@ 0. The operating system boot file, Sys.Boot, is an SO-File.
The SO-Fileis designed to permit Ethernet booting from states conveniently saved by OutLd.

Cleared version of May 24, 1981
Boot Files February 17, 1979 11

2.3. DiskBoot loader: B-Files

The DiskBoot loader is commonly placed as the first data page in B-Files. Its sourceis DiskBoot.Asm (in
BuildBoot.Dm); BuildBoot will normally include this loader on the front of the B-Filesiit constructes.
NOTE: thefile "DiskBoot.Run" is not aliteral copy of the 256 words that go on the front of thefile, but
the result of applying Bldr to the relocatable file generated by assembling DiskBoot.Asm. B-fileswere the

first boot format designed for the Alto. Unlike an S-file which must be at least 255 data pages long, a B-file
need be big enough to contain al of the code to be loaded.

2.4. InOutLd loader: S-Files and SO-Files

Thisloader is part of the Operating System and available as a separate package. For more details read the
descriptions of InLd, OutLd and BootFrom in the Alto Operating System manual.

2.5. EtherBoot loader: "Breath Of Life"

The "breath of life" loader, which is periodically broadcast by gateways, isloaded into locations 1-400b
when the Alto is booted with the <bs> key pressed. The standard form of this loader reads location
177035b (a keyboard word), and transmits "MayDay" packets containing the 16-bit result. Some server on
the network will interpret the 16-bit argument as a request for a specific program. The server will open an
EFTP connection with the Alto which sent the MayDay. It transmits data pages in the same order as they
are recorded in B-Files (including the first data page, even though it contains a disk-oriented loader).
When the connection is closed, the loader starts the restored image by doing a IMP@ 0.

By convention, the 16-bit argument 177777b is never answered by a server. This convention is used by
programs which have specifically started a"breath of life" loader and are expecting an EFTP connection

from some specific party.

The EtherBoot loader is available as a package: see the Alto Packages manual. Protocol detailsarein the
Pup documentation.

3. Constructing B-Files. BuildBoot

BuildBoot.Run constructs files for direct booting into the Alto. The program copies itsinput filesinto an
output file according to directives in the command line and in the input files themselves. Two kinds of
input files are supported at the moment. Oneis the segment file, which contains a block of words to be
loaded into contiguous addresses. The other is the executable (.Run) file, which is what Bldr produces on
the Alto (see Alto Operating System Reference Manual for details). If several filesin the command line
specify the contents of the same memory location, the last one will win. In addition to the data aready in
the output file, the program maintains four state variables between itemsin the command line. Oneis the
location counter which specifies the address where the next segment file (if any) will be placed. Another is
the address where the loaded image is to begin execution. This defaults to the starting address of the last
executable filein the command line. The third is the address (if any) where the layout vector of the next
executable fileisto be loaded. If this address is missing, the layout vector will not be loaded. The fourth is

the address (if any) in the boot |oader where the current date and time will be placed.
Here are the switches:

/E Thisis an executable file (also no switches or /R)

/D Thisisthe address of atwo word block in the boot loader
where the current date and time are placed.

/S Thisisasegment file

/N Reset the location counter to this octal number

/0 Thisisthe output file

/G This octal number specifies where execution begins

Cleared version of May 24, 1981
Boot Files February 17, 1979 12

/B This executable file contains a boot loader in its code
area. If omitted, defaults to "DiskBoot.Run"
/L Write load map on thisfile
N The layout vector of the next
executable file will be loaded in a contiguous
block starting at the address specified by this
octal number

If we wanted to bootify the .Run file Prom.run, we might say

BuildBoot Prom.boot/O Prom.map/L 20/N 1000/G"
Prom.run/S

Similarly, if we had the diagnostic DMT.RUN as an executable file (including any runtime support it
might need), we could simply say

BuildBoot DMT.boot/O DMT.DMT.map/L DMT.run/E

The disk boot loader DiskBoot.Run is also included in the file BuildBoot.Dm, and is required by
BuildBoot unless another boot loader file is specified by the /B switch.

The BootBase package (<AltoSource>BootBase.dm) makes it possible to construct a B-format boot file out
of most any .Run file without any souce-level changes. It initializes an execution environment; provides a
runtime environment including TeleSwat, the Bepl runtime routines, Calendar clock maintenance, parity
error handling; and supplies selected Operating System routines.

Two standard configurations are available: BasicBoot is a bare bones Bepl environment suitable for
diagnostics; FullBoot adds most of the facilities of the Alto Operating System except for the BFS, Disk
Streams, and Directories. Other configurations are straight forward. Each configuration consists of four
files: xBootBase.run (x = Basic or Full) contains code. xBootBase.bj contains Bldr linkage information
similar to Sys.bk. xBootBase.xc contains part of the Bepl runtime. LoadxBoot.cm isacommand file

template containing incantations to Bldr and BuildBoot and slots which you must fill in.

4. Constructing S-Files. OutLd

S-Files are constructed by the OutL d subroutine, which is documented in the Alto Operating System
Manual.

5. Constructing SO-Files. SaveState

The SaveState subroutine, also included in BuildBoot.Dm, can be called in afashion similar to OutLd, but
it will create an SO-File. The Bepl call is:

SaveState(filename, [flags])

It behaves like OutLd in that it returns O if the file has just been written, 1 if it has been restored by an
InLd, 2if by adisk boot, and (unlike OutLd) 3 if by an EtherBoot. If bit 15 of flagsis set, the disk state is
flushed after creating the boot file. If bit 14 is set, the disk state is recomputed when the boot fileis started.

SaveState requires the presence of operating system levels through disk streams.

Cleared version of May 24, 1981
Boot Files February 17, 1979

6. The "standard boot file": disk address 0

The 256-word data page saved on real disk address 0 cannot be part of any legal Alto file because of
way thefile systemisdesigned. Asaresult, the standard boot file is established by copying the first
page of the boot file (e.g., Sys.Boot) into disk address O (the label and data portions are both
verbatim). Thus the proper data (disk boot loader) will be read when booting, and the label will
forward to the (legal) boot file, data page 2. This makes Sys.boot have an illegal format (the forward
of two pages point at page 2 of Sys.boot), but the Scavenger knows this and ignoresit.

13

the
data
copied
point
links

Cleared version of May 24, 1981

Chat October 19, 1980 14
CHAT

Chat isaprogram for establishing Pup Telnet connections between a pair of cooperating parties. Its chief

function isto permit Alto usersto login to Maxc and IFS servers. Chat includes an extension to support

text-display control and graphics.

1. Simple operation

Chat is organized so that default operation with Maxcl issimple. Simply saying "Chat" will establish a
connection with Maxc and (provided you are "logged in" on your Alto) will try to establish the Alto as
controlling terminal for aMaxc job that islogged in under your name. Chat will perform a"login" or
"attach™ as appropriate. If the smple methods fail you must deal with Maxc yourself (lifeis hard).

To connect to some server besides Maxc, type "Chat name" where "name" is the name of the desired
server (Maxc2, vy, DLS, etc.) Chat will perform the automatic login if the server isaMaxc or an IFS.

If you don’t have the file Chat.Run on your disk, the Alto Executive will boot-load it from a boot server on
the network. In this case, Chat will not use the "name" you supply on the command line but rather will
require you to type the server name directly to Chat.

If you are not logged in on your Alto at the time you start Chat, or you booted Chat from the network,
Chat will first request that you type in your user name (if different from the one installed on your disk) and
password.

The preferred method for exiting Chat is to depress the key immediately to the right of the "return” key on
the keyboard, and then to press "q" for Quit. The other method, <shift>SWAT, isfrowned upon and is not
guaranteed to work.

If the connection fails or is broken by the server, Chat will display an appropriate message and will
ordinarily terminate. However, if you booted Chat from the network, Chat will continue running and will

ask you for the name of a new server to connect to.

2. Command Interpreter

While Chat is running, you may wish to give various commands that alter its operation. Depressing the
key immediately to the right of the RETURN key will cause Chat to enter a command mode. The
commands are;

C Change control character output setting. Control characters other than CR, LF, and Tab are
normally displayed as"”x". Changing this setting causes control characters to be thrown away.

D Specify a"do" fileto insert now. Thetext of thefile will be treated as if it had been typed in at the
keyboard--it will be transmitted to the connected party. Thisisasimpleway to "can" Maxc
procedures that you use alot.

E Change local echo setting. Chat starts out assuming that the connected party will echo al
characters. In someinstances, Chat will want to echo your typein locally (e.g., when connected to
another Chat).

F Specify anew font. The screen will be re-initialized, which will cause recent typeout to disappear.

If insufficient core spaceis available for the font, the system font will be used.

Cleared version of May 24, 1981

Chat October 19, 1980 15

I Toggle the "input" switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (see below).

N Permits you to establish a New connection (after breaking the current one), without leaving Chat.

@] Toggle the "output" switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (see below).

Q Quit--terminate the connection.

T Specify anew typescript file. The old typescript, if any, isclosed. The new typescript will grow

without bound, even if the old typescript had alength limit specified in USER.CM (see below).

3. Command-line options

Severa options may be passed to Chat by global switchesin the command line (i.e., by typing Chat/g/t

where"s" and "t" are the switches):

/A "Attach" -- meaningful only when connecting to Maxc. Thiswill force the Maxc attach
sequence to be typed rather than whatever Chat considers appropriate.

/IC Chat will suppress output of control characters, rather than displaying them as "/x".

/D See /P below.

/E Chat will cause local echoing of input characters.

/l Equivalent to the command-line entry Chat.Initial/D (see below).

/L "Login" -- meaningful only when connecting to Maxc or an IFS. Thisforcesa login
sequence to be typed, regardless of what Chat considers appropriate. For example, if you
aready have a detached job on Maxc and wish to create anew job, you must use this
option.

/N Chat will not attempt any automatic login or attach.

/Por /D Chat will enable a display protocol (see below).

/S Chat will be a"Pup Telnet Server," and will respond to requests for connection from
othersrather than initiate requests itself.

IT Chat will write atypescript on file Chat.ts$, regardless of whether or not a TYPESCRIPT
entry appearsin USER.CM.

Several options may be specified with "local" switches:

string This givesthe "name" of the party with whom Chat should initiate a connection. The
name may be an address constant of the form net#host#socket, or may be afull symbolic
name like Maxc+Telnet (see "Naming and Addressing Conventions for Pup" for details).
The default socket is 1, the Telnet socket. Thustyping "Chat Regis' will try to connect to
aTelnet server on the host named Regis.

filename/D Thisgivesa"do" file name that is fed to the connected party. When the last character of

the file has been sent, Chat will not close the connection.

filename/E Similar to /D, but will end the connection when end of file is encountered.

Cleared version of May 24, 1981

Chat October 19, 1980
filename/F Specifies the name of the font to use.
filename/T Specifies the name of the typescript file.

4. USER.CM Options

The USER.CM file may also contain defaults that Chat examines at initialization. The section
USER.CM that Chat examines must begin with aline with the 6 characters[CHAT] onit. Thereafter,
begin with "labels," followed immediately by colons, followed by arguments.

Note that Chat does not look at User.cm (or anything else on your disk) if you boot-loaded it from
network.

In the following descriptions, square brackets enclose parameters that are optional--you shouldn’t
type the square brackets.

BELL: [DING] [FLASH] [AUDIQ]
Tellswhat to do when a bell character isreceived. If DING is specified, a pattern that spells
DING will be displayed at the top of the screen. If FLASH is specified, the bottom area of
screen will flash black. If AUDIO is specified, and you have aloudspeaker connected to
Alto’s Diablo printer interface, an audible tone will sound. Any combination of options can
specified together (default: DING FLASH).

BORDER: BLACK|WHITE
Givesthe color of the top border of the screen (default: white).

CONNECT: net#host#socket or host-name
Gives the network address constant or name of the party with whom a connection should
initiated (see "Naming and Addressing Conventions for Pup" for details). Default
Maxc+Telnet, the Maxc Pup Telnet server.

CONTROLCHARS: ON|OFF

Normally, control characters other than CR, LF, and Tab are displayed in the form "/x".
option forces them not to be displayed at al. Default is ON.

DISPLAYPROTOCOL: ON|OFF

This entry enables a display protocol. The same effect can be achieved with the /P or
command-line switches. Default is OFF.

ECHO: ON|OFF

This option turns on local echoing. Thisisusually necessary only if you are connecting to
Alto running Chat that has used the /S option.

FONT: AltoFontName. AL [width height]

Gives the name of afont to use when displaying typeout from the connected party (default:
font). If two numbers follow the name, they are interpreted as the width of aline (in

shipped to the server to set the terminal parameters.
LINEFEEDS: ON|OFF

16

lines

the

actually

out
the
your
be

be

is

This

/D

another

system

characters)
and the height of apage (in lines). These numbers override the cal culations made by Chat, and

are

Cleared version of May 24, 1981
Chat October 19, 1980 17

Normally, line feeds transmitted by the other party are included in the typescript file. If you wish
to keep line feeds out of thefile, set LINEFEEDS: OFF.

TYPESCRIPT: filename [length]

Gives the name of afile on which to record atypescript of the session. If length is specified, the
filewill be treated as a"ring" buffer of that length (in bytes; 65535 maximum). The file will be
created at the beginning of the session, so that the user can be certain the disk will not overflow
when recording typescript information. The characters"<=>" will mark the end of the ring
buffer, which will be updated periodically. If length is not specified, the file will grow without
bound and "<=>" will not be appended. In this case, if the disk becomes full the typescript will be

closed and awarning message displayed.
TYPESCRIPTCHARS: [ON|OFF] [ON|OFF]

This entry governs the selection of characters that are included in the typescript file. The first
on/off switch controls characters typed on the Alto keyboard: if the switchis"on," these
characters will be entered in the typescript file. The second switch controls characters sent from
the other party to the Alto: if the switch is"on," these characters will be entered in the file.

Default is OFF ON.

5. Display Protocol

Chat allows aremote program to control carefully the entire Alto display. The interactive facilities of the
Alto can thus be used by MAXC programs and others. A set of Interlisp-10 functions has been written to
ease use of the display from LISP. These functions are documented in "Raster Graphics for Interactive

Programming Environments," by R.F. Sproull, CSL-79-6, and are contained in <SPROULL>ADIS.COM;
the symbolics (should you need them) in <SPROULL>ADIS.

"Digplay Chat" is amost completely different from "teletype Chat"; they are loaded as one program
largely for convenience. To exit display Chat, use the <shift><Swat> convention. Be very careful when
attaching and detaching jobs that have Chat display connections open. If you re-attach to aLISP job that
previously had connections open, and CONTINUE your LISP job, the connections are no longer usable
because the Pup executive has timed them out. ADISCheck should be called to verify the state of the

connection. After thiscall, it may be necessary to invoke ADISInit again. If this procedureis not followed,
you may get traps with "10 Data Error" or some such message coming out of your L1SP program!

Fonts are declared in User.Cm asfollows: aline of the form "DISPLAY-FONT: FileName" isa font
declaration. Numbers are associated with the fonts by the order in thefile: the first isfont 0, the second
font 1, etc. Thefonts must bein "strike" format; several fontsin this format are saved on the

<ALTOFONTS> directory with extension .STRIKE.

The number of "regions" available to Chat can be altered by including aline of the form "DISPLAY-
REGIONS: 6" in User.Cm.

Two functions for making hard copies are not documented in the CSL report:

ADISPresd[file] (Flush). This function writes a one-page Press file of the given name on your Alto disk.
The page contains a bit-map for the current contents of the Chat display area. WARNING: This function

requires considerable quantities of disk space (about 130 pages per file), and may lead to errors while
writing thefile. Best useit only when your state is safe.

ADISPressMaxc[file;scaleFactor] (Flush). Thisfunction issimilar to ADISPress, but the file will be
written on the connected MAXC directory. The scaleFactor defaults to 1.0, but can be set to any fraction.

It will cause the Pressfile to contain directives to reduce the size of the image of the screen when it is

printed.

Cleared version of May 24, 1981
Chat October 19, 1980

Efficiency and space. The ADIS protocol operations cost a certain amount in LISP function call
Tenex JSY S overhead; they also have a cost determined by the number of bytes of protocol

that are sent to Chat. Thus we can express the communication cost in terms of the number of
we could display by transmitting the same number of bits. Here are approximate numbers:

ADISRegion 4
ADISLimits 16
ADISSetX ,ADISSetY ,ADISFont 5
ADISBold,ADISItalic,ADISSetCR,ADISSetLF 5
ADISLineTo 6
ADISRegionOp 130r21
ADISScroll 34 in most cases
ADISButtonEnable 16
ADISTypeOnEvent 4
ADISCursor 43
ADISCursorMove 7

Spaceinthe Alto isat apremium. At present, about 6700 words must be shared among all fonts
region descriptions. Note that font sizesvary. Sizesare:

Region 34 words (always)
Helvetica8.Strike 570 words
HelveticalO.Strike 630 words

18

and
commands
"characters'

and

Cleared version of May 24, 1981

CopyDisk November 12, 1980 19
CopyDisk
CopyDisk is aprogram for copying entire disk packs. It will copy from one drive to another on the same

machine, or between drives on separate machines via a network.

1. History

Thefirst Alto CopyDisk was called Quick and was written by Gene McDaniel in 1973. During the
summer of 1975 Graeme Williams wrote a new CopyDisk adding the ability to copy disks over the
network. During the summer of 1976 David Boggs redesigned the network protocol and added the ability
to copy Trident disks. In the spring of 1980 the network protocol was extended to speak to CopyDisk
serversin Interim File Systems (and eventually Tape servers). The CopyDisk network protocol is specified

in <Pup>CopyDisk.press.

2. Concepts and Terminology

In adisk copy operation, the information on a’ Source’ disk is copied to a’ Destination’ disk, destroying any
previous information on the destination. A copy operation usually consists of two steps:

Ej(_:;(py] Step one copies bit-for-bit the information from the source disk to the destination
isk.

[Check] Step two reads the destination disk and checksthat it isindentical with the source

disk. This step can be omitted at the user’ s peril.
Copying adisk from one machine (or "host’) to ancther over a network requires the active cooperation of
programs on both machines. In atypical scenario, a human user invokes a program called a "CopyDisk
User’ and directsit to establish contact with a’ CopyDisk Server’ on another machine. Once contact has
been established, the CopyDisk User initiates requests and supplies parameters for the actual copy
operation which the User and Server carry out together. The User and Server roles differ in that the
CopyDisk User interacts with a human user (usually through some keyboard interpreter) and takes the
initiative in User/Server interactions, whereas the CopyDisk Server plays a comparatively passive role.
The question of which machine is the CopyDisk User and which isthe CopyDisk Server isindependent of
the direction in which data moves.
The Alto CopyDisk subsystem contains both a CopyDisk User and a CopyDisk Server, running as
independent processes. Therefore to copy adisk from one machine to another you should start up the
CopyDisk subsystem on both machines and then type commands to one of them, which becomes the
CopyDisk User. Subsequent operations are controlled entirely from the User end, with no human
intervention required at the Server machine. Thisarrangement is similar to the way the Alto FTP

subsystem works, and different from the way the older CopyDisk worked.

3. Calling CopyDisk

CopyDisk can be run in two modes: interactive mode in which commands come from the keyboard, and
non-interactive mode in which commands come from the command line (Com.cm). The general form of
the command line to invoke CopyDisk looks like:

Cleared version of May 24, 1981
CopyDisk November 12, 1980 20

CopyDisk [[/<option switches>] [from] <source> [to] <destination>]
The sguare brackets denote portions of the command line that are optional and may be omitted. If you

just type "CopyDisk" the program goes into interactive mode, otherwise the remainder of the command
line must be a complete description of the desired operation.

3.1. Option Switches

Each option switch has a default value which is used if the switch is not explicitly set. To set aswitch to
'false’ proceed it with a’minus’ sign (thus CopyDisk/-C means’no checking’). To set aswitch to’true’ just
mention the switch.

Switch Default Function

/4 false [Model44] tells CopyDisk to copy an entire Diablo model 44, without asking for
confirmation.

/C true [Check] tells CopyDisk whether to check the copy operation. CopyDisk/-C,
which omits the check step, isfaster but more risky.

W true [WriteProtect] prevents the CopyDisk network Server from writing on a local
disk. So unlessyou say CopyDisk/W or issue the WRITEPROTECT command,
someone can make a copy of your disk over the network, but no one can

(maliciously or accidentally) overwriteit.

/R true [Ram] tells CopyDisk to attempt to load the ram with some microcode which
speeds things up considerably. CopyDisk will still work, though more slowly if it
can't load the ram.

/D false [Debug] enables extra printout that should be interesting only to CopyDisk
maintainers.
/A false [AllocatorDebug] enables extra consistancy checks in the free storage allocator.

3.2. Source and Destination Syntax

The general form of a source or destination disk nameis:

[Host-name] Disk-name

for example "[Boggs|DPO". Ordinarily "host name’ can be astring, e.g., "Boggs’. Most Altos have names
which are registered in Name Lookup Servers. So long as a name lookup server is available, CopyDisk is
able to obtain the information necessary to translate a host name to an inter-network address (which is
what the underlying network mechanism uses). Y ou may omit the host name for disks attached to the local
machine.

If the host name of the Server machineis not known, you may specify an inter-network addressin its place.

The general form of an inter-network addressis:

<network> # <host> # <socket>

where each of the three fields is an octal number. The <network> number designates the network to which
the Server host is connected (which may be different from the one to which the User host is connected);
this (along with the "#" that followsit) may be omitted if the Server and User are known to be connected
to the same network. The <host> number designates the Server host’s address on <network>. The <socket>
number designates the actual Server process on that host; ordinarily it should be omitted, since the default
isthe regular CopyDisk server socket. Hence to specify a CopyDisk server running in Alto host number

241 on the directly connected network, you should say "241#" (the trailing "#" is required).

Cleared version of May 24, 1981

CopyDisk November 12, 1980 21
The’disk-name’ isinterpreted by the CopyDisk program on the host where the disk is. This program
knows how to copy two types of disks, which should be referred to by the following names:

DPn Diablo disk unit 'n’. Most Altos have one Diablo disk called 'DPO’.

TPn Trident disk unit'n’. The unit number must be in the range 0-7.
In addition, you may tell CopyDisk to copy an entire Alto file system by referring to it by the name 'BFS,
(for Basic File System, which is the name of the software package that implementsit). If you use this name
rather than 'DPQ’ or whatever, you won't have to answer questions such as whether the disk is a model 31
or amodel 44. Best of al, CopyDisk can detect that its a double-disk file system, and it will copy both
disks automatically.
When you are copying through the network to another random Alto (as opposed to say, an IFS or a Tape
server), you are presumably talking to another instance of this program, so you use the above syntax when
referring to its disks.
When you are copying to an IFS, which keeps disk images in files, the disk-nameis an IFS file name, and
must conform to IFS's conventions. If you copy a double disk filesystem referring to it as’BFS', then
CopyDisk will create one file containing both disk images.
Fine point for Dorado and DO users. 'DPO’ and 'DP1’ refer to units 0 and 1 in the current partition. 'DP10’
and 'DP11’ refer to units O and 1 in partition 1 regardless of the current default partition; and similarly for
'DP20" and 'DP21’. 'BFS and’'BFSO’ refer to the Alto filesystem in the current partition; 'BFS1’ to the

filesystem in partition 1, etc.

4. The CopyDisk display

CopyDisk displays atitle line about one inch from the top of the screen, and below that the main display

window, which consumes about half of the screen. The main window is shared by the User and Server

processes, only one of which is active at any time. The process which currently owns the window identifies

itself at theright side of thetitleline. Thetitle also shows the rel ease date of the program and the Alto's
nalmtla. When a copy operation isin progress, the current disk addressis displayed in the area above the
title line.

When CopyDisk is started, the User is listening for commands from the keyboard and the Server is
listening for connections from the network. If you start typing commands, the User takes over control of
the main window (' User’ appears near the right end of the title ling), and your commands and their

responses are displayed there. The Server refuses network connections while the User is active. If another

CopyDisk program connects to the Server, the Server takes over control of the main window (Server’

appears near the right end of thetitleline), and the Server logs its activity there. The User ignores type-in

(flashing the screen if any keys are typed) while the Server is active.

5. Keyboard Command Syntax

CopyDisk’ sinteractive command interpreter presents a user interface very similar to that of the Alto FTP
subsystem. The standard editing characters, command recognition features, and help facility (via"?") are
available.

Cleared version of May 24, 1981

CopyDisk November 12, 1980 22

5.1. Keyboard Commands

COPY
Starts a dialog to gather the information for copying adisk. CopyDisk first asks for the name of the
source disk by displaying "Copy from". If the disk islocal, it makes sure it isready; if the disk is on
another machine, it opens a connection and asks the remote machine if the disk isready. If you
want to abort the connection attempt, hit the middle unmarked (' Chat’) key. If the source disk is
ready, CopyDisk prompts you for the destination disk by displaying "Copy to", and then checks
that that disk isready also. Next, it verifies that the disks are compatible, and depending on the disk
type, may ask some questions about things peculiar to that disk (such as"Do all of the model 44?7,
Then CopyDisk asks you to confirm your intention to overwrite the destination disk. If you change
your mind, type’'N’ or <delete>. If you respond yes, CopyDisk will pause for afew seconds,
ignoring the keyboard, and then ask you to confirm once again. Type-ahead does not work for this
second confirmation. Thisisyour last chance to look at the disks and make sure that you are not
overwriting the wrong one. It happens! This feature wasin the original CopyDisk, was |eft out of
the second version, and is back in thisthird version by popular demand from the many people who
made that fatal mistake.
QUIT
Terminates CopyDisk. One of three things happens:
The Alto Exec isrestarted if DPO is ready, and has not been written on, and if
CopyDisk was not booted from the net.
I%PO isbooted if it is ready but has been written on or if CopyDisk was booted from
the net.
NetExec is booted from the net if DPO is not ready.
All of thisis attempting to leave the Alto running something useful. If the disk in DPO does not
have an operating system on it when CopyDisk quits, the disk boot (option 2, above) will fail. This
will not hurt the disk, but you will have to boot manually.
HELP
Displays arather terse summary of how to use the program.
LOGIN
Supplies any login parameters required by the remote server before it will permit copy operations.
CopyDisk will use the user name and password in the Operating System if they are there (they won't
be If CopyDisk isbooted from the net). Logging into CopyDisk will set the user name and
password in the OS (in the same manner as the Alto Executive’s"Login" command. This command
Is only meaningful when copying to or from an IFS; the Alto CopyDisk server ignores login
parameters.
When you issue the LOGIN command, CopyDisk will first display the existing user name known to
the OS. If you now type a space, CopyDisk will prompt you for a password, whereas if you want to
provide a different user name, you should first type that name (which will replace the previous one)
followed by a space. The command may be terminated by a carriage return after entering the user
name to omit entering a password.
Ther parameters are not immediately checked for legality, but rather are sent to the server for
checking when the next copy command isissued. If acommand isrefused by the server because the
name or password isincorrect, CopyDisk will prompt you asif you had issued the LOGIN
command and then retry the command.
CONNECT
Requests the remote CopyDisk server to 'connect’ you to the specified directory on the remote
system, i.e., to give you owner-like accessto it. The password may be omitted by typing carriage

return after the directory name. Aswith LOGIN, these parameters are not verified until the next

Cleared version of May 24, 1981

CopyDisk November 12, 1980 23
transfer command isissued. This command is only meaningful when copying to or from an IFS;
the Alto CopyDisk server ignores connect requests.

PARTITION
This command is only available on DOs and Dorados. It prompts you for a partition number (for
DOsin the range 1-2 for Dorados in the range 1-5), and sets the default partition. It suppliesas a
default the current partition number, so you can find out where you are by saying ' Partition’ and
then typing carriage return.

CHECK
Toggles the switch which controls whether a disk is checked after copying. CopyDisk displays "on"
if checking is now enabled, and "off" if it is now disabled.

DEBUG
Toggles the switch which controls the display of debugging information. The performance data
presented at the end of this document is part of the debugging information; the network protocol

Interactions are displayed when this switch is set also.

WRITEPROTECT
Toggles the switch which allows the network Server to write on local disks. The default is that
people can’t overwrite your disk.

COMPRESS
Toggles the switch which suppresses the transmission and checking of the data records of free pages.
This can significantly speed up network copies and reduce the size of disk images stored on IFSs.
The default is to compress.

COMPARE
Comparestwo disks. Thedialogisvery similar to the COPY command. Neither disk is ever
written. Thisisuseful to verify the health of your disk drive (but remember that it does not check

the write logic).

6. Command Line Syntax

CopyDisk can also be controlled from the command line. If there is anything in the command line except
"CopyDisk" and global switches, the command line interpreter is started instead of the interactive
keyboard interpreter. Its operation is most easily explained by examples:

6.1. Command line examples

To copy DPO to DP1:
CopyDisk from DPO to DP1

Note that 'from’ and 'to’ are optional (though stongly recommended for clarity), and one or both may be
omitted or abbreviated:

CopyDisk DPOt DP1
is equivalent, though less obvious.

To copy the Basic non-programmer’s disk from host ' Boggs' (which is running CopyDisk) onto a disk in
your own machine;

CopyDisk from [Boggs] DPO to DPO

Cleared version of May 24, 1981
CopyDisk November 12, 1980 24

or, equivalently:

CopyDisk from [3'#241' #]DPO to DPO
The single quotes are necessary to keep the #s out of the clutches of the Alto Exec. The quotes are not
needed when typing to the keyboard interpreter. Note that no spaces are allowed between the host name
and the device name.

If the command line interpreter runs into trouble, it displays an error message and then starts the
interactive interpreter.

7. Disk Errors

Disk errors are termed ’soft’ or "hard’ depending on whether retrying the operation corrects the difficulty.
If CopyDisk is still having trouble after many retries, it displays a message of the form "Hard error at DPn:

cyl xxx hdy sec zz" in the main window and moves on.

Soft errors are not reported unless the debug switch istrue, so as not to alarm users. Their frequency

depends on several factors. Copying over the network will cause more soft errors then copying between
two disks on the same machine. Alto I1s get many more errors then Alto Is.

During the Check pass, in addition to soft and hard errors, ' data compare’ errors are also possible. A data
compare error means that the corresponding sections of the source and destination disks are not identical.

If any hard errors have been reported, then data compare errors are likely, otherwise getting data compare
errors means that something is very wrong. Y ou should suspect the Alto.

Hard errors and data compare errors are serious, and you should not trust the copied pack if any are
reported. |If the errors are on the source disk, try Scavenging it. Bear in mind that there is some variance in
alignment among disk drives, and that a pack which reads fine on one drive may have trouble on another.

Isthe source disk in a different drive than where it is normally used? Before allowing the Scavenger to
rewrite sectors, consider that the pack may be OK, but the driveit isin may be out of alignment. In this
case, allowing the scavenger to rewrite the sectorsis abad idea. If the errors are on the destination disk, try
the copy again, and then suspect the pack or the disk driveitself. If the destination pack was much colder
than the temperature inside the drive, sectors written early in the copy pass may read incorrectly during the
check pass. It'sagood ideato wait afew minutes for the pack to reach normal operating temperature

before using it.

8. Creating a new disk

Suppose you want to make a new disk by copying one of the’Basic’ disks. There are three major ways to
dothis:

Put ablank disk in your Alto, and copy the basic disk from an IFS. Thisiscalled the "IFS

copy’ method.

Find an Alto with two disk drives and put a basic disk in one drive and ablank disk in the

other. Thisiscalled the’double disk copy’ method.

Find two Altos, each with one drive, that are connected by a network and put a basic disk in
one Alto and ablank disk in the other. Thisis called the "network copy’ method.

Having decided on one of the above methods, you must now get CopyDisk running on the Alto(s). There
are two major ways to do this:

Cleared version of May 24, 1981
CopyDisk November 12, 1980 25

Start CopyDisk from adisk which has’CopyDisk.run’ onit.

Boot CopyDisk over the network from a’Boot Server’.

8.1. Starting CopyDisk from another Disk

If you do not have accessto a Boot Server, you must start CopyDisk from a disk that hasit onit. Put a disk
with CopyDisk on it into the Alto and type " CopyDisk<return>". Then switch disks. BE CAREFUL!!
People sometimes forget to switch disks at this point and accidentally copy the wrong one. Thisis why
CopyDisk asks you to confirm your intentions so many times.

8.2. Booting Copydisk from the net

The best way to start CopyDisk isto boot it from the network. That way you are more likely to get the
latest version, and you avoid the pitfall mentioned above. Of course, you must have network access to a
Boot Server. Most Gateways have Boot Servers. If this method doesn’t seem to work, you will have to fall
back to starting CopyDisk from another disk.

Hold down the <BS> and <Quote> keys while pressing the boot button on the Alto. Y ou must continue to
hold down <BS> and <Quote> (but let go of the boot button!) until a small square appears in the middle of
the screen. This can take up to 30 seconds, but usually happensin less than 5 seconds. Y ou are now taking
to the NetExec (see the documentation in the Subsystems manual if you are curious), and you should type
"CopyDisk<return>". The screen will go blank, the little square will appear again (you don’'t have to hold

down any keys thistime), and soon CopyDisk should appear on the screen.

8.3. The IFS Copy Method

Put ablank disk in DPO. Type "Copy<space>", and when it says "from" type a name of the form: [IFS-
name] File-name, where’I|FS-name’ 1s the name of your local IFS (such as’Ivy’, which is the name of my
IFS), and 'File-name’ is the name of the file on which the basic disk iskept. This may be installation-

dependent; here at Parc the basic non-programmers disk is called ' <BasicDisks>NonProg.disk’, so to get a
copy of that disk | would type "[Ivy]<BasicDisks>NonProg.disk". When CopyDisk says"Copy to" type
"DPO<return>". Then type <return> each time it asks for confirmation. Some numbers will appear in the
top center of the screen. When they disappear, CopyDisk is done. Type "Quit<return>". It will boot the

disk, and you should find yourself talking to the Alto Exec.

8.4. The Double-Disk Copy Method

Put the basic disk in DPO and put your disk in DP1. Type "Copy<space>", and when it says "from" type
DPO<return>. When it says"Copy to", type "DP1<return>". Then type <return> each time it asks for
confirmation. Some numbers will appear in the top center of the screen. When they disappear, CopyDisk

isdone. Type"Quit<return>". Put the basic disk back where it belongs, and take your disk with you.

8.5. The Network Copy Method

It doesn’t matter which Alto you type commandsto. Assume that the basic disk isin the Alto caled
"Tape-Controller", your disk isin the Alto called "Myrddin" and you are going to type commands to
Tape-Controller. Type"Copy<space>", and when it says "from" type "DPO<return>". When it says
"Copy to", type "[Myrddin] DPO<return>". Then type <return> each time it asks for confirmation. Some
numbers will appear in the top center of the screen. When they disappear, CopyDisk is done. Type
"Quit<return>", and put the basic disk back in therack. Go to Myrddin and type "Quit<return>". It will

boot the disk, and you should find yourself talking to the Alto Exec.

Cleared version of May 24, 1981
CopyDisk November 12, 1980 26

9. Performance

This section calculates the times to copy disks under different conditions. CopyDisk timesits operations
agajd_displ aystheresultsif the debug switch is set, so you can compare the numbers derived here with
reality.

9.1. TSweep

First, we calculate TSweep, the time to read or write a disk assuming that we can consume or produce data
faster than the disk. This best possible caseisthe sum of two terms. The first term is the time necessary to

sweep an active read/write head over every sector on the disk:
Rot * nCyl * nHds.

The second term is the time lost while seeking to the next cylinder. We assume that these seeks take less
than one rotation but that awhole rotation is lost:
Rot * nCyl.

Combining, we get:
TSweep = Rot * nCyl * (nHds+1).

where: Rot is the rotation time of the disk in seconds

nCyl isthe number of cylinders, and
nHds is the number of heads.

9.2. Disk-To-Disk Copy

By disk-to-disk copy we mean copying from one disk to another on the same machine, using a single
controller and not overlapping seeks. The fastest way to do thisisto read the entire source disk into
memory, switch to the destination disk, and then writeit all. The switch from the source to the destination

disk, will lose on the average half a revolution while waiting for the right sector on the new disk to come
under ahead. Neglecting the switch time which is small compared to the other two terms, the best possible
disk-to-disk copy timeis2* TSweep.

With limited memory, the best we can do isfill al available memory buffers reading the source disk,
switch disks, write them onto the destination disk, and then switch back to the source disk for another load.
In this case we can’t ignore the switch time, which is the total number of sectors on the disk divided by the

number of sector buffers times the rotation time of the disk:
Rot * (nCyl * nHds* nSec)/nBuf

where nSec is the number of sectors per track, and
nBuf is the number of memory buffers.

So the disk-to-disk copy time, TDDCopy, is:
TDDCopy = 2* TSweep + Rot * (nCyl * nHds * nSec)/nBuf

9.3. Net Copy

By net copy we mean copying from a disk on one machine through a network to a disk on another
machine. In this case the disk controllers can be going in parallel, and the factor of two in the first term of
TDDCopy vanishes. In additon, if the bandwidth of the network connection is higher than the transfer
rate of the disks so that as soon as a sector isread from the disk it is sent out of the machine, the memory

limitation goes away and the second term of TDDCopy vanishes.

Cleared version of May 24, 1981
CopyDisk November 12, 1980

The CopyDisk network protocol sends a small amount of information along with each sector which
be factored into the calculation of the bandwidth needed to run without memory limitation. Note that
bandwidth we are concerned with here is that perceived by aclient of the network services. user data
per second, not raw bits per second through the network hardware.

If the network is slower than the disks, then the time to copy a disk is the time required to transmit all
the bits on a disk plus the protocol overhead hits:

TNetCopy = nCyl * nHds* nSec * (sB + sOv)/bwNet
where SB isthe bits of disk information per sector,
sOv isthe CopyDisk protocol overhead per sector, and
bwNet is the bandwidth of the network connection.

;I'he bandwidth of the network connection is hard to state, and depends on a number of factors. Here are
ew:

Reduction of the emulator’ s instruction execution rate due to interference from the disk
network hardware.

Reduction of the amount of the emulator cycles avail able to the network and disk code due
mutual interference.

Reduction of the peak network bandwith due to interference from other hosts on the network.
The minimum network bandwith required to copy adisk at full speedis:
MinBwNet = 16 * nCyl * nHds* nSec * (sB + sOv)/TSweep.

9.4. The Numbersfor Altos

Here are the relevant numbers for the disks which this program can copy:

Diablo-31 Diablo-44 Trident-80 Trident-300
Rot (ms) 40 25 16.66 16.66
nCyl 203 406 815 815
nHds 2 2 5 19
nSec 12 12 9 9
sB 266 266 1036 1036
sOv 2 2 2 2
nBuf 80 80 18 18
9.5. Redlity

Here are the results of plugging the numbers into the equations, and comparing them against
measurements. The format is predicted(measured). NA means not available.

Diablo-31 Diablo-44 Trident-80 Trident-300
TSweep 0:24 0:30 1:21 4:32
TDDCopy 0:51(0:51) 1:04(1:16) 3:18(3:31) 11:20(19:27)
TNetCopy (1:05) (2:16) (26:31) (NA)
bwNet (323 Kbls) (308 Kb/s) (383 Kbs) (NA)

MinBwNet 859 Kb/s 1.375Mbls 7.520 Mb/s 8.509 Mb/s

27

must
the
bits

of

and

to

actua

Cleared version of May 24, 1981
CopyDisk November 12, 1980

10. Revision History

August 7, 1977

First relese.

August 28, 1977

Soft errors are only reported if the debug switch is set. Data compare errors now display the
disk address. VERIFY and WRITEPROTECT commands added to keyboard command
Write protect global switch added.

October 16, 1977

More microcode to speed things up

October 27, 1977

Bug fixes.

December 18, 1977

Fixed abug which prevented it from copying the second half of atwo disk file system. The
format for Diablo disks changed.

March 22, 1978

CopyDisk will now do the right thing for "[thisHost]device". The default value of WRITEPROTECT
now TRUE.

October 27, 1978

Internal reorganization -- no external changes.
December 12, 1978

Fix bug in Copying T-300s.

September 10, 1979

Reload with current packages.

April 26, 1980

Network protocol extended to speak to IFSs. Much internal work, but very little visible
PARTITION and HEL P commands added. VERIFY command renamed COMPARE

November 12, 1980

BFS protocol extended to handle multiple disk file systems. Referring to afile system as’BFS' will
both disksto be copied automatically. CopyDisk now works on Shugarts emulating Tridents.

28

offending
interpreter.

network

change.

cause

Cleared version of May 24, 1981

Createfile March 19, 1979 29
Createfile

This subsystem creates afile of agiven size, attempting to allocate it contiguously on the disk. To run the

program, use

>CreateFile filename npages

where filename is the name of the file and npages is the size of the file in pages (in octal unless you suffix a
"d": 99d). This program is primarily intended for creating files which will be accessed using the Indexed

Sequential File (ISF) package, which influences its notion of what a contiguous file looks like. The
algorithm is: 1) search the disk bit table and locate the largest group of contiguous free pages. 2) if nPages
isless than the size of this group, allocate nPages and finish; otherwise all ocate the whole group, decrease
nPages by the size of the group and repeat step 1. This program can be fooled into allocating pagesin less
than optimal waysiif your hit table is not in sync with the disk, so if in doubt, run the Scavenger first. If

there aren’t enough pages on your disk, it will fail gracefully, perhaps after thrashing around for awhile.

Cleared version of May 24, 1981
DDS1.13 October 12, 1977 30

DDS - Descriptive Directory System - release 1.13

The Descriptive Directory System (DDS) isafront end for the Alto file system that provides
substantially greater flexibility than the"?" facility in the operating system’s command processor. In
addition to file names, the DDS can display file lengths, creation-read-write dates, and contents.

If you have used DDS before and merely wish to learn about changes, bug fixes, and new features,
you probably want to skip to section 5 of this document. If not, sections 0 through 4 are a complete

description of the current release. Sections significantly changed since the last release are marked with ***.

0. The mouse and cursor

The three buttons on the mouse are called RED (left or top button), YELLOW (middle button), and
BLUE (right or bottom button). Maost mouse-controlled actionsin DDS happen as soon as you depress the
mouse button: these are described below using phrases like "RED does xxx", meaning "As soon as you
depress RED, xxx happens." Some actions require depressing a button and then releasing it: phrases like
"clicking RED does xxx" mean "If you depress RED and then release it, xxx will happen.” Careful
reading, or alittle experimenting, will familiarize you quickly with the distinction.

The cursor changes shape according to its location on the display and according to how DDS is
interpreting the buttons. Generally speaking, when the cursor is circular, RED selects what you are
pointing at in some way, and BLUE deselectsit. When the cursor assumes the shape of an hourglass, DDS

is busy doing something and is not listening to the mouse buttons.

1. Thedisplay
Like Bravo, DDS divides the display into acommand area at the top, and one or more windows
below. Currently DDS just supports asingle window. A heavy black bar separates the command area

from the window. Section 2 (below) describes the command area.

The window has three parts, separated by lighter horizontal bars:

1) Thetop part is the view specification area, or viewspec areafor short. It contains a set of keywords
that describe what information isto be displayed for the files being examined in this window, and a set of
keywords that describe how the displayed files are sorted.

2) The second part is the selection specification area, or selspec areafor short. It contains apair of
expressions which together determine what set of filesis being examined in the window. View and
selection specification are completely independent: each can be changed without affecting the other.

3) The main part of the window Is the data area, which actually displays a set of files. The names are

aways displayed: other information is controlled by the viewspecs.
1.1 Theviewspec area

There are 10 keywords in the viewspec area that control what is displayed:

"created” - the date when the file was created

"written" - the date when the file was last altered

"read" - the date when the file was |l ast read

"referenced” - the date when the file was last referenced (i.e. the most recent of "created”,
"written", and "read")

"size" - the size of thefilein disk pages

"length" - the length of the file in bytes (characters)

"address" - the hardware address, in the form directory-pointer: (SN1,SN2)IVN @ virtual-leader-
address

"contents" - the contents of the file (in octal, if abinary file)

"pagemap" - the disk addresses of all pages of thefile, with a"*" before each address that

represents a change of head position
"leader" - the contents of the file's leader page, in octal

Cleared version of May 24, 1981

DDS1.13 October 12, 1977 31
If the keyword is displayed white-on-black, the corresponding information is displayed in the data area,
otherwise not.

There are 6 keywords that control other aspects of how the data are displayed:
"(marked)" - if turned on, DDS only displays marked files (see sec. 1.4 below)
"(small)" - if turned on, DDS uses a smaller font for the data, which allows more data to appear on
the screen (see sec. 3 below for how to tell DDS the name of the font)
"(packed)" - if turned on, DDS displays several files per lineif possible (not implemented yet)

"(times)" - in conjunction with "created", "written", "read", or "referenced”, shows thetime of
day aswell asthe date

"(browse)" - if turned on, then when "contents" is turned on, DDS only displaysthefirst 5 lines of
text files and the message "*** binary file***" for binary files, instead of the complete contents of thefile.

"(chart)" - if turned on, changes the data display to be a chart made up of boxesin which the
height of the box is proportional to the filelength. (Try it -- you'll like it.)

When the cursor is positioned over a keyword name, RED turns the keyword on; BLUE turns the
Eeyworg oﬂ;ic When the cursor is over the word "Show:" at the upper |eft of the keywords, BLUE turns al
eywords off.

There are currently 8 keywords that control sorting of the data:
"name" - aphabetic order by name (upper and lower case |etters are equivalent)
"extension" - aphabetic order by extension
"created", "written", "read" - the corresponding date and time
"referenced” - the date last referenced
"length" - the file length
"seria" - thefile's serial number (not of general interest)

The keywords which are displayed white-on-black are those actually used to sort the data area. They
are displayed in the order most- to least-significant criterion, e.g. "extension™ followed by "name™" means
sort by extension first, then sort files with the same extension by name. Following each keyword, whether
active or not, is an arrow which indicates whether the sort is to be in ascending (upward arrow) or
descending (downward arrow).

When the cursor is positioned over a sorting keyword name, clicking RED turns the keyword on and
adds it to the list of white-on-black keywords actually used for sorting; clicking BLUE turns the keyword
off and removesit from the list; clicking Y ELLOW inverts the direction of the arrow, regardless of
whether the keyword isin the list. When the cursor is over the words " Sort by:" at the left of the sorting

keywords, BLUE turns off al sorting criteria

Since sorting may take along time and it is easy to request sorting by accident, you can abort sorting at
any time by typing any character. Be sure the cursor is not in the data area when you do this: if it is, DDS
may start the sort over again!

Whenever the cursor moves into the data area, regardless of whether any mouse buttons are down,
DDS repaints the display to be as specified by the viewspecsiif the viewspecs have changed since the last
time the display was repainted.

1.2 The selspec area

The selspec area contains two expressions which defines what subset of the directory will actually be
displayed in the data area. These expressions are built up from name patterns which are similar to those
recognized by the Alto Executive. More precisely, a name pattern is a sequence of characters which may
contain "*"sand "#'s. "*" matches any sequence of charactersin a name (including no characters at al),
"#' matches any single character. Upper and lower case letters are not distinguished. Note that DDS

deletesthefinal "." from file names. Here are some examples of name patterns and what they match:

* BC All fileswith extension BC (or bc, bC, or Bc).

*B All fileswith extension B.

* B* All fileswhose names contain the string .B -- thisincludes all files with extension Bsomething,
but also includesfileslike THIS.BINARY.THAT.

* B# All fileswhose extensions consist of B and one more character.

Cleared version of May 24, 1981
DDS1.13 October 12, 1977 32

* All thefilesin the directory.

Y ou can build up more complex expressions using the words "and", "or", and "not", and parentheses.
Here are some examples of such expressions and what they select:

LPD* and not *.temp
All files beginning with LPD, except those with extension temp.

*.memo or *.memo$
All files with extension memo or memo$.

(*.BT or *.BS) and not X*
All fileswith extension BT or BS, except those beginning with X.

The upper expression in the selspec areais called the selspec; the lower oneis called the context. (The
two together are simply called the selspecs.) Only files which satisfy both expressionswill be displayed.
Theideaisthat if you are going to be working on memos, for example, you can set the context to
"* . memo" and use the selspec to further select within this set. As another example, if thereis some set of
files you want not to see (like "*$"), you can set the context to "not *$".

To change the sel spec or the context, point at it, or at the word " Selspec:" or "Context:", and click
RED or YELLOW. Thiswill cause it to change to white-on-black. As soon asyou start typing, the old text
will vanish and what you type will appear white-on-black in its place. Eventually you must type one of the

following three things before you can point anywhere else or select any commands (see sec. 2 below):
<return> confirms the change, and repaints the display to reflect it.
<esc> isequivaent to *<return>, i.e. it adds a* to what you have typed and then confirms the change.
 aborts the typein and restores the old selspec or context expression.

See section 3 below for how to get the selspec and/or context initialized automatically to something
other than "*" when you first enter DDS.

The third line of the selspec areais a message of the form "nnn files are selected, of which mmm are
marked" where nnn is the count of files selected by the current selspec and mmm is the count of those
which are marked (see 1.4 below). If there are marked files not selected by the selspec (again, see 1.4), the
message "there are kkk files marked but not selected" also appears. While DDS s sorting data, the

message "Sorting ..." appearsin thisareain place of the file counts.

1.3 Thedataarea

As mentioned above, whenever the cursor moves into the data area, DDS regenerates the display if
necessary to conform to the current viewspecs.

The left edge of the data areais a scrolling bar which works the same way as in Bravo: clicking RED
scrolls up, clicking BLUE scrolls down, and clicking Y ELLOW jumps proportionately to the vertical
location in the window. A hollow arrow in the left margin shows where in the list you are positioned: if the
arrow is at the top, you are at the beginning of the list; if the arrow is at the bottom, you are at the end.
Theideaisthat if you were to move the cursor to this arrow and click YELLOW, thelist would stay

positioned just asitis. (Thisfeature may appear in Bravo some day too.)
If you are positioned at the beginning of the list of selected files, DDS displaysthe message ™ "~~~~~

BEGIN ~~~~~ " at the head of theligt; if not, DDS displays "~~~~~nnn filesnot shown ~ ~~~~~
indicating the position within the list of the first file actually shown on the screen (e.g. "2 files not shown"
means the first file on the screen is actualy the third in thelist). Similarly, if the last file shown on the
screen isactually the last filein thelist, DDS displays " END " below it.

A vertical strip at the right edge of the data areawill be used in the future to control the formatting of
the screen into windows. Currently the cursor changes shape when it isin this area, but the buttons have
no effect. Another vertical strip just to the left of this oneis used for mass marking and unmarking of files:

see the following section.

1.4 Marking files

Cleared version of May 24, 1981

DDS1.13 October 12, 1977 33

DDS provides afacility for marking any set of filesfor later processing by commands such as
<Delete>, <Send to Maxc>, etc. Marked files are displayed with asmall dark arrow in the left margin, and
acount of how many marked files are in the current selected set is maintained in the selspec window.
When the cursor is in the data area of awindow, other than the right or |left edge areas, the mouse buttons
control marking and unmarking of individual files: RED marks the file on whose line the cursor resides;
BLUE unmarksthefile. When the cursor isin the vertical strip about 1" in from the right edge of the
screen, the cursor changes to the word "ALL", and the buttons mark and unmark files en masse: clicking
RED marks all the files selected by the selspecs; clicking BLUE unmarks all the files.

Note that files may be marked even though they are not selected by the current selspecs, i.e. marking
is associated with the file rather than the display. (If this proves confusing it will be changed.) The count
of "files marked but not selected" in the selspec arealets you know when there are marked files not
selected by the current sel specs.

Since marking or unmarking individual files occurs as soon as the button is depressed, you can hold
down RED or BLUE and slide the mouse (slowly) in the vertical direction to mark or unmark a group of
adjacent files.

The marked file counts in the sel spec window are adjusted as soon as afile is marked or unmarked,
but if the "marked" viewspec is on and you unmark afile, you must scroll the data to get the unmarked

file(s) deleted from the display.

2. Commands

The command area at the top of the screen consists of four parts:
1) A header with the DDS version humber, time of day, and count of free disk pages;
2) A type-in area, where typed characters appear;
4) An error message line;
3) A menu of commands, with each built-in command being enclosed in angle brackets <>.

When the mouse is in the command menu area, RED selects a command for subsequent execution:;
the selected command is displayed white-on-black, and any previously selected command is deselected.
BLUE deselects the currently selected command and selects the default command <Quit>. Typing <esc> or
<return> finally initiates the command: you can freely select or deselect commands, type and edit your
type-in, change viewspecs, etc. up to that moment. For commands which do not require type-in, you may
also initiate the command by clicking Y ELLOW with the mouse in the command menu area. The cursor
takes the shape of acircle with a cross when thisis allowed, and a circle with a dot when it is not.

Some commands require or allow type-in before the final <esc> or <return>. Y ou may type at any
time. All typed characters are accumulated in the type-in area just below the header until the <esc> or
<return>. Control-A (or backspace), control-W, control-Q, and are available for editing asin Bravo.
DDS displays avertical bar when it iswaiting for your typing, and of course you can "type ahead" while
DDS is processing acommand. However, as for selspec and context changes (sec. 1.2), once you have
started to type, you must either confirm the command with <esc> or <return>, or abort with , before
you can select another command or another place to type (selspec or context).

When you have selected a command with RED, then when you release the button, DDS may display
something in the type-in areawhich is adefault for that command. If you want to execute the command
with that default type-in, you can just confirm it (with <esc>, <return>, or Y ELLOW); otherwise, the
default disappears as soon as you start typing, just like the old selspec or context.

In the description of commands below, "something” following the command name means that DDS
expects you to have typed something before the final <esc> or <return> that initiates the command,;
"optional-something" means you may type something or not. To help you remember, al the commands
that require type-in end with "...", and those which alow but do not require type-in end with "[...]".

Many commands operate on a set of files: they use precisely those files which, at the time you type the
final <esc> or <return>, are both selected (i.e. match the selspec) and marked. "Filename-1 ... filename-n"

in the descriptions below refer to these files, which are also called the "designated" files.

Cleared version of May 24, 1981

DDS1.13 October 12, 1977 34
DDS presently has two classes of commands: those which leave you in DDS after execution (internal
commands), and those which send you back to the Alto Executive (external commands). DDS has a fixed
collection of internal commands, but you can add new external commands of your own: see section 3
below for how to do this. For external commands, DDS saves away a command line so that if something

goes wrong, you can execute the command again by typing @DDS.CM @<return> to the Executive.

2.1 Internal commands (those which leave you in DDS)

<Put onfile ...> "filename" writes on the file named "filename" (in text form) the contents of the
window. DDS also writes a header with your name, the disk name, and the date and time. The default for
"filename” is "Dir.Lst", an arbitrary name which DDS supplies so that you don’'t have to make one up.

<List onfile...> "filename" writes on the file named "filename" (in text form) the names of the
designated files, separated by blanks. This makesit easy for you to make up an @-file for the Executive by
adding a command name to the front of thisfile. The default for "filename" is"Dir.Cm", an arbitrary
name which DDS supplies so you don’t have to make one up.

<Delete> deletes the designated files. Thereis presently no way to un-delete files, so be careful: the
count of marked files in the selspec window isagood clue asto whether you are deleting more than you
want. You can stop a<Delete> at any time by typing any character: of course, some files may already have
been deleted. DDS changes the "free pages' count at the top of the screen asit deletes each file.

<Rename as ...> "filename" requires that there be exactly one designated file, and changes its name to
"filename”. If thereisalready afile named "filename", <Rename> gives an error message and does
nothing else.

<Initialize [select ...]> "selspec” restores your selspec, context, and viewspecs to what you have

specified in User.Cm. If you typed something, DDS takes that in place of the selspec in User.Cm.
2.2 External commands (those which leave you in the Executive)

<Quit> leaves DDS gracefully. Shift-Swat is also safe whenever DDS is awaiting input (i.e. not in the
midst of sorting, deleting, etc.).

<Bravol/[...]> "optional-switches" gives control to Bravo in the following way:
If there are no designated files, DDS effectively executes "Bravo/switches'.
If there is more than one designated file, DDS gives an error message and does nothing else.

If there isasingle designated file and you did not type anything, DDS effectively executes "Bravo/N
filename", i.e. instructs Bravo to read in thefile.
If there isa single designated file and you did type in switches, DDS executes "Bravo/switches
filename".
<Geard/[...]> "optional-switches" executes " Gears/switches filename-1 ... filename-n", i.e. prints the
designated files.
<Send to Maxc directory <...>> "directory-name" sends the designated files to the directory named
"directory-name" on Maxc, using Ftp. The default for directory-name is the user name on your Alto disk.
If you accept the default, DDS assumes you have already done a L ogin in the Executive to supply the
password; if you supply some other directory-name XY Z, DDS arranges things so the Executive will
prompt you with the message "File XY Z-Password does not exist, type what it would contain” and you
should type in the password for XY Z at that time.
<Send to ...> "name" sends the designated files to the Alto whose nameis "name", using Ftp.
"Name" may be anything acceptable to Ftp, i.e. an Alto name, an Alto number, etc. The default for
"name" is Maxc, which is not really very useful.
<Execute ...> "command" constructs a command line formed from "command" and the names of the
designated files, and then executes the command line thus formed by either jumping directly to the
subsystem or returning to the Alto Executive. (If there are no designated files, DDS produces an error

message "No files are marked" and does nothing else.) The command line is formed in the following way:

Cleared version of May 24, 1981

DDS1.13 October 12, 1977 35

If "command" does not contain any "*" characters, the command lineisjust "command" followed by
the names of the designated files. For example, if files ALPHA and BETA are designated, <Execute >
"BLDR/L" would execute the command line "BLDR/L ALPHA BETA". "String" may contain blanks,
so for example <Execute> "BLDR FOO/S" would execute "BLDR FOO/S ALPHA BETA".

If "command" does contain a"*", DDS divides "command" into 3 parts "s1 s2*s3", where s2 is the
part of "command" extending backwards from the "*" to the first preceding blank (or the beginning of
"command"). Then the command lineis"sl s2f1s3 s2f2s3 ..." where 1, f2, etc. are the names of the files.
For example, if ALPHA and BETA are designated, <Execute ...> "BLDR @* @" would execute the
command line"BLDR @ALPHA@ @BETA@". (If this seems confusing or useless, don’t worry about it

too much -- some future version of DDS may find a better way to provide thisfacility.)
2.3 User-defined commands

If you define your own external commands with a SUBSY STEM S entry in User.Cm as described in
section 3 below, these commands will also appear in the command menu along with all the commands
listed just above. They behave exactly like the <Execute> command with respect to what they do about *'s,
typein, and designated files. For example, suppose your SUBSY STEMS list looks like this:

SUBSY STEMS: Chat, Ftp/-S Maxc, Foo
Then if you select the second command with files Alpha and Beta designated and type Dump/C Blap.DM,
what will actually get executed is Ftp/-S Maxc Dump/C Blap.DM Alpha Beta

2.4 Error messages

Non-fatal error messages appear in bold characters just below the type-in line. Such messages aways
abort the current command and reset the command to <Quit>, but they do not change the state of DDS in
any other way. The message disappears as soon as you type any character.

Fatal errors cause DDSto call Swat. When this happens, the screen changes completely and a
heading like " Swat.21 (August 28, 1976)" appears at the top; the error message itself appears at the bottom
of the screen just above a"#". Fatal errors are never supposed to happen, but if one ever does, summon a
DDS expert. If noneis available, write down the message and what you were doing at the time, and then

type control-K. Thiswill throw you out of DDS and back to the Executive.

3. User profile

DDS examines the user profile (User.Cm) during initialization to obtain the names of the fonts which
will be used to display various things, and other rarely-changed information. Just as Bravo’s section of
User.Cm begins with [BRAV Q] and then follows the format of OPTION:STRING, DDS |looks for [DDS]
and follows the same format for its entries.

The entries which DDS recognizes in User.Cm fall into two classes. "Initialization-only" entries are
those which DDS only consults when you ask it to do afull initialization (by using the FULLINIT: Yes
entry in User.Cm, or the/I switch in the command line, both described below). "Ordinary" entries are

those which DDS looks at every time.

The names of the "ordinary" entries are:

FONT: fontname - specifies the name of the normal font (used for the command window, the file
count line, and the data area).

BOLDFONT: fontname - specifies the name of the bold font (used for error messages, the viewspec
and selspec display, and the headings on the data area).

SMALLFONT: fontname - specifies the name of the small font (used for displaying data when the

"(small)" viewspec is turned on).
SMALLBOLDFONT: fontname - specifies the name of the small bold font.

USERTY PE: type - lets DDS know what kind of user you are. If typeis NON-PROGRAMMER,
DDS doesn’t provide the "pagemap" and "address' viewspecs. If typeis WIZARD, DDS provides some
extrafeatures for debugging which are not described in this document.

WINDOWS: Yes - enables you to use some experimental facilities for splitting the screen into multiple
windows in a Bravo-like manner. These facilitiesare NOT DOCUMENTED, NOT FULLY

DEBUGGED, AND NOT RECOMMENDED.

Cleared version of May 24, 1981

DDS1.13 October 12, 1977 36

RAMOK: Yes - tells DDS to use the RAM on your Alto. If your Alto isastandard one, thiswill make
DDS run about 30% faster; if not, DDS may not run faster, and may not run at all. Try it once (or use the
/R switch in the command line as described below) and see what happens.

FULLINIT: Yes- tells DDS to scan the whole Alto file directory each time it starts up, and reinitialize
the selspec, context, etc. from the "initialization-only" entriesin User.Cm (possibly overridden by the
command line: see sec. 4). FULLINIT: No - tells DDS to update its knowledge of the world from Sys.Log
(an incremental record of file activity since you last ran DDS), and restore the selspec, context, etc. to what
they were when you last left DDS. The default is FULLINIT: No which leads to much faster startup.
BECAUSE OF DEFICIENCIESIN THE ALTO OSAND IN BRAVO, THE RELEASED VERSION
OF DDS FORCES FULLINIT: YES REGARDLESS OF WHAT ISIN USER.CM.

REENTER: Yes- tells DDS that you want to go back to DDS after completion of an external

command. (Normally the Executive retains control after an external command finishes.)

The names of the "initialization-only" entries are;

SEL SPEC: expression - specifies the initial value of the selspec when you enter DDS. If there is
something illegal about the expression, DDS just uses "*" for the initial selspec, as though there were no

SEL SPEC entry in User.Cm.
CONTEXT: expression - specifies the initial value of the context when you enter DDS.

SHOW: list of viewspecs - allows you to initialize the viewspecs. Use commas between viewspecs if
thereis more than one.

SORT BY: list of sorting keywords - alows you to initialize the sorting order. Each keyword may be
followed by """ for ascending order or *_" for descending order (neither means ascending order). Use

commas between keywords if there is more than one.

SUBSY STEMS:; list of commands - allows you to add your own favorite subsystemsto DDS' command
set. Each command may be just a subsystem name (e.g. Chat) or a subsystem name followed by some
initial arguments (e.g. Ftp/-S Maxc Dump/C). Use commas between entries if there is more than one.

A word about fonts: if FONT is not specified in User.Cm, DDS uses the standard system font
SysFont.Al. If BOLDFONT is not specified, DDS fabricates a bol df ace version of the normal font,
whatever it may be. If SMALLFONT isnot specified, the"(small)" viewspec has no effect. If you specify

afont name and thereis no file by that name, DDS just ignores that entry in User.Cm.

4, The command line

Just typing DDS to the Alto Executive will activate DDS in its normal way, in which various aspects of
its behavior are controlled by entriesin User.Cm if present. However, you can override User.Cm by
typing switches following the name DDS to the Executive. Here are the switches currently implemented:

DDS/E - equivalent to REENTER: Yesin User.Cm.

DDS/-E - overrides (cancels) REENTER: Yesin User.Cm.

DDS/I - equivalent to FULLINIT: Yesin User.Cm.

DDS/-I - overrides (cancels) FULLINIT: Yesin User.Cm.

DDS/R - equivalent to RAMOK: Yesin User.Cm.

DDS/-R - overrides (cancels) RAMOK: Yesin User.Cm.

DDS/W - equivalent to WINDOWS: Yesin User.Cm.

DDS/-W - overrides (cancels) WINDOWS: Yesin User.Cm.

DDS/S - causes DDSto write some statisticsin afile DDS.STATS. Not currently of general interest.

DDS/P - causes DDS to write some data regarding disk activity in DDS.STATS. Not of general
interest.

DDS/X - causes DDS to display some mysterious statistics at the top of the screen. Not of general
interest.
These switches can be combined, e.g. DDS/I/R causes both full initialization and use of the RAM.
Switches may be either upper or lower case.

If DDSisdoing afull initialization (either because FULLINIT: Y es appearsin User.Cm or because
you said DDS/1), you may also supply initial selspec and context strings in the command line, and these
will take precedence over those in User.Cm, if any. Unfortunately, the Alto Executive makesit a little
inconvenient to include *’sin these strings, and you can’'t have blanksin them at all. Toincludea*, you

must type '*, e.g. to start up DDS and specify alpha* as the sel spec, you must type
DDY/I apha *

Cleared version of May 24, 1981
DDS1.13 October 12, 1977 37

to the Executive. To specify beta* as the selspec and *.cm as the context, you must type
DDSY/I beta’* '*.cm

5. Record of bug fixes, changes, and enhancements

Release 1.13:
Bugs fixed: user-defined commands were usually ignored even on full init.
Additions: REENTER in User.Cm (sec. 3); /E in command line (sec. 4).
Release 1.12:
Bugs fixed: crash if User.Cm!n existed but no User.Cm.
Changes: fast startup permanently disabled.

Additions: "leader" viewspec (sec. 1.1); <List> and <Initialize> commands (sec. 2.1); user-defined
commands (sec. 2.3, 3); /X in command line (sec. 4).
Release 1.11:

Bugs fixed: falling into Swat when running on non-standard Alto configurations; fast startup now
works.

Changes:. can point at "Selspec:” and "Context:" (sec. 1.2); feedback after deleting each file (sec. 2.1);

user and disk name appear on <Put> file (sec. 2.1); fast startup is the default (sec. 3).

Additions: WINDOWS and RAMOK in User.Cm (sec. 3); switches, initial selspec and context in
command line (sec. 4).

Release 1.10:
Bugsfixed: "Bad VP' and "Bad tree" from <Delete>.

Changes: runs only under Alto OSversion 5 or later; typing in selspec directly (sec. 1.2), "All" strip
for marking/unmarking all files (sec. 1.3, 1.4), new typein scheme for commands (sec. 2); changein <Send>
commands (sec. 2.1).

Additions: "(chart)" viewspec for pictoria file lengths (sec. 1.1); BEGIN, END, arrow for clearer
indication of position within datalist (sec. 1.3); default typein for commands (sec. 2); saving command line

in DDS.CM (sec. 2); initializing viewspecs and sorting from User.Cm (sec. 3); fast startup feature (sec. 3).
Release 1.9:

*** There was no official release 1.9.

Release 1.8:

Bugs fixed: stack overflows (really!), "Vstream error” after <Delete>; file name from <Put> wasn'’t
getting added to data base.

Changes: runs under new Alto Operating System; "contents" viewspec shows the whole file (sec. 1.1);
Enarki r;g all filesis now donein selspec area (sec. 1.4); error message line moved to just below type-in line
SEC. 2).

Enhancements: "referenced", " (browse)", and "(small)" viewspecs (sec. 1.1); interrupting sorting by

Cleared version of May 24, 1981

DDS1.13 October 12, 1977 38
typing (sec. 1.1); context expression (sec. 1.2); initiating commands with YELLOW in command menu
(sec. 2); <Context> and <Rename> commands (sec. 2.1); interrupting <Delete> by typing (sec. 2.1);
SMALLFONT, SMALLBOLDFONT, SELSPEC, CONTEXT, USERTY PE optionsin User.Cm (sec. 3).
Release 1.7:

Bugs fixed: "Break at 0" or "Break at 1" during <Delete>; occasional stack overflows ("Break at
getframe+36").

Changes:. error messages now appear in their own area (sec. 2.2); cursor need not be in the window
when confirming a command (sec. 2).

Enhancements: documentation sec. 2 has been expanded and improved to clarify the notion of
designated files.
Release 1.6:

Bugs fixed: DDSwould go into SWAT "Break at getframe+36" (stack overflows); also occasional
"Bad vp" or "Vstream error" messages. A couple of typosin the documentation also fixed.

Enhancements: blinking caret for type-in (sec. 2); complex selspec expressions (sec. 1.2); count of
marked files not selected (sec. 1.2, 1.4).
Release 1.5:
(Cha)\nges: command menu in place of control characters (sec. 2); viewspecs do not require clicking

sec. 1.1).

Enhancements: Delete, Send, Bravo, Gears commands are built in (sec. 2); sorting by serial # (sec.
1.2).
Release 1.4:
y Changes. date-and-time line rearranged; better behavior when displayed properties do not fit on one
ine.

Enhancements: "Sorting ..." message (sec. 1.2); "*" feature in “Execute (sec. 2).

Release 1.3:

Bugs fixed: system would blow up on any attempt to produce an error message such as"Mouseis not
in awindow"; system would sometimes blow up when starting up; the date-and-time line no longer blinks.

Changes: “Execute now only processes marked files (sec. 1.4, 2); sorting by extension is implemented
(sec. 1.1).

Enhancements: marking individual files (sec. 1.4); displaying the file count (sec. 1.2, 1.4); "pagemap”

viewspec (sec. 1.1); user-selectable fonts (sec. 2.1).

Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 39

DMT, Peek, PeekSum

This documentation describes the operation of three related Alto Subsystems. DMT, the Memory/Control
Ram diagnostic; Peek, the program to which DMT reportsits findings; and PeekSum, the program which
summarizes the reports collected by Peek.

1. Creating a Peek Disk

Y ou should devote a separate disk to Peek. Boot files can take up alot of space and the Peek report file
can get quite large over along holiday weekend if your network has many hosts. To avoid coming in on
Monday and discovering your Peeker in Swat out of disk space, clean the disk out regularly. Peek
automatically keeps its network directory and boot files up-to-date, so building a new peek disk amounts to
building an bare disk (OS, Exec, Ftp, Empress, perhaps Bravo), getting Peek and PeekSum and just

running it: it doesthe rest. | have written a canned procedure for building a Peek disk from scratch:

1) Boot an OS from the net and respond 'Y es' when it asksif you want the long installation dialog,
and’'Yes when it asksif you want to ERASE the disk.

2) When the erase procedure finishes, retrieve [Maxc]<Alto>PeekDisk.cm and invoke it by typing to

the Exec:
>@PeekDisk.cm@

3) When the smoke clears, install your printer’s name in the [HardCopy] section of user.cm and re-
install Bravo. If you aren’t on the west coast, change the ZONE parameter (e.g to +5:00 if you
are on the east coast).

2. History

Chuck Thacker made DMT (early 1973) by combining many small diagnostics which he had developed to
stress main memory using certain emulator instructions. There were originally two versions: PMT (Printer
Memory Test) which logged statistics on the Diablo printer; and DMT (Display Memory Test) which used
thedisplay. Later (late 1973), an Ethernet driver was added to DM T, Bob Metcalfe wrote Peek, and Chuck
wrote PeekSum. At this point, development and maintenance of PMT stopped. Still later (mid 1975),
David Boggs added a Control Ram test to DMT, rewrote the Ethernet driver and took over maintenance.
Nate Tobol, who designed the Alto I memory system, wrote the Alto 1| memory test (mid 1976) which was
merged into DMT. David rewrote Peek and took over its maintenance. Doug Clark extended PeekSum,

and took over its maintenance (early 1977).

3.DMT

DMT iswritten in the Alto BCPL-compatible variant of machine language and is distributed as a type-B
boot file (see the BuildBoot documentation for more details).

When DMT isrunning, the Alto screen is black with awhite cursor changing position once each time
through the main loop. For Alto | the cursor flips at random intervals; for Alto 1 the interval is about 1
second. On Alto I1swith extended memory, the cursor contains a number between 0 and 3 indicating

which bank it is currently testing. DMT contains a TeleSwat server. The key combination <Control><L eft-
Shift><Swat> causes DMT to stop and enter the debugger.

Cleared version of May 24, 1981

DMT, Peek, PeekSum February 12, 1979 40
3.1. Statistics
If the’S key isdepressed, DMT will display (and transmit on the Ethernet) the statistics it has
accumulated. The display looks something like this:
DMT of 25 Dec 78, Alto || XM 241. 456 blocks, testing 17341 to 176777
0 bad main memory chips
0 bad control memory chips
If there are errors, aline describing each type of error will be displayed, and then, if the errors can be
resolved to a particular chip, the Card, Row and Column (for Alto 1), or the Card and Chip number (for
Alto I) will be displayed. Thisdisplay will stay up aslong asthe"S' key is depressed. Periodically the
statistics are automatically broadcast on the Ethernet and appear briefly on the screen.
3.2. Booting in Response to Packets
If DMT receives arequest-for-connection (RFC) Pup and DPO is ready, then it boots the Operating system
?nd passes it a message of type eventRFC. If the Executive section of user.cm contains an entry of the
orm:
eventRFC: <arbitrary command line>
then the executive will consume the event and execute the command line. << If DMT receives an EFTP
data packet with sequence number 0 and DPO is ready then it boots the OS and passes it a message of type
eventEFTP. Thisisincluded so that printers (which use the EFTP protocol) can drop into DMT when
nobody is using them, and automatically wake up when someone wantsto print. >> If DMT receives a
Kiss-of-Death Pup for socket 4 (miscellaneous services), then it EtherBoots the file whose ID is contained
in the low 16 bits of the Pup ID.
4. Peek
Peek opens several windows on the display. The top window isfor user commands. Thereis currently
only one: Quit. The next window displays the release date of the program, a digital clock, the Pup
internetwork address of the machine, and the number of free pages on the disk. The next window Is
opened by the Peek Server and displays DMT reports as they arrive.
Peek |oads special Ethernet microcode so that it can receive Peek reports directed to host 376b as well as
conduct business asitself. If it can’t load the ram, it runs the Ether interface promiscuously and filter
packets in software. More diagnostic reports will be lost and booting may be slower, but things should till
work.
Peek has alot of options, and reads User.cm to find out what to do. An example of the Peek slice of a
User.cm fileis given below. In addition, it contains a host of network servers:
4.1. Peek Server
If thereisaline of the form "Peek <filename>" in User.cm, Peek will start up a Peeking process which will
listen for raw Ether packets of type PeekReport and write them on <filename>. The filename should be
"Peek.reports since PeekSum, described below, assumes this (I was just feeling general the day | wrote that

code).

Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 41

4.2. Event Report Server

Peek implements the Pup Event Report protocol. For each line of the form "ERP <number> <filename>"
in User.cm, Peek will instantiate an event report process which will listen on socket <number> and write
event reports on <filename>. The default address which the OS usesis Maxc, so | don’t expect many

people will use this, however it might be helpful for an Alto site that isn’t connected to the Parc Internet.

4.3. Pup Echo Server

Peek contains a Pup Echo server running continuously in the background. PupTest and GateControl
contain Echo users with which you can pokeit.

4.4. Raw Ether Echo Server

Peek also contains araw Ethernet Echo server. Thisisthe echo protocol used by EDP and NEDP, the
diagnostic programs for the Alto and Nova Ethernet interfaces.

4.5. Boot Server

Peek implements the protocol s necessary to be an Alto boot file server. For each line of the form "Boot
<number> <filename>" in User.cm, Peek will send <filename> when it receives a Mayday packet requesting
bootfile <number>. If thefileisn’t on the disk, or if Peek discovers aneighboring Boot server with a later
version, your Peek will aguire it. The more boot files you tell Peek to keep, the less space thereis for Peek
reports.

4.6. Name Server

PeekSum consults the file " Pup-Network.Directory’ to get the owner and location of Altos. Peek contains a
name lookup server and in addition to answering lookup requests, keeps its copy of the directory current.

4.7. Time Server

Peek also has atime server. Alto timeis based on Greenwich Mean Time, and local users must know their
local time zone and the beginning and ending days of Daylight Savings Time to convert to local time.
Time servers are the source of thisinformation, so it isimportant that the time parametersin User.cm be
correct. "Zone +8:00" means that the peek disk is 8 hours west of Greenwich -- in the USA Pacific Time
zone. The standard User.cm contains this, so you must edit it if you live elsewhere. The Daylight Savings
Time parameters are set by theline "DST 121,305", and only change when Congress messes with time.

Keep an eye on your local CongressPerson.

4.8. User.cm Example

Below is an example of the Peek part of aUser.cmfile. Inthisexample DMT statistics go to the file
"Peek.reports’, Event reports addressed to socket 30 (swat error reports) go to the file’ Swat.ERP’, and some
maintenance-type boot files are available for diagnosing Altos. Notice that al characters between a
semicolon and a carriage return are considered to be comments and ignored by Peek (thisis not true for al
programs that use User.cm).

[EXECUTIVE]

...executive stuff...

[PEEK]

; Syntax:

Boot <boot file number> <filename>

Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 42

; ERP <socket number> <filename>

; Peek <filename>

; Correction <seconds per day> (decimal) [positive makes clock go faster]
; DST <beginning day> <ending day> (decimal)

; Probe <hours> (decimal)

; Zone <sign><hours>:<minutes> (decimal, plusiswest of Greenwich)

Peek Peek.reports ; for PeekSum.run
ERP 30 Swat.erp ; Swat Error reports

Zone +8:00 ; USA Pacific Time Zone
DST 121,305 ; DST begins on day 121 and ends on day 305

Boot 0 DMT.boot

Boot 5 CRTTest.Boot
Boot 6 MadTest.Boot
Boot 10 NetExec.boot
Boot 11 PupTest.boot
Boot 12 EtherWatch.Boot
Boot 13 KeyTest.boot
Boot 15 DiEx.Boot

Boot 17 EDP.Boot

Boot 20 BFSTest.Boot

[BRAVQ]

...bravo stuff...

Peek writes the contents of User.cm into the Command window as it reads through the file. If thefile has
bad syntax, Peek will call Swat with a description of its complaint (e.g. "[ReadNumber] - number contains
illegal characters' if it is expecting a number and reads something other than 0-7). Typing <ctl>-U will
restore the user display. Thelast item in the Command window is what Peek is having trouble with.
The source code for most of the serversin Peek is borrowed from the gateway program, and so there are
some more specialized commands which you can ignore and which default to reasonable actions. I
mention there here for completeness. "Correction +20" means the Alto’s clock looses 20 seconds per day,
and the time server should correct by gaining 1 second at 20 equally spaced times during aday. "Probe 1

means attempt to locate newer versions of boot files and the network directory once an hour.

5. PeekSum

PeekSum reads the file "Peek.Reports' (the output of Peek) and constructs a summary of the errors
reported by DMT (see above) for each Alto. PeekSum writes on the file ' PeekSummary.Tx’ atabulation of
the error reports, together with the owner’s name and the machine’ s location, retrieved (if possible) from
the file "Pup-Network.Directory", which is maintained by Peek, as described above.

As Peek is started and stopped, it writes short messages to this effect on Peek.Reports; these messages are
reproduced at the beginning of PeekSummary.Tx. The number of the local network is also written. If
Peek.Reports contains multiple reports from a single Alto (which is usually the case), PeekSum will record
the largest number of errors of each type, over all such reports.

PeekSum will complain and then gracefully stop execution if the files Peek.Reports or PeekSummary.Tx
are unopenable for some reason. If Pup-Network.Directory is unopenable or absent, the ouput file
PeekSummary.Tx will not include names and locations of Altos, but will contain error reports grouped by

Alto host number.

To run PeekSum, just type:

Cleared version of May 24, 1981

DMT, Peek, PeekSum February 12, 1979 43
>PeekSum
and the program will go about its business. When it has finished, PeekSummary.Tx should be printed on

your local printer.

Cleared version of May 24, 1981
DPrint March 23, 1977

DPrint - Diablo Printer Program

This program types text files on a Diablo printer connected to the Alto. It is avanilla program with
few features. Use Bravo if DPrint’ s facilities are inadequate.

The syntax of the command lineis:
DPrint/switch parameter/switch ... filename filename ...

The only switch permitted on the word "DPrint" is"/P", which instructs DPrint to pause before
beginning of each page.

One or more parameters may optionally be specified:

n/'W Setstheline width to be n characters. Lineslonger than thiswill wrap around to the
line. Thedefault is75 characters.

n/L Setsthe page length to be nlines. This determines the point at which printout will pause
/P was invoked) and also controls the amount of paper spewed when aform-feed
encountered in thefile. The default is 66 lines (11 inches) if /P isnot in effect or 57 lines
inches) if itis.

n/M Setsthe left margin to be n units of 1/10 inch from the hardware left margin of the
The default is zero.

Command line parameters without switches are assumed to be names of text filesto be printed. If a
cannot be found or a parameter is otherwise incorrect, you will be prompted for the correct value.

When DPrint pauses, you may either type space to resume printout or "Q" to abort it and quit out of
program. DPrint will pause immediately if you strike any key whileit is printing, and also if the
becomes not ready.

very

the

next

(f
IS
(9.5

printer.

file

the

printer

Cleared version of May 24, 1981

EmPress December 14, 1977 45
EmPress

EmPress has several functions. Its primary useisto convert ordinary text filesinto Press format, and to

send the converted files to a Press printing server. Optionsinclude the ability to produce a Press file

without transmitting it, and to transmit Press files that have been previously produced. Additional features

provide for merging several Press page images into asingle Pressfile, and for personalizing individual

copies of documents.

EmPress can distinguish Press files from text files, so it need not be told whether to convert. As atext file

converter, EmPressisintended for formatting program listings and supports only simple formatting

operations such as Tab and FormFeed. Bravo trailers are ignored.

Joe Maleson wrote the original program. David Boggs made the modifications that allowed transmission of

filesto printers. Rick Tiberi produced the current version, adding the Press file merger and copy

personalization facilities, and curing many problems.

Standard Case:

To send one or more Press or text filesto your default Press printer, using a default font to convert the text
files, type:

empressfilel file2 file3 ...
and read no further. The more general command line to EmPressis:

EmPress[/<global switches>] [<parameters>/<switches>] inputFiles

The square brackets denote portions of the command line that are optional and may be omitted. EmPress

will print up to 100 input files.

Each global switch has a default value which is used if the switch is not explicitly set. To set aswitch to

'false’ proceed it with a’minus’ sign; to set it to "true’ just mention the switch.

Switch Default Function

IT true [Transmit] will send the resulting press file to a printer.

/number 8 (text files only) tab width -- see below.

/H true (text files only) [Headings] will print a heading and page number on each page.

/D false (pressfiles only) [Date] will add the machine-readable time stamp to Press files
that need them and don’t have them. This allows Press files created by old
software to print correctly. If your Press file prints with improper line
justification and character spacing, try this switch before giving up.

2 fase [Duplex] will format text files for 2-sided printing and inform the server to print
the transmitted file duplex.

/S false [Secret] will send the current Alto password to the server, requesting that the
server not print the files until the password is entered at the server workstation.

W false [Wait] after sending the files, will wait for input from the keyboard to check
completion status of the print request. If the user confirms with a RETURN,
Empress will check and print the status of thefile, if possible. DEL exits from

Empress.

Cleared version of May 24, 1981

EmPress December 14, 1977 46

EmPress recognizes a number of optional parameters which can be set from the command line.

Parameters set from the command line take precedence over defaults built into the program.

Parameter Default Function

string/O Swatee [Output] the name of the output file. EmPress uses Swatee unless told
otherwise, since the output pressfile is usually sent to the printer and then
discarded.

number/C 1 [Copies] the number of copiesto print.

string/H none [HostName] the name of the printer. This takes precedence over the name
following PRESS: in the [HardCopy] section of User.cm.

string/I none [Input] the name of an input text file to be formatted and saved or
transmitted, or of an input Press file to be transmitted.

string/S none [Secret] a password to be sent for confirmation, as the global /S switch
above.

string/N none [Name] the name of a user for whom the file is being printed, to be sent to
the printer for direction to that user’ s mailbox.

string none astring without any switchesis assumed to be an input file.

The remaining switches apply to text conversion only.

number/T 8 [Tab] the width of atab character in multiples of the width if a space
character.

string/F Gacha [FontFace] the font to use. Y ou must have ' Fonts. Widths' on your disk.

number/P 8 [PointSize] the point size of the font.

Cleared version of May 24, 1981
EmPress December 14, 1977 47

User.Cm Entries

The following is a sample User.Cm hardcopy section, configured to use the Menlo Press printing server as
the preferred printer:

[HARDCOPY]
PREFERREDFORMAT: Press
EARS: Palo

PRESS: Menlo

PRINTEDBY: "$"

FONT: TIMESROMAN 10 MIR

The FONT entry specifies that TimesRoman10i (italic) should be used as a default font instead of Gacha8
(EmPress’ s default choice). The second, point size argument, and the third, face specification argument are
optional. The face argument contains three letters specifying weight (M, B, or L), slope (R or 1), and
expansion (C, R, or E), respectively.

The PRINTEDBY field, if present, specifies the name to be used in the Name field on the break page. The
curreP_t disk login name will replace the character $. EmPress chooses "$" as a default in the absence of a
specification.

Cleared version of May 24, 1981
EmPress December 14, 1977 48

Program operation

When EmPress encounters a Press file in the input list, it transmits (or stores) any text file that it is
currently converting, then transmits the Pressfile. A new break page will be printed for each Press file,
containing that file's name. EmPress will override the "created by" field of a Pressfile with aname derived

as described above. It will fill in blank file name and date fields with the obvious defaults. If copies are
specified in the command line, EmPress will override the number of copies specified in the Pressfile with
the command line value.

EmPress uses the file Swatee for temporary storage while converting text for transmission. If in so doing

Swatee becomes nearly full, EmPress will suspend formatting, send what has accumulated so far, and then

press on. This has two desirable consequences: 1) avery full disk will not run out of space and 2) some
pi pelrini ng can take place since the printer can munch on the first chunk while EmPress empressifies

ancther.

Press File Merging

EmPress will merge severa one page Press filesinto a single one page Press file. This allows the outputs of
Bravo, Sil, Draw, Markup, etc., to be merged without a separate pass through Markup. One additional text
or Press file may also be submitted, and it will be printed following the one page merge result.

One invokes the merge feature through one additional global switch, and one additional local switch:

Additional Global Switch:

/m Merge. All subsequent input files that are not qualified by switches must be single-page Press
files. They will be merged to form a single (cover) page in the Pressfile result, containing al
their Press specifications. This switch also conditions Empress to expect the additional local

switches, described just below and in the Personalization section.
Additional Local Switch:
/d Document. This switch may be used to identify an optional main document, when the merge

option isused. The file may be asimple text file or a Pressfile. It will follow the one page
merge result in each copy printed.

Cleared version of May 24, 1981

EmPress December 14, 1977 49
Personalization

Thisrelatively specialized feature is provided to allow the personalization of individual copies of a
document. Each copy of the document might contain, for instance, the name and address of the person for
whom it isintended. Up to six lines of personalized information can be specified. Thisinformation will
replace distinctive "key strings" that have been placed in the cover page (merged) filesor in the main
document.

The key strings must appear in contiguous groups of up to six lines each. The personalized information for
the current copy, specified in a paragraph of a special Bravo-format addressee file or in the command line,
will replace the key stringsin each group, line for line. Thus the personalized information may occur more
than once in each document (Dear Mr. PARC/SDD: ... yes, you and all the members of the PARC/SDD
household can enjoy the benefits of ...). Lines in the addressee paragraph for which no keys are provided
are discarded.

The default key is"<", forty hyphens ("-"), then ">". If the string "<--title-->" appears anywhere in the

document, the name of the "main" document (the one specified using the "/d" switch) will replace it.

The"/m" (merge) global switch must be specified before any of these personalization specification
switches are valid.

Additional Local Switches:

/K Key. Theitem is akey that replaces the default (see above).

/a Addressee. The item is either the name of a Bravo format file containing alist of addressees --
one per paragraph, one line in each paragraph for each key line in the cover page or main
document -- or aliteral addressee, enclosed in double quotes. In aliteral, use hyphens where

you wish blanks to appear in the name.

Cleared version of May 24, 1981
ERP February 17, 1979

ERP - Event Report Protocol Server

ERP is an event report protocol server. You invoke it by saying to the Exec:

ERP <socket> <filename>

where <socket> is a 16-bit socket number (the high 16 bits are zero), and <filename> is the name of afile
your disk. It startsa Event report server on <socket> which appends events to <filename>. This program
merely athin veneer on the PUpERPServ package, whose documentation you should consult for the
format.

50

on
is
file

Cleared version of May 24, 1981
Executive User's Guide June 26, 1980 51

Executive User’s Guide

Executive, the Alto command processing subsystem, is the intermediary by which Alto users generaly
invoke other subsystems and ask simple questions about the state of the Alto file system. It isjust the same
as any other subsystem, except that its name is known by the Alto Operating System, and it isinvoked by
the Operating System whenever the Bepl operator "finish" or equivalent is executed. This document

describes version 11 of Executive.

1. What It Does

The operation of Executive proceeds thus:

1. It reads any leftover unexecuted commands from afile called Rem.Cm into a main memory command
queue.

2. It begins building up a command line (terminated by a CR). If the command queue empties before the
command line is terminated, additional characters are read from the keyboard until a CR Isread. Editing is
done during this phase. If the command line has been empty for about twenty minutes, the user is assumed
to be occupied elsewhere, and the diagnostic program Dmt.Boot isinvoked either from the disk (if it can
be found) or from the Ethernet.

3. The edited command is placed at the front of the command queue and the command queueis analyzed
for *-, #, and @-substitutions. If something of the form @filename@ is discovered in thefirst linein the
command queue, it is replaced by the contents of the named file and analysis continues with the first
character of the replacement. Executive makes no attempt to detect or recover from infinitely recursive
replacements. If the characters* or # are encountered in afilename in the first line, the file directory is
used to replicate that filename with appropriate substitutions. This step resultsin a completely edited
command line.

4. Thefirst atom (contiguous sequence of legal file name characters) in the command line is analyzed to See
whether it isthe name of a subsystem in the file directory or the name of acommand internal to Executive
or neither. If neither, then Executive attempts to extend the atom into the name of a subsystem or
Executive command. (The subsystem lookup algortithm is described below.) Failing in this, it complains
and resetsitself. Otherwise the lineiswritten on the file Com.Cm. Then if the first atom was or could be
extended into a subsystem name, the rest of the command queue is written on Rem.Cm, and the subsystem
isinvoked with a Call SubSys Operating System call. If it is an internal Executive command, the
appropriate subroutineis called. Executive passes the switches found on the subsystem name in the user

parameters vector of CallSubSys. See the documentation of CallSubSys for more details.

In parallel with these steps, Executive does a few housekeeping chores:

a. It reads the entire file directory into memory, mergesin the names of user-callable routines internal to
Executive, and sorts the resulting list alphabetically.

b. Having nothing else to do, it puts a line containing a continuously-updating digital clock and the
number of free disk pages on the user’ s screen, and flashes a vertical bar cursor where the next typed

character will go.
A number of characters have special meaning during the editing step (2):

Null:
Ignored

Carriage Return:

Cleared version of May 24, 1981

Executive User's Guide June 26, 1980 52

Terminates the line, beginning step 3.

Control-A:

Backspace:
Removes the last character from the line queue.

Control-W:
Removes the last item which looks like a file name from the line queue.

UpArrow:

Single quote:
Causesitself and the next character both to be appended to the line queue, regardless of what
the next character is.

Control-U:
Signals that at the conclusion of step 2 the line queue is to be written on the file Line.Cm and its
contents replaced by the text "Bravo/n Line.Cm". If one has the proper Bravo and User.Cm,
thiswill invoke Bravo on the command line. (Thisisalso an easy way to build small command
files. Just type the desired command followed by Control-U and CR. Then copy or rename
Line.Cm.)

Control-X:
Performs step 3 on the line queue asit is, returns to step 2. In other words, it eXpands @, *, and
#.

Control-C:

Delete:
Empties out the line queue, starts over again.

Escape:
Interprets the last atom in the line queue as the prefix of afile name; continues that file name
until it is complete or ambiguous. Flashes the screen if it is ambiguous.

?
Interprets the last atom of the line queue as the prefix of afile name; typesout all file names
which begin that way.

Tab:
Same as"?" except it deletes the atom from the line queue after typing the file names. This
would be what one would normally use to interrogate the directory. * and # work as expected.

LineFeed:
If the file Line.Cm exists, its contents are appended to the line queue.

Blank1:

Blank2:

Blank3:

These are the three blank keys on the right side of the Microswitch keyboard, numbered from
top to bottom. These keys behave like LineFeed except the files used are Keyl.cm, Key2.cm
and Key3.cm. These are called "macro keys' and make it convenient to have several frequently

used command sequences available as single keystrokes. (The Control-U featureisa convenient
way to generate the text for these files.)

In step 3, several characters have special meaning:

Semicolon:

Carriage Return:

Up Arrow:

Terminate the line; control goesto step 4.

Cleared version of May 24, 1981
Executive User's Guide June 26, 1980 53

If followed by a carriage return, do nothing. If followed by an up arrow, put one up arrow in
the line queue. If followed by any other character, put both characters in the line queue (Ugh!).

If followed by another "/", this begins a comment, so scan ahead until finding a carriage return
or semicolon. If not, put the"/" in the line queue.

@ o o
Scan ahead until finding another @ (the second @ may be omitted if it comes at the end of the
command). The atom in between is afile name. Replace the @atom@ by the contents of the
named file. If the file doesn't exist exactly as specified, try extending the specification and
forcing a.Cm suffix.

*:

#.
Expand the atom using these characters by making a search through the file directory. * matches
any sequence of file name characters. # matches any single character except a period. File
names are defined to end with an infinite number of periods. The atom is replaced by all file

names matching its pattern. Switches on the atom, if any, are replicated.

Thereis one special character recognized during step 4.

Control-C:
Aborts the command and starts over again. Control-C is effective up until thetime that
Executive gives up control to the subsystem being invoked. If you realize amistakein your
command after typing CR, quickly typing Control-C will abort it. (When Executive's header
line disappears, it istoo late.)
In step 4, one switch is taken to have special meaning on the subsystem name only. The switch /! will set
the pause parameter in the call to Call SubSys to true causing you to enter Swat after your program is
loaded, but beforeitsfirst instruction is executed. This switch, if detected, is removed from the command
line before Com.Cm is created. Thisfeature is extremely useful if your program is hitting a bug before its

first user interaction.

2. Executive Commands

The Executive contains a number of subroutines which can be invoked from the command line. The
commands corresponding to these subroutines can be identified by the extension character "~", which is
illegal in afile name. Executive commands include the following:

Type.~ FileName ...

Display the contents of the named file(s) on the screen. After each page, it asks whether you
want to see more of the current file. A Ctrl-C at this point terminates the entire Type command.
Y ou can type any files, even binary ones, but typing some files will give you more useful

information than typing others.

Delete.~ FileName ...

Removes the named files from the directory and frees their disk space. Use this command very
carefully. Its effect cannot be undone. Typing Ctrl-C will abort the command cleanly between
deletions.

Copy.~ DestFileName _ SourceFileName ...
Copies afile. If there are several SourceFileNames then the copy will contain the concatenation
of theinformation in the source files, in the order listed. In accordance with the Alto File Date
Standard, copying afile preserves the creation date of the file; concatenating files generates a

new creation date.

Cleared version of May 24, 1981

Executive User's Guide June 26, 1980 54

Rename.~ OldFileName NewFileName (or NewFileName _ OldFileName)

BootFrom.

Quit.~

Login.~

SetTime.~

Changes the name of OldFileName. NewFileName must not already exist unless OldFileName
and NewFileName are the same (use this feature to change the capitalization of afile name).

~ FileName [...Sys.Boot]

Initiates a software-simulated bootstrap sequence on the file named by FileName. Most
probably the FileName should have the .Boot extension. Like the OS system call BootFrom
(which it uses) this command does not actually do a hardware bootstrap operation, so it does not
re-initialize any Alto hardware or microcode tasks. If you don’t know what thisimplies, don’t

worry about it.

Has the effect of BootFrom Dmt.Boot. This commences the running of the diagnostic program,
which doesn’t use the Operating System at all. Thisis done automatically after amachine has
been idlein Executive for about 20 minutes. |f Dmt.Boot is not on your disk or you turn the

disk off, Dmt will be loaded from the Ethernet.

Places your user name and password in the system area of main memory for use by programs
which interact with access-controlled resources (like timesharing or file systems, for example).

Setsthe Alto’sinternal time-of-day clock. Thetimeis obtained from the Ethernet if possible.
Failing that you will be asked to supply the time (and possibly time zone) manually in the form
12-jan-78 14:45. Use SetTime/m to bypass the Ethernet and set time manually. Use/z to force
setting of time zone in manual mode. (When Executive is started it examines the time-of-day
clock. If the valueis not reasonable Executive attempts to obtain the time from the Ethernet
before proceeding. If the time cannot be obtained, the time-of-day displayed at the top of the
screen will be "Date and Time Unknown™ indicating that you should invoke the SetTime.~
command manually.) As a side effect of obtaining the time from the Ethernet, Executive learns
the network number of the local Ethernet and displays it aong with the Alto’s host address in

one of the header lines at the top of the screen. A network number of 0 means "l don’t know.".

Dump.~ DumpFileName SourceFileName ...

Writes DumpFile as a structured file (in Dump format) containing the names and data of all the
SourceFiles. Thisisaconvenient way of packaging up a collection of related filesinto a single
composite file that can later be decomposed into its constituent parts. See Appendix A for
details of Dump format. The primary virtue of this particular format is that it is intended to be
compatible with the Dump format of the Data General Nova DOS operating system, and it is
compatible with the Tenex subsystem DUMP-LOAD.SAV and the Dump and L oad commands
in Ftp.

Load.~ DumpFileName
This reads through a Dump format file and creates individual files corresponding to its
congtituent parts. The /V switch causes Load to ask you about each constituent part, whether to
copy it from the DumpFile to an individual file or not. Acceptable responsesare Y, N, and C.
The latter indicates that you would like it to be copied, but into afile with a different name than
that indicated. Y ou are then asked to supply the name you prefer.

Release.~
Tells you the release number and date of Executive. The release number is also shown in the
first Executive herald line, just after the slash following "Xerox Alto Executive."

StandardRam.~
For any Trap except the Swat Trap (#774xx) the Alto microcode sends control of the emulator
task to the microcode Ram for interpretation. StandardRam initializes the microcode Ram to
send control of the emulator task back to the Rom Trap-handling microcode. If you don't
initialize the microcode Ram before executing a program which 1) uses Traps, and 2) doesn’t
initialize the Ram itself, then when the first Trap happens your machine will probably do

something bizarre, but it usually will not destroy disk data.

Cleared version of May 24, 1981
Executive User's Guide June 26, 1980 55

Install.~ FileName[...Sys.Boot]
Causes a customized version of the operating system on the file named by FileName to be
written on the file Sys.Boot. For further detalls, please see the section on "Installing the
operating system" in the Alto Operating System manual.

BootKeys.~ FileName|[...Sys.Boot]

Did you know that by holding down various combinations of keys on the Alto keyboard while
pressing the boot button it is possible to get the Alto to bootstrap load itself from any file on the
disk? (This bootstrap will probably crash fairly quickly on any file except onein .Boot format.)

Bootstrapping the Operating system is simply a special case of this: all keyboard keys up refers
to disk address O, which by convention is where a copy of the first data page of Sys.Boot is
stored. To find out what keys to push in order to bootstrap load other files, you use the
BootK eys command.

Resume.~ FileName [...Swatee]

Thefile named by FileName is patched so that its Swatee file pointer is the same as the current

Swatee file pointer, and then it isloaded in and run. For best results, thisfile should be Swatee,

or acopy of a Swatee. If you want to return to Swat with an old Swatee (for example, originally

you didn’t have theright .SYMSfile) you can say
Copy.~ Swatee _ OldSwatee (no need to do thisif Swateeis already correct)

Resume.~ Swat
Chat.~
Ftp.~
Scavenger.~
NetExec.~
These commands load the corresponding programs from the Ethernet. If you have the .Run file

for one of these, it will be found instead by the normal Executive lookup strategy.

EtherBoot.~ octal number

This command will boot any available Ethernet bootable file provided that you know its
number.

FileStat.~ FileName ...
This command will tell you severa things about afile: its length in bytes, size in pages, serial
number and disk address, creation, read and write dates. If any FileName is of the form octal/s
(or octal1,octal 2/s) the file will be looked up by serial number rather than by name. This is
useful if Scavenger or some other program gives you a serial number without telling you the
name. The forms octal/v and octal/r tell you about the file that owns the specified virtual or
real disk address.

MesaBanks.~ bank specifiers
This command sets the default memory configuration for Mesa programs. Uses and
ihmpl ications of this command are described in the Mesa documentation and will not be covered

ere.

WriteDirectory.~
This command causes Executive to write the sorted version of your directory back onto SysDir
on your disk. Keeping the directory approximately sorted on the disk greatly reduces the time
required for Executive to sort it during initialization. Executive will periodically perform a
WriteDirectory in an attempt to keep the directory reasonably sorted. WriteDirectory also will
compact the directory collecting all the free space at the end and will report several statistics
about directory useage.

3. Subsystem L ookup

Cleared version of May 24, 1981

Executive User’s Guide June 26, 1980 56
Executive recognizes and knows how to invoke several kinds of subsystems. In order to select a subsystem
matching the name given in the command line Executive uses the following agorithm:
1. For each of the strings <null>, ".run", ".image", ".bcd", ".~", "*.run", "*.image", "*.~" and
"* bed" ask how many directory entries are matched by appending the string to the typed name.
As soon as the answer is one the subsystem is found. Note that the question is asked separately
for each extending string and that the questions are asked in the order specified. The order of
the search means that the order of subsystem typesis: Bepl program, Mesaimage file, Mesa bed
file, internal command (the order of Mesa bed files and internal commandsis reversed if the
name is not completely specified).
2. If the subsystem name endsin ".image" it is assumed to be aMesaimage fileand is invoked
using the program RunMesa.run.
3. If the subsystem name endsin ".bcd" it is assumed to be arunnable Mesa configuration.
"Mesaimage" is added to the front of the command and the lookup starts over.
4. Otherwise the subsystem isinvoked directly (if internal) or via CallSubsys. (If the file does not
look like avalid .Run file you will be asked to confirm that you want to try to run it.)
4. User.Cm Entries
The Executive section of User.Cm may contain several commands to the Executive. Most of these are
command lines to be executed if some event is noted (see the Operating System documentation for a
description of events). In addition to standard events, any other event may be specified using the notation
eventN where N is the event number (in decimal).
The command in the line labeled eventAboutToDie: will be executed after the twenty minute timeout
described above but before Dmt isloaded. If you use this feature you should include a Quit.~ asthe fina
command.
The number of text linesin the user command window can be set from User.Cm using the selector
DisplayLines: followed by anumber. You are advised not to set this number higher than its default value
(currently 16), but you might want to reduce the number in order to leave more memory space for your
directory if you have alarge number of files (say, more than 500).
Theline "Screen: Black™ in User.Cm directs Executive to use the display in white-on-black rather than the
normal black-on-white mode.
5. Dump Format
A dump fileis a sequence of blocks of eight-bit bytes. The first byte of each block isthe block type. A
typical dump file might look like:
<name block><date block><data block 1>...<data block n>
<name block><date block><data block 1>...<data block m>
<end block>
Name Block - Type=#377
A name block contains two bytes of file attributes and then the file name. The file attributes are used by
the Nova operating system; Alto Dump.~ sets these bytesto 0, and Alto Load.~ ignores them. The file

nameis a sequence of ASCII characters terminated by a 0 byte.

Cleared version of May 24, 1981
Executive User's Guide June 26, 1980 57

Data Block - Type=#376

A data block contains two bytes of byte count (high-order byte first), two bytes of checksum (high-order
byte first), and a sequence of data bytes. The byte count must be less than or equal to 256 for compatibility
with Novas, and the count does not include the checksum or byte count; only the data bytes are counted.
Novas do not handle data blocks with byte counts of 0 or 1 correctly. Alto Dump.~ will not produce such
blocks unless forced to dump afile whose length is less than 2 bytes. The checksum is a 16-bit add ignoring
carry, over the data and byte count. If the block has an odd number of bytes, the last byte is NOT included

in the checksum computation.

Error Block - Type=#375

Novas generate error blocks. Alto Dump.~ does not. Alto Load.~ terminatesif it encounters one.

End Block - Type=#374

An end block has no contents and terminates a L oad.~.

Date Block - Type=#373

Date blocks with six bytes of date are generated by Nova RDOS. Alto Dump.~ puts the four byte Alto
creation date into the first four bytes and zeros the remaining two. For compatibility with older Alto

implementations, date blocks are optional.

N.B. This appendix is included thanks to David Boggs.

Cleared version of May 24, 1981
Find November 6, 1979 58

Find - afile searching subsystem

The Find subsystem allows you to search text files at very high speed on an Alto. Examples of such files
might be an address/telephone list, a source program, or alibrary catalog.
Find basically looks for all the occurrences of a pattern in afile, just like doing repeated Jump commands
in Bravo. A patternisjust acharacter sequence, except for the following:

#in a pattern means "any character at al", e.g. CAP and CUP count as occurrences of the pattern
CHP.

~ in a pattern means "allow one character in the occurrence to disagree with the corresponding
character in the pattern”. For example, LAP, CUP, and CAT all count as occurrences of the pattern ~CAP
(or CAP~or C~AP). Two ~smean "allow two disagreements’, and so on. Note that "disagreement”
only means substituting one character for another: it does not include insertions (e.g. CLAP for CAP),
deletions (CP for CAP), or transpositions (CPA for CAP).

If you really want to have a pattern containing # or ~, you haveto typea’ beforeit, e.g. to search for
the character sequence ATOM #, you haveto type ATOM "#.

Unless you use the /c (Case) switch described below, upper and lower case letters are considered
identical, e.g. Cap, cap, and CAP al count as occurrences of CAP or of cap.

Unless you use the /s (Space) switch described below, blanks (spaces) in thefile are completely

ignored, e.g. C A P counts as an occurrence of CAP; blanks in the pattern are also ignored.

There are two waysto invoke Find. Thefirst way just searches afile for one pattern:

>Find filename pattern
(Since the Executive does something special about @, #, %, *, *, and ; in command lines, you must
precede any of these charactersin your pattern by a’. Thisisin addition to any 's you may need as
described in the preceding paragraph.) The second way only specifiesthefile:

>Find filename
and Find then prompts you repeatedly for patterns. To leave Find when using it this way, use shift-Swat or
type an empty pattern (just type <return> when Find says Pattern:). You can also use Find to search
severa files together, by invoking it with

>Find/m filenamel ... filenamen
which also prompts you for patterns.

In any of the above command lines, you can also use the /c, /d, and/or /s switches described above, i.e
any of the forms

>Find/s filename pattern

>Find/s filename

>Find/ms filenamel ... filenamen
The switches may be in any order or combination, e.g.

>Find/csm filenamel ... filenamen
tells Find to search filenamel ... filenamen treating upper and lower case as different and not ignoring
spaces. Thisalso appliesto the switches described below.

After completing the search, Find displays at the top of the screen a summary of the form:
79 occurrences, 1200 ms, 150 pages

giving the total number of occurrences, the time in milliseconds, and the number of disk pagesin the file
In the remainder of the screen, Find displays the line containing each occurrence of a pattern, with the
occurrence indicated in boldface. To the left of the line, Find displays the character position in the file
where the occurrence was found. After each screenful, Find waits for you to type <space> if you want
more, or if you don’t.

In addition to displaying matches on the screen, Find always writes the lines containing matches on a file
called Find.Matches. Normally, Find only writes those matches which it displayed, so if you stopped the
display of matches with , only those matches you actually saw will appear on the file. However, if you
use the /a (All) switch, Find will write all matches on the file, not just the ones you saw displayed; if you

use the /w (Write only) switch, Find will write all matches on the file and not display them at al.

Cleared version of May 24, 1981

Find November 6, 1979 59
What Find finds for you isal the "items" containing occurrences of the pattern. Normally an "item" is
just asingle line of text, delimited by <cr> on both ends. However, Find also knows about two other kinds
of items: Bravo paragraphs, and groups of lines separated from each other by ablank line. If you use the
Ip (Paragraph) switch, Find will show (display and write on Find.Matches) the entire Bravo paragraph
containing the occurrence. If you use the /b (Blank line) switch, Find will show everything surrounding
the occurrence up to the next preceding and following blank line.

So that you can examine Find.Matches with Bravo, Find normally removes any character sequences that
Bravo might confuse with its own formatting information. There are two exceptions to this. If you ask for
entire paragraphs (/p switch), Find preserves the formatting. If for some reason you want the characters
around the match copied regardless of their possible interpretation by Bravo (e.g. if you are searching a
binary file or some unusual kind of text file), you can use the /v (Verbatim) switch, which instructs Find
not to remove segquences that look like Bravo formatting; if you do this, you will probably not be able to
read the file into Bravo with the ordinary Get command, but should use the *Z (unformatted Get)

command instead.

Find normally displays, but does not write on Find.Matches, the position of each occurrence within the
file inocta. If youwant this number written Find.Matches as well, use the /o (Octal) switch.

Find produces alarge number of error messages. The messages
Pattern too long
Can't preallocate

RAM full
all mean the same thing, namely that your pattern istoo long or too complicated (unfortunately, it is too
complicated to explain exactly what “too complicated” means). The message

Can't load RAM
means that your Alto has old or non-standard ROMs and Find can’t do what it needsto do: you should

contact a hardware maintainer. (This should never happen on Alto I1's.)

Find has many obvious limitations. They can all be removed if people complain about them. The
following features could also be added upon request:

Boolean combinations of matches, maybe.

Ability to work with Trident disks.

Possibly other features requested by users.
Programmers should note that the file searching capability is also available as alibrary package (called
FindPkg), so programs can use it aswell as people.

Alphabetic summary of switches:
/a- write All matches on file
/b - item = text between Blank lines
/c - distinguish between upper and lower Case
/m - Multiplefiles
/o - write Octal position on Find.Matches
/p - item = Bravo Paragraph
/s - consider Spaces significant
Iv - write Verbatim on Find.Matches (don’t strip possible formatting)
/w - only Write on Find.Matches, don’t display

History of changes:
Release of October 30, 1979

Added /o (write octal position), /v (verbatim output of matches, i.e. don’t flush Bravo formatting), la
(write all matchesto file), and /w (only write matches, don’t display). Fixed bugs which caused display
garbage and occasional crashes when lines were very long, and infinite loop when searching files
containing s. Changed default to remove Bravo formatting from matches file unless/p or /v switch
Set.

Release of January 16, 1978

Cleared version of May 24, 1981
Find November 6, 1979

Added /c (distinguish upper and lower case), /p (item = paragraph), and /b (item = between
lines) switches.

60

blank

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 61

Alto Pup File Transfer Program

FTPisaPup-based File Transfer Program for moving filesto and from an Alto file system. The program
comesin 3 parts:

1) An FTP Server, which listens for file transfer requests from other hosts,

2) An FTP User, which initiates file transfers under control of either the keyboard or the
command line, and

3) A User Telnet for logging into aremote host using the Pup Telnet protocol.

1. Concepts and Terminology

Tranferring afile from one machine (or "host") to another over a network requires the active cooperation
of programs on both machines. In atypical scenario for file transfer, a human user (or a program acting on
his behalf) invokes a program called an "FTP User" and directsit to establish contact with an "FTP
Server" program on another machine. Once contact has been established, the FTP User initiates requests
and supplies parameters for the actual transfer of files, which the User and Server proceed to carry out
cooperatively. The FTP User and FTP Server roles differ in that the FTP User interacts with the human
user (usually through some sort of keyboard interpreter) and takes the initiative in user/server interactions,
whereas the FTP Server plays a comparatively passiverole.

The question of which machineisthe FTP User and which isthe FTP Server is completely independent of
the direction of filetransfer. The two basic file transfer operations are called "Retrieve" and "Store"; the
Retrieve operation causes afile to move from Server to User, whereas Store causes afile to move from
User to Server.

The Alto FTP subsystem contains both an FTP User and an FTP Server, running as independent
processes. Therefore, to transfer files between apair of Altos, one should start up the FTP subsystem on
both machines, then issue commands to the FTP User process on one machine directing it to establish
contact with the FTP Server process in the other machine. Subsequent file transfers are controlled entirely
from the FTP User end, with no human intervention required at the Server machine.

Transferring files to or from a Maxc system or an IFS involves establishing contact with FTP Server
processes that run all the time on those machines. Hence, one may simply invoke the Alto FTP subsystem
and direct its FTP User process to connect to the machine.

In the descriptions that follow, the terms "local" and "remote” are relative to the machine on which the
FTP User program isactive. That is, we speak of typing commands to our "local" FTP User program and
directing it to establish contact with an FTP Server on some "remote” machine. A Retrieve command then
copies afile from the "remote" file system to the "local" file system, whereas a Store command copies a file
from the "loca" file system to the "remote” file system.

Furthermore, we refer to "local" and "remote” filenames. These must conform to the conventions used by
the "local" and "remote" host computers, which may be dissimilar (for example, Alto versus Maxc). The
Alto FTP knows nothing about Maxc filename conventions or vice versa.

The Alto FTP subsystem also includes a third process, called a"User Telnet", which simulates a terminal
in amanner exactly analogous to the Chat subsystem (though lacking some of its finer features). By this
means, you may log in to afile sytem machine to perform operations not directly available viathe basic file
transfer mechanisms. If you log into Maxc, it is even possible to run "PupFTP", the Maxc FTP User

program, and direct it to establish contact with the FTP Server in your own Alto. Y ou should probably not

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 62
try thisunless you really understand what you are doing, however, since the terms "local" and "remote"
are relative to Maxc rather than to your Alto (since the FTP User program is running on Maxc in this case),

which can be confusing.

2. Cdlling the FTP Subsystem

A number of options are available when running FTP. The program decides which parts of itself to enable
and where user commands will come from by inspecting the command line. The general form of the
command lineto invoke FTP looks like:

FTP[/<Global-switches>] [<Host-name> [<Command-list>]]

The square brackets denote portions of the command line that are optional and may be omitted.

Globa switches, explained below, select some global program options such as using the Trident disk
instead of the Diablo. The first token after the <global -switches>, if present, is assumed to be a <host-
name> (a discussion of which appears later in the description of the "Open™ command). The User FTP
will attempt to connect to the FTP Server on that host. After connecting to the server, if a <command-list>
is present, an interpreter is started which feeds these commands to the User FTP. When the command list
is exhausted, FTP returns to the Alto Executive. If no command list is present, an interactive keyboard
command interpreter is started.

Each global switch has a default value which is used if the switch is not explicitly set. To set a switch to

'false’ proceed it with a’minus’ sign (thus FTP/-S means’no Server’), to set a switch to "true’ just mention

the switch.

Switch Default Function

/S true [Server] startsthe FTP Server. The Server isnot started if the User is enabled
and is being controlled from the command line.

/U true [User] startsthe FTP User. Asexplained above, the interactive command
interpreter or the command line interpreter will be started depending on the
contents of the command line.

/C true [Chat] startsthe Telnet. The Telnet is not started if the User is enabled and is
being controlled from the command line, or if the system disk is a Trident.

IT fase [Trident] setsthe system disk to be a Trident drive. The default is 0, but can be
changed by following the /T with a unit number. The unit number isoctal; the
high byteisthe logical filesystem number and the low byteisthe physical drive
number. User and Server commands apply to files on this disk but command

lineinput and log output use the Diablo drive.

/L * [Log] causes all output to the User FTP window to also go to the file "FTP.log"
g p g g
on DPO, overwriting the previous contents. Log istrueif the User is enabled and
is being controlled from the command line.

/A false [AppendLog] enables the log but appends to FTP.log rather than overwriting it.
/E true [Error] causes FTP to ask you if you want to continue when a non-fatal error
happens during execution of acommand line. FTP/-E will cause FTPto recover

automatically from non fatal errors without consulting you.

/R true [Ram] allows FTP to use some microcode which speeds things up sightly. If
your Alto has no ram, this switch isignored.

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 63

/D false [Debug] starts FTP in debug mode.
Therest of the global switches are explained below under * Server Options'.

2.1. FTP User Log

FTP can keep alog (typescript) file for the FTP User window. Thefilenameis’FTP.log'. Itis always
enabled when FTP is being controlled from the command line; otherwiseit is controlled by the /L and /A
global switches.

2.2. Using a Trident Disk

Starting FTP with the /T global switch causes FTP to store and retreive files from a Trident disk. By
default, FTP will open TPO; other disks may be opened by appending their unit numbersto the /T switch.
Thus"FTP/T1" will open TP1, and "FTP/T400" will open logical filesystem 1 on physical unit O.

Accessing afile on a Trident requires more code and more free storage than accessing afile on the Diablo.
Since FTP isvery short on space, only a User or a Server FTP is started when the /T switch is set. The
default isto start a User FTP, but specifying no user (FTP/T-U) or specifying aserver (FTP/TS) will start

aServer FTP instead.

2.3. Server Options

Server options are controlled by switches on the subsystem name and subcommands of the SERVER

keyboard command. There are currently four options:

switch Default Function

none If no server option is specified, retrieve requests (disk to net) are allowed. Store
reguests (net to disk) are allowed unless the store would overwrite an existing

file. Delete and Rename are not permitted.

/P false [Protected] Retrieve requests are allowed. No stores are allowed. Delete and
Rename are not permitted.

/0 false [Overwrite] Retrieve requests are allowed. Store requests can overwrite files.
Delete and rename are permitted.

/K false [Kill] FTP will return to the Alto Exec when the server connection is closed. A
simple form of remote job entry can be performed by storing into Rem.cm.

3. The FTP Display

Thetop inch or so of the display contains atitle line and an error window. Thetitle line displays the
release date of that version of FTP, the current date and time, the machine’ s internetwork address, and the
number of free pages on the disk. The error window displays certain error messages if they arrive from the
network (errors are discussed in more detail below). A window is created below thetitle line for each part
of FTPwhich is enabled during a session (server, user, and telnet).

If the FTP Server is enabled, it opens awindow and identifiesitself. If aUser FTP subsequently connects
to this Server, the User’ s network address will be displayed. The Server will log the commands it carries
out on behalf of the remote User in thiswindow. The Server is not enabled when FTPisbeing controlled

from the command line.

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 64

The FTP User opens the next window down and identifiesitself. The command herald is an asterisk.

The User Telnet opens the bottommost window, identifiesitself, and waits for a host name to be entered.
The Telnet is not enabled when FTP is being controlled from the command line.

4. Keyboard Command Syntax

FTP sinteractive command interpreter presents a user interface very similar to that of the Alto Executive.
Its command structure is also very similar to that of the Maxc Pup FTP program (PupFTP), and the Maxc
ArpaNet FTP program (FTP). The standard editing characters, command recognition features, and help
facility (via"?") are available. When FTP iswaiting for keyboard input, a blinking cursor appears at the

next character position.

4.1. Directing Keyboard input to the User and Telnet Windows

The bottom two unmarked keys control which window gets characters from the keyboard. Hitting the
unmarked key to the right of "right-shift’ (also known asthe’ Swat key’) directs keyboard input to the
Telnet window. Hitting the unmarked key to the right of the 'return’ key (also known asthe ' Chat key’)
directs keyboard input to the FTP User window. The window which currently owns the keyboard will

blink a cursor at the next character position if it iswaiting for type-in.

4.2. Keyboard Commands

OPEN <host name>

Opens a connection to the FTP Server in the specified host. FTP permits only one user connection

at atime. In most cases the word OPEN may be omitted: i.e., awell formed <host name> isa lega
command and implies arequest to OPEN a connection. FTP will try for one minute to connect to
the specified host. If you made a mistake typing the host name and wish to abort the connection

attempt, hit the middle unmarked key (to the right of <return>).

Ordinarily, host name should be the name of the machine you wish to connect to (e.g., "Maxc").

Most Altos have names which are registered in Name Lookup Servers. So long as a name lookup
server isavailable, FTP is able to obtain the information necessary to translate a known host name
to an inter-network address.

If the host name of the server machine is not known or if no name lookup servers are available, you
may specify an inter-network address in place of the host name. The general form of an inter-

network addressis:

<network> # <host> # <socket>

where each of the three fieldsis an octal number. The <network> number designates the network to
which the Server host is connected (which may be different from the one to which the User host is
connected); this (along with the "#" that follows it) may be omitted if the Server and User are
known to be connected to the same network. The <host> number designates the Server host’s
address on that network. The <socket> number designates the actual Server process on that host;
ordinarily it should be omitted, since the default is the regular FTP server socket. Hence, to connect
to the FTP server running in Alto host number 123 on the directly-connected Ethernet, you should
say "OPEN 123#" (thetrailing "#" isrequired).

CLOSE
Closes the currently open User FTP connection. CLOSE cancels any defaults set by CONNECT,

DIRECTORY, DEVICE, BYTE, TYPE, or EOLC commands.

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 65

LOGIN <user name> <password>

Supplies any login parameters required by the remote server before it will permit file transfers. FTP
will use the user name and password in the Operating System, if they are there. Logging into FTP
will set the user name and password in the OS (in the same manner asthe Alto Executive's "Login"
command).

When you issue the "Login" command, FTP will first display the existing user name known to the
OS. If you now type aspace, FTP will prompt you for a password, whereas if you want to provide a
different user name, you should first type that name (which will replace the previous one) followed
by a space. The command may be terminated by carriage return after entering the user name to
omit entering the password.

The parameters are not immediately checked for legality, but rather are sent to the server for
checking when the next file transfer command isissued. If acommand isrefused by the server
because the name or password isincorrect, FTP will prompt you asif you had issued the LOGIN
command and then retry the transfer request. Hitting delete in this context will abort the command.

A user name and password must be supplied when transferring files to and from a Maxc system or
an IFS. The Alto FTP Server requires a user-password to be supplied if the server machine’ s disk is
password-protected and if the password in the server machine's OS does not match the password on
thedisk. Thusif the OS was booted and FTP invoked because a Request-for-Connection was
received (which bypasses password checking), FTP will refuse access to files unless a password is

supplied. However if the OS was booted normally, FTP assumes that the disk owner (who knew the
password) will control access by using the server option switches. The user-name isignored.

CONNECT <directory hame> <password>

Requests the FTP server to "connect” you to the specified directory on the remote system, i.e., to
give you owner-like accessto it. The password may be omitted by typing carriage return after the
directory name. Aswith LOGIN, these parameters are not verified until the next transfer command
isissued. CONNECT cancelsthe effect of any previous DIRECTORY command. At present, the
"Connect" command is meaningful only when transferring files to or from a Maxc system or an
IFS; the Alto FTP server currently ignores connect requests. If the "multiple directory” feature of

the Alto Operating System ever comes into widespread use, this may be changed.
DIRECTORY <directory name>

Causes <directory name> to be used as the default remote directory in data transfer commands
(essentially it causes <directory-name> to be attached to all remote filenames that do not explicitly
mention adirectory). Specifying a default directory in no way modifies your access privileges,
whereas CONNECTIing gives you ' owner access (and usually requires a password). Explicitly
mentioning a directory in afile name overrides the default directory, which overrides the connected
directory, which overrides the login directory. Punctuation separating <directory name> from other
parts of aremote filename should not be included. For example you might type "Directory Alto"

not "Directory <Alto>".

RETRIEVE <remote filename>

Initiates transfer of the specified remote file to the local host. The syntax of <remote filename> must
conform to the remote host’ s file system name conventions. Before transferring afile, FTP will
suggest alocal-filename (generally the same as the remote-filename without directory or version),
and will tell you whether or not the file already exists on your local disk. At this point you may

make one of three choices:
1. TypeCarriage Return to cause the data to be transferred to the loca filename.
2. TypeDeleteto indicate that the fileis not to be transferred.

3. Typeany desired local filename followed by Return. The previous local filename will
disappear, the new filename will replaceit, and FTP will tell you whether afile exists with that
name. Thisfilename must conform to local conventions. Y ou now have the same three

choices.

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 66
If the remote-filename designates multiple files (the remote host permits "*" or some equivalent in
file names), each file will be transferred separately and FTP will ask you to make one of the above
three choies for each file. At present, only Maxc and IFS support this capability. That is, you may
supply "*"sin the remote-filename when retrieving files from a Maxc or an IFS, but not when
retrieving files from another Alto.

STORE <local filename>
Initiates transfer of the specified local file to the remote host. Alto file name conventions apply to
the <local filename>; "*" expansion is not supported. FTP will suggest a remote-filename to which
you should respond in amanner similar to that described under RETRIEVE except that if you
supply adifferent filename, it must conform to the remote file system’s conventions. The default
remote filename is one with the same name and extension as the local file; the remote server
defaults other fields as necessary. If the remote host isaMaxc system or an IFS, then the directory
isthat most recently supplied in LOGIN or CONNECT or DIRECTORY commands and the
version is the next higher.

DUMP <remote filename>
Bundles together a group of files from the local file system into a’dump-format’ file (see the Alto
Executive documentation for the dump-file format and more on dump-filesin general) and stores
the result as <remote filename>. FTP will ask you for the names of local filesto includein the
dump-file. Terminate the dump by typing just <return>when FTP asks for another filename. By
convention, filesin dump-format have extension’.dm’.

LOAD <remote filename>
Performs the inverse operation of DUMP, unbundling a dump-format file from the remote file
system and storing the constituent filesin the local file system. For each file in the dump-file, FTP
will suggest alocal file name and tell you whether afile by that name exists on your disk. You
should respond in the manner described under RETRIEVE.

LIST <remote file designator>
Lists all filesin the remote file system which correspond to <remote file designator>. The remote
file designator must conform to file naming conventions on the remote host, and may designate
multiple filesif "*" expansion or some equivalent is supported there. If the <remote file designator>
isterminated by <comma carriage return> rather than just a <carriage-return>, FTP prints a prompt
of "**" at the left margin and prepares to accept one or more subcommands. These subcommands
request printout of additional information about each file. To terminate subcommand input, type a
<return> in response to the subcommand prompt. The subcommands are:

Type Print file type and byte size.
Length Print length of filein bytes.
Creation Print date of creation.
Write Print date of last write.
Read Print date of last read.
Times Print times as well as dates.
Author Print author (creator) of file.
Verbose Same as Type+Write+Read+Author.
Everything Print all information about the file.
Thisinformation is only as reliable as the Server that provided it, and not al Servers provide al of
these file properties. Altos derive much of this information from hints, so do not be alarmed if it is
sometimes wrong.

DELETE <remote filename>
Deletes <remote filename> from the remote filesystem. The syntax of the remote filename must
conform to the remote host’ s file system name conventions. After determining that the remote file
exists, FTP asks you to confirm your intention to deleteit. If the remote filename designates
multiple files (the remote host permits "*" or some equivalent in file names), FTP asks you to

confirm the deletion of each file.

RENAME <old filename> <new filename>

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 67
Renames <old filename> in the remote filesystem to be <new filename>. The syntax of the two
filenames must conform to the remote host’ s file system name conventions, and each filename must
specify exactly onefile.

QUIT
Returns control to the Alto Executive, closing all open connections.

TY PE <data type>
Forces the datato be interpreted according to the specified <data type>, which may be TEXT or
BINARY. Initially the type is UNSPECIFIED, meaning that the source process should, if possible,

decide on the appropriate type based on local information.

BY TE-SIZE <decimal number>
Applicable only to files of type Binary, BY TE-SIZE specifiesthe logical byte size of the datato be
transferred. The default is 8.

EOL <convention>

Applicable only to files of type Text, EOL specifies the End-of-Line Convention to be used for
transferring text files. The values for <convention> are CR, CRLF, and TRANSPARENT. The
default is CR.

DEVICE <string>
Causes <string> to be used as the default device in data transfer commands (essentially it causes
<device> to be attached to all remote filenames that do not explicitly mention one). The
punctuation separating <device> from the other components of a remote filename should not be

included. For example you might specify "Device DSK" to Tenex, not "Device DSK:"
VERSION <string>

Causes <string> to be used as the default version in data transfer commands (essentially it causes the
version string to be attached to all remote filenames that do not explicitly mention one). The
punctuation separating the version information from other components of aremote filename should
not be included. For example you might specify "Version 123", to IFS, not "Version 123"

USER
Allows you to toggle switches which control operation of the FTP User. Thereis currently only
one: DEBUG, which controls display of protocol interactions. Warning: this printout (and the
corresponding one in the SERVER command below) sometimes includes passwords.

SERVER
Allows you to toggle switches which control operation of the FTP Server. The switches are
PROTECTED, OVERWRITE, KILL, and DEBUG, corresponding to the global switches /P, /0,
/K, and /D.

TELNET
Allows you to toggle switches which control operation of the Telnet. Thereis currently only one:

CLOSE, which closes the Telnet connection if one is open, and clears the Telnet window.

5. Command Line Syntax

The User FTP can also be controlled from the command line. As explained above, the first token after the
subsystern name and server switches must be alegal host name; if the User FTP can’t connect to the FTP
Server on that host it will abort and return control to the Alto Executive. If acommand list follows the
host name, the command line interpreter isinvoked instead of the interactive keyboard interpreter. This
permits the full capabilities of the Alto Executive (filename recognition, "*" expansion, command files,

etc.) to be used in constructing commands for FTP.

Each command is of the form:

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980

<Keyword>/<SwitchList> <arg> ... <arg>

To get aspecial character (any one of "*# ;") past the Alto Executive, it must be preceded by a
guote. Togeta"/" into an FTP argument, the"/" must be proceeded by two single quotes (the
onetells FTP to treat the "/" as an ordinary character in the argument, and the first one gets the
one past the Alto Executive).

Unambiguous abbreviations of command keywords (which in most cases amount to the first | etter)
legal. However, when constructing command files, you should always spell commandsin full, since
uniqueness of abbreviations in the present version of FTP is not guaranteed in future versions.

A command is distinguished from arguments to the previous command by having a switch oniit, so

command must have at least one switch. The switch "/C" has no special meaning and should be used
commands where no other switches are needed or desired.

5.1. Command Line Errors

Command line errors fall into three groups: syntax errors, file errors, and connection errors. FTP
recover from some of these, though it leaves the decision about whether to try up to you.

Syntax errors such as unrecognized commands or the wrong number of arguments to a command
FTP's command interpreter to get out of sync with the command file. FTP can recover from syntax
by simply ignoring text until it encounters another command (i.e. another token with a switch).

File errors such as trying to retrieve afile which does not exist are relatively harmless. FTP recovers
file errors by skipping the offending file.

Connection errors such as executing a store command when there is no open connection could cause
to crash. FTP can't recover from connection errors.

When FTP detects an error, it displays an error message in the User window. [f the error isfatal,

waits for you to type any character and then aborts, causing the Alto Executive to flush the rest of
command line, including any commands to invoke other subsytems after FTP. |f FTP can recover

the error, it asks you to confirm whether you wish to continue. If you confirm, it plunges on, otherwise
aborts. The confirmation request can be bypassed by invoking FTP with the global error switch
(FTP/-E ...) in which case it will plunge on after all non fatal errors. If you aren’'t around when an
happens and you have told FTP to get confirmation before continuing after an error, the remote

will probably time out and close the connection. If you then return and tell FTP to continue, it will get
fatal connection error and abort.

5.2. Command Line Switches

Most commands take local switches. These switches have default values which are used if the switch is
mentioned. Proceeding a switch with aminus sign invertsits sense: Retrieve/-O means retrieve but
overwrite. While the interpretation of a switch sometimes depends on the command, the general ideais:

Switch Default Function

/C -- [Command] null switch which tells the command line parser that thistoken is
command.

/S false [Selective] the remote and local file names differ. The LOAD command uses

switch dightly differently.
/D update [Dates] show file creation dates.

v false [Verify] request confirmation from the keyboard.

68

single
second
second

are
the

every
on

cause
errors

from
FTP

FTP
the
from
it
fase
error
Server

not
don’t

this

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 69
/0 true [Overwrite] allow overwriting existing files.

Transfers may be conditioned upon comparison of the creation dates of corresponding local and remote
files. The comparison is <source file> <operator> <destination file>. For STORE, the sourcefileis the

local file; for RETRIEVE, the sourcefile Is the remote file. The operators are:

Switch Function

1# [NotEqual] transfer the fileif the creation dates are not equal. This must be quoted (/'#) to
keep it out of the clutches of the Alto Exec.

/= [Equal] transfer the fileif the creation dates are equal.

/> [Greater] transfer the file if the source’ s creation date is greater than the destination’s.

/< [Less] transfer the fileif the source’s creation date is less than the destination’s.

/U [Update] same as /> (for backward compatibility).

/A [All] transfer the file even if no corresponding file existsin the other file system.

If more than one switch is present, they are ORed together, so, for example, "/>=" means transfer the file

if the source’ s creation date is greater than or equal to the destination’s.

The sense of aswitchisinverted if it is preceeded by aminus sign. Thus:
/-=lisequivalent to /#,
/-#isequivalent to /=,
/-<is equivalent to />=, and
/->is equivalent to /<=.

Note that a minus sign inverts the sense of the immediately following character, not the entire operator
expression.

5.3. Command Line Commands

OPEN/C <host name>
See description in "Keyboard commands'. Thefirst token after the subsystem name and global
switchesis assumed to be a host name and no OPEN verb isrequired (in fact if you supply it, FTP
will try to make a connection the host named OPEN which is almost certainly not what you want).
CLOSE/C

Closes the currently open User FTP connection.

LOGIN/C <user name> <password>
See description in "Keyboard commands’. The <password> may be omitted.

LOGIN/Q <user name>
Causes FTP to prompt you for the password. Thisform of LOGIN should be used in command
files since including passwords in command filesis abad practice.

CONNECT/C <directory name> <password>
See description in "Keyboard commands'. The <password> may be omitted.

CONNECT/Q <directory name>
Causes FTP to prompt you for the password needed to connect to the specified <directory name>.
Thisform of CONNECT should be used in command files since including passwordsin command
filesisabad practice.

DIRECTORY/C <default directory>

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 70

See discription in "Keyboard commands'.

RETRIEVE/C <remote filename> ... <remote filename>

Retrieves each <remote filename>, constructing alocal file name from the actual remote file name as
received from the Server. FTP will overwrite an existing file unless the /N (No overwrite) switch is
appended to the RETRIEVE command keyword.
If the remote host allows"*" (or some equivalent) in afilename, a single remote filename may result
inthe retrieval of several files. (Note that you must quote the "*" to get it past the Alto Executive's
command scanner.) As mentioned previously, this capability isimplemented only by Maxc and IFS
FTP Servers at present.

RETRIEVE/S <remote filename> <local filename>
Retrieves <remote filename> and names it <local filename> in thelocal file system. Thisversion of
RETRIEVE must have exactly two arguments. FTP will overwrite an existing file unless the /-0
(No Overwrite) switch is also appended to the RETRIEV E command keyword. The remote

filename should not cause the server to send multiplefiles.

RETRIEVE/> <remote filename> ... <remote filename>
Retrieves <remote filename> if its creation date is greater than that of the local file. If the
corresponding local file doesn't exist, the remote file is not retrieved. This option can be combined
with RETRIEVE/Sto renamethefile asit is transferred.

RETRIEVE/>A <remote filename> ... <remote filename>

Same as RETRIEVE/> except if the corresponding local file doesn’t exist, the remote file is
retrieved anyway.
RETRIEVE/NV
Requests confirmation from the keyboard before writing alocal file. Thisoption is useful in
]E?mbi nation with the Update option since creation date is not a fool-proof criterion for updating a
ile.

RETRIEVE/-O Retrieves afile only if the corresponding local file doesn't exist.

STORE/C <locd filename> ... <local filename>
Stores each <local filename> on the remote host, constructing a remote filename from the name
body of thelocal filename. A local filename may contain "*", since it will be expanded by the Alto
Executive into the actua list of filenames before the FTP subsystem isinvoked.

STORE/S <local filename> <remote filename>

Stores <local filename> on the remote host as <remote filename>. The remote filename must
conform to the file name conventions of the remote host. This version of store must have exactly
two arguments.

STORE/> <local filename> ... <local filename>
Stores each <local filename> on the remote host if the local file's creation date is greater than the
remote file's. If the corresponding remote file doesn’'t exist, the local fileis not stored. This option

can be combined with STORE/S to rename the file asit is transferred.

STORE/>A <local filename> ... <locd filename>

Same as STORE/> except if the corresponding remote file doesn't exist, the local fileis stored
anyway.

STORE/N
Requests confirmation from the keyboard before writing aremote file. This option is useful in
c<|)mbi nation with the Update option since creation date is not a fool-proof criterion for updating a
file.

DUMPI/C <remote filename> <local filename>...<locd filename>
See the description in "keyboard Commands'.

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 71

LOAD/C <remote filename> ... <remote filename>

See the description in "keyboard Commands'. If the/V switch is appended to the LOAD
command keyword, FTP will request confimation before writing each file. Type <return> to write
thefile, to skipit. FTP will overwrite an existing file unlessthe /N (No overwrite) switch is

appended to the LOAD command keyword.

LOAD/> <remote filename> ... <remote filename>

Loads files from <remote filename> if their creation dates are greater than the corresponding
lcr;atejgn dates of local files. If the corresponding local file doesn't exist, the remotefileis not
o] .

LOAD/>A <remote filename> ... <remote filename>
Same as L OAD/> except if the corresponding local file doesn't exist, the remotefileis loaded
anyway

LOAD/S <remote filename> <filename 1> ... <filename n>
Loads files from <remote filename> if their names are in the list <filename 1> ... <filename n>. Files
within the dump file that are not in the list are skipped. This option can be combined with the /U,

/V, and /N options.

LIST/C <remote filename> ... <remote filename>
See the description in "Keyboard Commands’. The subcommands are specified by local switches:

IT Type,

/L Length in bytes,

/D Creation date (see below),

W Write date,

/R Read date,

/A Author (creator),

v Verbose = /TWRA, and

/E Everything = /TLDWRA.

Dates aways include times. /C should have been the creation date but that collides with the use of

/C to mean no local options (sigh).

DELETE/C <remote filename>
See the description in "Keyboard Commands'. If the /V switch is appended to the DELETE
command keyword, FTP will request confirmation before deleting each file. Type <return> to
delete the file, and (oops!) if you don’t want to delete it.

COMPARE/C <remote filename>...<remote filename>

Compares the contents of <remote filename> with the file by the same name in the locadl file system.
It tells you how long the files are if they are identical or the byte position of the first mismatch if
they are not. (No corresponding command is available in the Keyboard command interpreter for

implementation reasons. there is not enough room for it in Alto memory.)

COMPARE/S <remote filename> <local filename>

Compares <remote filename> with <local filename>. The remote filename must conform to the file
name conventions of the remote host. This version of COMPARE must have exactly two
arguments.

COMMENT/S <arbitrary text>
The <arbitrary text> isignored until atoken with an imbedded "/" is encountered. Thistoken is
taken as the next command. The quote character isasingle quote. Thus "foo’/bar" does not

terminate a comment.

RENAME/C <old filename> <new filename>
See the description in "Keyboard Commands”.

TYPE/C <datatype>

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 72

See the description in "Keyboard Commands”.

BY TE-SIZE/C <decimal number>
See the description in "Keyboard Commands”.

EOL/C <convention>
See the description in "Keyboard Commands”.

DEVICE/C <string>
See the description in "Keyboard Commands”.

VERSION/C <string>
See the description in "Keyboard Commands”.

DEBUG/C

See the description of the DEBUG subcommand under the USER command in "Keyboard
Commands'.

5.4. CLI Examples

To transfer files FTP.run and FTP.syms from the Alto called "Michelson” to the Alto called "Morley", one
might start up FTP on Michelson (to act as an FTP Server), then walk over to Morley and type:

FTP Michelson Retrieve/C FTP.run FTP.syms

Alternatively, one could start an FTP server on Morley (invoking it by "FTP/O" to permit filesto be
overwritten on Morley’s disk), then issue the following command to Michel son:

FTP Morley Store/C FTP.run FTP.syms

The latter approach is recommended for transferring large groups of files such as"*.run" (since expansion
of the"*" will be performed by the Alto Executive).
To retrieve User.cm from the FTP server running on Alto serial number 123 (name unknown, but it is on
the local Ethernet):

FTP 123 # Retrieve/C User.cm
Note that the "#" must be preceded by a single quote when included in a command line, since otherwise
the Alto Executive does funny things with it. (Quotes are not necessary when typingto FTP's interactive

keyboard interpreter).
To start FTP, have the FTP User connect to Maxc, and then accept further commands from the keyboard:

FTP Maxc
To retrieve <System>Pup-Network.txt from Maxc and store it on the Alto as
PupDirectory.bravo, and store PupRTP.bcpl, Puplb.bcpl, and PupBSPStreams.bepl on

<DRB> with their names unchanged:

FTP Maxc Connect/C drb mypassword Retrieve/S <System>Pup-Network.txt
PupDirectory.bravo Store/C PupRTP.bcpl Puplb.bepl PupBSPStreams.bepl

To retrieve the latest copy of all .RUN files from the <alto> directory, overwriting copies on
the)Alto disk (The single quote is necessary to prevent the Alto Executive from expanding the

FTP Maxc Retrieve/C <alto>'*.run

Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 73

To update the Alto disk with new copies of al <ato> files whose names are contained in file
UpdateFiles.cm, requesting confirmation before each retrieval:

FTP Maxc Directory/C Alto Ret/>V @UpdateFiles.cm@

To store all fileswith extension .BCPL from the local Alto disk to your login directory on
Maxc (the Alto Executive will expand "*.bcpl™ before invoking FTP):

FTP Maxc Store/C *.bepl

To retrieve <System>Host-name/descriptor-fil e.txt;43 (two single quotes are necessary to get
the"/" past the Alto Executive and the FTP command scanner, and one quote is necessary to
get the";" past the Alto Executive):

FTP Maxc Ret/C <System>Host-name'’ /descriptor-file.txt’ ;43

To cause Memo.pressto be spooled for printing by the Maxc printing system:

FTP Maxc Store/S Memo.press LPT:

This also works unformatted text filesif you know what you are doing. It does not do the
right thing for Bravo-format files.

To use FTP as a stop-gap IFS:
FTP/T-UO

This starts only a server with overwriting of existing files permitted. When using the trident,
thereisn’t enough space to start both a User and a Server.

6. File Property Defaulting

Without explicit information from the file system, it is often difficult to determine whether afileis Binary
or Text, if Binary, what its byte-sizeis, and if Text, what End-Of-Line conventionisused. The User and
Server FTPs use some simple heuristics to determine the correct manner in which to transfer afile. The
heuristics generally do the right thing in the face of incomplete information, and can be overridden by
explicit commands from a human user who knows better.

The FTP protocol specifies a standard representation for afile whilein transit over anetwork. If thefile is
of type Binary, each logical byte is packed right-justified in an integral number of 8-bit bytes. The byte-
size is sent as a property along with thefile. If thefileisof type Text, each character is sent right-justified
in an 8-bit byte. An EOL convention may be sent as afile property. The default isthat <return> marks the
end of aline.

6.1. File Types

FTP determines the type of alocal file by reading it and looking for bytes with the high-order bit on. If
any byte in the file has a high-order bit on, thefile is assumed to be Type Binary, otherwiseit is assumed to
be Type Text. FTPwill generate awarning, but allow you to send what it thinks to be atext file as type

Binary, since no informationislost. It will refuse to send a binary file astype text.

Don't specify a Type unless you know what you are doing. The heuristic will not lose
information.

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 74
6.2. Byte-Size

If afileistype Binary, the byte-size is assumed to be 8 unless otherwise specified. The FTP User and
Server will both accept binary files of any byte-size and write them as 8 bit bytes on the disk. No
transformation is done on the data as it is written to the disk: it is stored in network default format. Since
thereisno place in the Alto file system to save the byte-size property, it is|ost.

Similarly, requests for Binary files will be honored with any byte size, and whatever is on the disk will be
sent to the net without transformation. Since Alto files have no byte size information, the byte-size

property will be defaulted to 8 unless otherwise specified (by the BY TE command), in which case whatever
was otherwise specified will be sent as the byte size.

Don't specify a Byte-size unless you know what you are doing. Alto-Alto transfers can't go
wrong. Alto-Maxc transfers with weird byte-sizes will not work unless the byte-size specified
in the Alto to Maxc direction is the same as the byte-size in which the file was stored on the

Alto. Ifitisn't, the Alto will not give any error indication, but the result will be garbage.

6.3. End-of-Line Conventions

FTPs are expected to be able to convert text files between the local file system End-Of-Line (EOCL)
convention and the network convention. Conveniently enough, the Alto file system’s internal

representation of atext file is the same as the network standard (a bare <return> marks the end of a line).
The Alto FTP does not do any transformations on text files. It will refuse to store atext file coming in
from the net whose EOL convention is CRLF.

As an escape to bypass conversion and checking, EOL convention 'transparent’ tells both ends NOT to
convert to network standard, but rather send afile’asis’. Thisisincluded for Lisp fileswhich contain

internal character pointers that are messed up by removing line feed characters.

Don't specify an EOL convention unless you know what you are doing. If your text fileis a
Lisp source file, specify EOL convention’ Transparent’.

6.4. File Dates

The Alto file system keeps three dates with each file: Creation, Read, and Write. FTP treats the read and
write dates as properties describing the local copy of afile: when the file was last read and written in the
local file system. FTP treats the creation date as a property of the file contents: when the file contents were
originally created, not when the local copy was created. Thuswhen FTP makes afile on the local disk, the
creation date is set to the creation date supplied by the remote FTP, the write date is set to 'now’ and the

read date is set to 'never read’.

7. Abort and Error messages

Error and Abort packets are displayed in awindow above thetitle line. Abort packets are fatal; Error
packets are not necessarily so.

The most common Abort messageis "Timeout. Good bye", generated when a server process has not
received any commands for along time (typically 3 minutes).

The most common Error message is "Port 1Q overflow" indicating a momentary shortage of input buffers
at the remote host. Receiving an Error Pup does not imply that the file in transit has been damaged. Loss
of or damageto afile will be indicated by an explicit message in the User FTP window. The next iteration

of Pup will probably rename’Error Pups' to be ' Information Pups'.

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 75
8. Telnet

FTP provides asimple User Telnet as a convenience for logging into aremote host (e.g., Maxc) to poke
around without having to leave the FTP subsystem and start Chat. It lacks most of the creature comforts
Chat provides, such as automatic attaching to detached jobs, automatic logging in, etc. The Telnetis not
enabled when the User FTP is being controlled from the command line. When the Telnet does not have
an open connection, it waits for you to type a host name with the syntax explained above for the OPEN
command, and then attempts to connect to the specified host. If you wish to abort the connection attempt,
hit the bottom unmarked key (opposite right-shift). You can get alarger Telnet window by not starting a

server (type FTP/-Sto the Executive).

9. Revision History

April 1976

First release.

May 1976

/Q switch added to CONNECT. Connection requests to the User FTP and Telnet can be aborted. Login
prompt changed. 1 minute Timeout added when waiting to finish after acommand line error. User FTP
automatically recovers from more "No" responses from the remote server.

June 1976

Dosversion released. DIRECTORY and LIST, commands added. Update (/U) option added. File
creation dates added. 3 minute no-activity timeout added to FTP Server. FTP version, time-of-day, and
machine address added in top window. "Ding" now flashes only the affected window instead of the whole
display.

August 1976

RDos version released. Same as June release for Dos and Alto.
October 1976

DUMP and LOAD commands added to user FTP. KILL command added. Free disk page count added to
thetitleline. Verify (/V) switch added to the RETRIEV E command.

November 1976

Bug fixes to the October release.

May 1977

Thisversion was only released to friends. KILL command removed and turned into a server option.
DEBUG command moved into new USER and SERVER commands. Trident disk option (/T) added.
User LIST command improved and Server LIST response implemented. Password checking by the FTP
server implemented. Telnet window enlarged at the expense of possibly losing information from the top of
the window if the lines are very full. DELETE, RENAME, and DEVICE commands implemented. Much

internal reorganization so that the protocol modules could be used in IFS and released as a package.
July 1977
Global switches changed. <Shift-Swat> should work more reliably now. User LIST command further

Cleared version of May 24, 1981

Alto Pup FTP October 26, 1980 76
improved. Keyboard command interpreter is much more robust and consistant. Command line STORE
and DUMP go much faster since they look up filesusing MDI. FTP/Tx opens Trident unit 'x’. LOGIN

command added to command line interpreter.
November 1977

Microcode added to speed up execution.

March 1978

User log option added (see /L and /A switchesand 'FTP User Log’ section). AllocatorDebug switch
removed. New command line commands COMPARE, OPEN, and CLOSE added. Command line errors
are handled differently (see /E global switch and ' Command Line Errors’ section). When using a Trident,
either aUser or a Server FTP is started but not both (see the section on Trident disks).

September 1979

This is amaintenance rel ease coordinated with OS17, fixing afew bugs and reloading with current
packages. CONNECT cancels any previous DIRECTORY. CLOSE cancels any previous CONNECT,
DIRECTORY, DEVICE, TYPE, BYTE, or EOLC. Multiplelogical file systems on a T-300 can how be
addressed: Ftp/T400 openslogical filesystem 1 on physical unit 0.

October 1979

The command line version of the OPEN command retries failed connection attempts every five seconds
under control of the error flag. Ftp.boot is now atype B boot file. 1t EtherBoots faster and consumes less
disk spacein boot servers. It now workswith all Alto file system configurations.

June 1980

New command line commands: LIST, LOAD/U and LOAD/S. Ftp handlesfile creation datesin dump-
format files. Subcommand mode in the keyboard LIST command is the same as Maxc and IFS, namely
one terminates the filename with <comma carriage-return>, and the VERBOSE option includes file
lengths. The keyboard DIRECTORY and DEVICE commands display their previous values. STORE and

RETRIEVE report bits per second. The TFS option now works on Alto/Sugart systems.
September 1980

New commands STORE/U, STORE/V, COMMENT/C, and VERSION. /A switch during date
controlled transfers controls whether to transfer a file when the corresponding file in the other filesystem
doesn't exist. /D switch controls display of file creation dates.

October 1980

New switches: /=, /#, />, I<, which generalize date-controlled transfers (see section 5.2). When Ftp
finishes, it only updates the username and password in the OS if no password was present when it started.

Thus, if you log in as"guest” to access afile on aforeign file server, Ftp won't clobber your real identity.

Cleared version of May 24, 1981
Listing Symsfiles March 28, 1978 77

ListSyms - asubsystem for listing Syms files

The ListSyms subsystem takes a Symsfile (produced by BLDR) and convertsit to a useful human-
readable form. ListSyms produces afile with several parts:
A listing of the space occupied by each binary output file (.Run or .BB).

A listing similar to the listing optionally produced by BLDR, i.e. alist, sorted by BR file and
location within thefile, of all static symbols defined, with an indication as to whether the symbol is
external and whether it is a procedure, label, or static variable.

A list of all staticsin alphabetic order, accompanied by the name of the BR filein which each
oneis defined and (optionally) alist of all the BR filesin which each is used.

A list similar to the preceding, but listing the statics for each file separately, and only listing
statics declared external (i.e. accessible from other files).

A concordance of undefined externals: for each BR file which references undefined externals, it

lists those externals in a phabetic order under the file name.

Oneinvokes ListSyms as follows:
>ListSyms inpuitfile outputfile
Inputfile will normally be something.Syms: if it has no extension, ListSymswill supply .Syms. Outputfile
may be omitted, in which case ListSyms will take inputfile (shorn of extension if any) and append .BZ to
form the output file name.

ListSyms accepts 7 switches, all global:

/A produces the alphabetic listing

/F produces afile-by-file alphabetic listing with cross-reference

/N produces the numeric (file-by-file) listing

/O produces only the listing of the binary file sizes

/Sincludes static variables, which are normally omitted

/U produces the listing of undefined externals

/X produces the a phabetic listing with cross-reference
The switches may be either upper or lower case, and /S isindependent of the other switches. If none of
/A, IF, IN, /O, /U, or IX appears, you will get the /A, /N, and /U listings but no cross-reference.

ListSyms starts by printing a message of the form

ListSyms of [date] -- [inputfile] -> [outputfile]
If ListSyms completes normally, it will print a message of the form

12345b characters written on outputfile
ListSyms produces a variety of error messages. Currently these are:

[filename] does not exist
indicates ListSyms was unable to open the Symsfile.

Symsfile too big
indicates insufficient room for reading the Symsfile. ListSyms aborts.

Can't open [filename]
ListSyms was unable to open the outpuitfile or one of the BR files required for /U or /X. Inthe former
case, ListSyms aborts; in the latter, it continues.

[filename] is not a proper BR file
One of the BR files mentioned in the Syms file does not have the proper format. ListSymsignoresthe file
and continues.

[filename] istoo big to process
One of the BR fileswastoo big to read in. ListSymsignoresit and continues.

Too many BR files
There were too many BR files to processin the available memory. ListSyms aborts.

No room for hit table
There was not enough room to hold the bit table used for /U or /X (or /A if any undefined symbols were
present). ListSyms aborts.

ListSymsis quite fast: it processes BRAVO.Symsin about 20 seconds, and a typical modest program
takes less than 10 seconds.

Cleared version of May 24, 1981

MailCheck March 6, 1978 78
MailCheck
This simple subsystem attempts to check for mail for a user at some other host (e.g. Maxc) viathe Ethernet.

It displays one of the following messages:

? This Alto has no Ethernet interface!

? Can't find a host named ' <host>': <error message>
? No response from <host>

? <user> not valid user at <host>: <error message>

? Error: <pup error message>

New mail for <user> on <host>: <date> <sender>
No new mail for <user> on <host>

Various options can be controlled by switches and/or by an entry in your User.Cm.

Valid switches are:

/1 Check mail on Maxcl (default).

2 Check mail on Maxc2.

<host>/H Check mail on <host>.

<user>/U Check mail for <user> (default is the user name obtained from the Alto operating system).

/R If there is new mail, execute acommand line when Mail Check exits. The command line
defaultsto "@READMAIL.CM@", i.e. to execute the contents of the file
EgADMAI L.CM as acommand, but this can be changed in the User.Cm as outlined

ow.

In addition, if there may be a section in your User.Cm labeled [MAILCHECK] with the following possible

entries:

HOST: <host> Sets the default host to check.

USER: <user> Sets the default username to check.

NEWMAIL: <string> Sets the command line to be executed if there is new mail. Within the command

ling, the host name is substituted for " @H" and the user name for "@U"; to put

an"@" in the command lineit is neccessary to put two in the string.
For example, you might add the section:
[MAILCHECK]
HOST: Maxc2
NEWMAIL: CHAT @H MSG.DO/D
Where MSG.DO isafile on your ato disk which contains "M SG<return>".

One useful option isto put Mailcheck.Run inside the eventBooted section of your USER.CM, so that
Mailcheck will be run whenever you boot, e.g.

[EXECUTIVE]

eventBooted: Mailcheck.Run // eventBooted
eventRFC: FTP/OK //eventRFC

eventCl ockWrong: SetTime // eventClockWrong

Updates: As of March 1978, Mailcheck no longer does a SetTime

Cleared version of May 24, 1981
MicroD August 1, 1978 79

MicroD - Dorado/DO0 instruction placer

MicroD takes microprograms for the Dorado or DO, assembled by Micro, and completes the assembly
process by assigning absol ute locations to the microinstructions. The resulting file can be loaded into a D-
machine by Midas and run. MicroD’sjob isto find away to assign locations to microinstructionsin a way
that satisfies both the semantics of the source program and the peculiar addressing restrictions of the
hardware.
This document is deliberately somewhat sketchy, since it assumes that its readers have already absorbed
the necessary "culture" surrounding D-machine microprogramming and just want to know how to convert
Micro output into Midasinput. At some future date it may be expanded to be more helpful to people just
getting started.
The simplest way to use MicroD isto assemble your entire microprogram at once with Micro, producing a
singlefilexxx.DIB. (DIB stands for "D-machine Intermediate Binary".) Then you invoke MicroD as
follows:

MicroD xxx

to produce alisting file xxx.DLS and afinal binary file xxx.MB which can be fed to Midas.

MicroD normally produces alisting with the following parts:
The name and initial contents of each defined R memory location.
Theinitia contents of each IFU and ALUF memory location.
Thelabel and octal representation of each microinstruction.
A summary of how much of each page of | (microinstruction) memory was used.
MicroD accepts the following global flags which affect the listing:
/N (No listing) - only produce the summary
/C (Concise) - produce everything but the octal contents of I memory
The following global flags produce additional information, not useful to the ordinary user:
/D (Debug) - print alarge amount of debugging information
IT (Trace) - print atrace of the calls on the storage allocator

Normally MicroD produces its output on xxx.DLS and xxx.MB, where xxx is the name of the last (or only)
input file. You can specify a different name with the local /O switch, e.g.

MicroD xxx yyy/o
to process xxx.DIB but produce yyy.DLS and yyy.MB.

If you wish, you can assemble your microprogram in pieces and let MicroD link the pieces together. (This
can save alarge amount of assembly time for large programs.) Suppose your program consists of the
following parts: some definitions defs1.MC and defs2.MC; one large piece of code this1.MC and

this2.M C; another large piece of code that.MC. Then you can proceed as follows:
Micro saveit/s defs/b defsl defs2

This assembles the definitions, saves Micro’s state on saveit.ST, and produces afile defs.DIB.
Micro saveit/r this/b thisl this2

This resumes assembly with the definitions saved in saveit, producing this.DIB. Micro will give you a list
of "undefined symbols’, which are references to symbols not defined in thisl or this2 (presumably defined
in that).

Micro saveit/r that
This again resumes assembly with the saved definitions, producing that.DIB. Again, Micro will list the

symbols not defined in that (presumably defined in thisl or this2).
MicroD myprog/o defs this that

MicroD will link together any references from this to that (or vice versa) and produce the output files
myprog.DLS and myprog.MB.

Note that you do not need to do anything specia in your source files to declare labels which are exported

(defined here, used elsewhere) or imported (used here, defined elsewhere): Micro assumes that any
undefined symbol is meant to be imported (but gives you the list just so you can check), and MicroD

assumes that all labels are exported. MicroD also discards al but the last definition of aname (e.g. the

name ILC is defined in every file as the address of the last microinstruction).

Cleared version of May 24, 1981
MicroD August 1, 1978

If you have multiple .DIB files, you can control the listing mode (normal, No listing, or Concise) for
fileindividually by using /L (List), /N, or /C asalocal switch on the file name. The global switch, if
appliesto any input file that lacks alocal switch. For example, to get only a concise listing for the
part of the program in the above example, you can use

MicroD/n myprog/o defs this that/c

80

each
any,
second

Cleared version of May 24, 1981

MoveToKeys January 2, 1979 81
MoveToKeys

The Alto can boot-load afile beginning at any legal disk address. The disk addressis supplied by holding

down acollection of keys simultaneously while pressing the boot button. The MoveToKeys subsystem

simplifies the task of getting a .boot file to begin at a specified physical disk location. To invoke

MoveToKeys, type:

MoveToKeys filename keylist

to the Alto Executive. "filename" isthe name of the file whose first page (technically, page 1, not page 0)
isto be moved to the disk address corresponding to "keylist". Thelegal keysare5, 4,6, 7, D, E, K, P, U,
V,0,/,and . (Remember, to type a"/" to the Alto Executive, you must quoteiit.) A typical use of
MoveToKeysis.

MoveToKeys Dumper DU

The file Dumper.boot could then be boot-loaded by holding down the D and U keys while pressing the
boot button.

MoveToKeyswill prompt for parameters omitted from the command line and will complain if any of the
parameters supplied are illegal. (For example, not all subsets of the set of legal keys correspond to lega
disk addresses.) In addition, the global switch /V ("verbose mode") will give you detailed information

about the pages MoveT oK eys manipul ates.

MoveToK eys actually works by determining what page resides at the specified disk address and swapping
it with page 1 of the specified file. Depending upon the pages involved, MoveToKeys must patch up
various pointers within the Alto file system to ensure a consistent representation of files and directories. (A

previous version of MoveToKeys did not do this correctly in all cases.)

Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 82

Mu: Alto Microassembler

This document describes the source language and operation of Mu, the Alto microcode assembler. Mu is
downward compatible with Debal, the original Alto assembler/debugger, but has a number of additional
features. Mu isimplemented in BCPL, and runs on the Alto.

1. The source language

An Alto microprogram consists of anumber of statements and comments. Statements are terminated by

semicolons, and everything between the semicolon and the next Return is treated as a comment.
Statements can thus span several text lines (the current limit is 500 characters). All other control characters

and blanks are ignored. Bravo formatting is also ignored.

Statements are of four basic types: include statements, declarations, address predefinitions, and executable
code. The syntax and semantics of these constructsis as follows:

1.1. Include Statements

Include statements have the form:
#filename;
They cause the contents of the specified file to replace the include statement. Nesting to three levels is
allowed.
1.2. Declarations

Declarations are of three types: symbol definitions, constant definitions, and R memory names.

1.2.1. Symbol Definitions

Symbol definitions have the form:

$name$Lnq,no,n3;

The symbol "name” is defined, with values nq, np and n3. Thereis a standard package of symbols for the
Alto (AltoConstsxx.Mu, where xx is the current microcode version) which should be’included’ at the
beginning of every source program. For those who must add symbol definitions, the interpretation of the
n'sisgiven in the appendix.

1.2.2. Constant declarations

Normal constants are declared thus:

$name$n;

This declares a 16 hit unsigned constant with value n. The assembler assigns the constant to the first free
location in the constant memory, unless the value has appeared before under another name in which case

the value of the name is the address of the previously declared constant.

Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 83

An dternative constant definitionisused for mask constants which have a specified bus source field (recall
that the constant memory address is the concatination of the rselect and bus source fields of the
microinstruction). The syntax is:

$name$Mniv; 4 <n<7, O<v<2**16

N specifies the desired bus source value, v is the constant value.

1.2.3. R Memory declarations

R memory names are defined with:

$name$Rn; 0 <n<40B
(100B if your Alto hasa RAM board, as most do)

An R location may have several names.

1.3. Address predefinitions

Address predefinitions allow groups of instructions to be placed in specified locations in the control
memory, asis required by the OR branching scheme used in the Alto. Their syntax is:

In, Kk, nameg, nameq, namey, ..., name k-1;

This declaration causes a block of k consecutive locations to be allocated in the instruction memory, and
the names assigned to them. n defines the location of the block, in that if L isthe address of the last
location of the block, L and n=n. Usually, nwill be 2**p-1 for some small p. For example, if the
predefinition

13, 4, foo0, fool, foo2, foo3;

is encountered in the source text before any executable statements, the labels foo0-foo3 will be assigned to
control memory locations 0-3. If there are too few names, they are assigned to the low addressesin the
block. If there are too many, they are discarded, and an error isindicated. If there are missing labels, eg.
"f000,,f002,;", the locations remain available for the normal instruction allocation process. A predefinitiol

must be the first mention of the name in the source text (forward references or labels encountered before a

predefinition of a given name cause an error when the predefinition is encountered.)
A more genera variant of the predefinition facility isavailable. The syntax is.
%mask2, maskl, init, L1, Lo, ... Ly,

The effect of thisisto find ablock of instructions starting at location P, where P and mask1 = init, and
assign the L’sto 'successive’ locations under mask2. For example:

%1, 1, 0, X0, x1,
would force x0 to an even instruction, x1 to odd (the normal predefinition for most branches).
%360, 377,17, L0, L1, ... L15;
Would place LO at xx17, L1 at xx37, L2 at xx57, etc.

Asbefore, if there are unused dots (e.g., 'L12,,L14’) they are available for reassignment, and MU
complainsif there are too many labels for the block.

Cleared version of May 24, 1981

Mu: Alto Microassembler March 25, 1978 84
1.4. Executable statements
Executable code statements consist of an optional label followed by a number of clauses separated by
commeas, and terminated with a semi-colon
label: clause, clause, clauss, ...;
If alabel has been predefined, the instruction is placed at the control memory locaion reserved for it.
Otherwise, it is assigned to the lowest unused location.
Clauses are of three types: gotos, nondata functions, and assignments.
Goto
Goto clauses are of the form ":1abel’, and cause the value of the label to be assembled into the Next
field of theinstruction. If the label is undefined, achain of forward references is constructed which
will be fixed up when the symbol is encountered as alabel.
Nondata Functions
Nondata functions must be defined (by aliteral symbol definition) before being encountered in a
code clause. Thistype of clause assemblesinto the F1, 2, or 3 fields, and represents either a branch
condition or a control function (e.g. BUS=0, TASK).
Data transfers (assignments)
All datatransfers are specified by assignments of the form:
destq_dest, ..._source
Thistype of clause is assembled by looking up the destinations, checking their legality, and making
the field assignments implied by the symbol types. Each destination imposes definitional
requirements on the source (e.g., ALU output must be defined, Bus must be defined). These
requirements must be satisfied by the source in order for the statement to be legal.
When the source is encountered, it islooked up in the symbol table. If itislegal and satisfies the
definitional requirements imposed by the destinations, the necessary field assignments are made,
and processing continues. If the entire source defines the Bus, and the only remaining reguirement
isthat the ALU output must be defined (e.g., L_MD), the ALUFfield is set to O (ALU output =
Bus), and processing continues.
If neither of the above conditions holds, the source can legally be only a bus source concatenated
with an ALU function. The source token is repeatedly broken into two substrings, and each is
looked up in the symbol table. If two substrings can be found which satisfy the requirements, the
field assignments implied by both are made; otherwise, an error is generated. This method of
evaluation issimple, but it has pitfalls. For instance, L_2+T islegal (providing that the constant
"2" has been defined) but L_T+2 is not (the Bus operand must always be on the |eft). Note that
'L_foo+T+1" specifies abus source of 'foo’ and an ALU function of "+T+1".
CAVEAT: TheT register may be loaded from either the Bus or the output of the ALU, depending
on the ALU function. The assembler does not check to see whether an assignment of the form
"T_ALU’ specifiesan ALU function that actually loads T from the ALU. For example, the clause
'L_T_MD-T isaccepted, but its effect isto load T directly from MD. If thisiswhat you intend, it
makes matters clearer if youwrite’L_MD-T, T_MD’; if it is not what you intend, you are in
trouble. Beware!
The constant "0" is special, in that when one or more clauses in a statement require that the bus be
0, generation of the constant is deferred until the end of the statement. At that point, if any clause

Cleared version of May 24, 1981

Mu: Alto Microassembler March 25, 1978 85

has caused the R memory to be loaded, the constant is not used, since the hardware forces the bus to
Ointhis case.
The destination "SINK" allows a clause to specify a bus source without specification of a
destination. It isuseful, for example, in constructs of the form'SINK_ACO, BUS=0', which puts
ACO on the bus to be tested by the nondata function ’'BUS=0". Y ou can also write things like
"SINK_mask constant, L_DISP XOR T’, which will cause the value of DISP to be anded on the
bus with the mask constant.

2. Operation

The assembler isinvoked with:
MU/global-switches sourcefile listfile/L binfile/B statfile/S

Legal global switches are:

/L produce alisting file

/D debug mode

/N do not produce a binary file (overridden by binfile/B)
If listfile/L is absent but the /L global switch is set, listing output will be sent to sourcefile.LS.
If binfile/B is absent, binary output is sent to sourcefile.MB.

If statfile/Sis absent, statistics for the assembled program are appended to the listing file if thereis one;
otherwise, no statistics are generated. The default extension for a/Sfileis’.Stats'.

The default extension for sourcefileis’.Mu’.
Error messages will be sent to the listing file if one has been specified, unless debug mode has been set. In
debug mode, errors are sent to the system display area, and a pause occurs at at every error (and at certain
other times). Typing any character proceeds.

If no listing file has been requested, debug mode is set independent of the global switch.

3. Output file

The assembler produceds Micro format binary output. The string names of the two memories specified in
thefile are CONSTANT and INSTRUCTION. Only defined locations in these memories are output.
Micro format is compatible with the PRom blowing program, the RamLoad program, and the
PackM u/L oadRam software. Note that the instruction memory specified in the binary file does not

include the 3 bit F3 field, which exists only in the debugging RAM.

4. Listing file

Thelisting file contains:

1.) All error messages (unless debug mode is set)

Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978

2.) A listing of all unused but predefined locations and unresolved forward references.

3.) Two listings of the contents of the constant memory, the first sorted by address and the
by value.

4.) A listing of the names assigned to the R memory

5.) A listing of the object and source code (with comments and declarations removed. The 35
instruction is printed out in the following order:

Location: RSel, ALUF, BS, F1, F2, LoadL, LoadT, F3

6.) The microprogram statistics (unless sent to a separate file).

86

second

bit

Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 87

Appendix I: Literal symbol definitions

The value of asymbol isa3 word quantity. Thefirst word contains atype (6 bits) and avalue (10 bits)
which detemines the interpretation of the symbol in al cases except when it is encountered as the source in
adatatransfer clause (assignment). The second word contains the type and value used in this case.

The third word contains bits specifying the definitional requirements and source attributes applied when
the symbol is encountered in an assignment. The definitional requirements are represented by single bits,

where zero means ' must be defined’ and one means 'don’'t care'.

Bit 0: 0if L output must be defined (destination-imposed requirements)
Bit 1: 0if BUS must be defined "

Bit 2: 0if ALU output must be defined "

Bits 3-7: Unused (?)

Bit 8: L isdefined (Source attributes)

Bit 9: Busisdefined "

Bit 10: ALU output is defined "

Bit 14: ALU output is defined

if BUSisdefined

Assignment processing proceeds by ANDing together the attribute words for al the destinations. The
result contains zeroes in bits 0-2 for things that must be defined and ones elsewhere.

When the source token is encountered, if it is a defined symbol it is tested by checking the definitional
requirements of the destinations against the corresponding attributes in the source. If all destination
requirements are satisfied, the clause is complete. If the only unsatisfied requirement isALU definition,
and if the Busis defined, the ALU function is set to gate the bus through (thereby defining the ALU), and
the clause is complete. If thisdoesn’t work, or the source token is not adefined symbol, the source string is
dismembered in a search for two substrings, the first of which defines the Bus (bit 9), and the second of
which definesthe ALU output if the Busis defined (bit 14). If two substrings are found, the implied

assignments are made, and the clauseis complete. Otherwise, an error isindicated.

The symbol type(s) determine the fields to be set in the microinstruction: Some types are legal only as an
isolated clause, some are legal only as the source or destination in an assignment. The currently defined
types are:
Type: Legd as: Instruction Field Side Effects:
Receiving Value:
0 Illegal never
1 Undefined address address
2 Defined address address Next
3 Rlocation_ destination RSel DefinesBusto be 0
4 Rlocation source RSel
5 Constant source RSel, BS
6 Bussource source BS
7 Non-dataF1 clause F1
10 F1_ destination F1
11 L defining F1 source F1 (L LSH1,etc.)
12 Non-dataF2 clause F2
13 F2_ destination F2
14 DataF2 source F2 BS 1, RSEL_O
(_DNS, ACDEST)
15 DataF2_ destination F2 BS 0,RSEL_O
(ACDEST_, ACSOURCE)
16 END clause - Not used by Mu.
17 L source

20 L_ destination LoadL

Cleared version of May 24, 1981

Mu: Alto Microassembler March 25, 1978

21 Non-dataF3 clause F3

22 F3_ destination F3

23 _F3 source F3

24 ALU functions source ALUF

25 T_ destination LoadT

26 T source ALUF ALUF_1
27 No longer used

30 Predefined address

31 _LMRSH, LMLSH source

32 Mask constant source

33 _F2 source F2 BS 2
34 F1 source F1 BS 2
35 XMAR_ destination F1, F2 F1L1,F2 6

The current symbol definitions are contained in file AltoConsts23.Mul.

5. Revision History

October 24, 1974

"%’ predefinition facility added.

March 4, 1975

This version has changed from previous releases in that the .BM file contains micro format type 5
which contain address symbols for the constant, instruction, and R memories. Programs which read
fileswill be expected to deal with this type of block.

October 11, 1977

Bugs fixed: garbage in listing if statement too long; occasionally scrambled R-register listings;
termination at the end of "insert’ files.

Features. longer statement buffer (500 characters); symbol type 35 for XMAR_; *.Stats' file
conditionally; checks for loading S-register from shifter; reports length in octal and decimal; strips
formatting.

March 25, 1978

Bug fixed: leaving the semicolon off the end of a predefinition yielded erroneous results with no
message.

Features: listing file contains constants sorted by value as well as by address; source filename
defaultsto’.Mu'.

88

blocks

these

premature

generated

Bravo

error

extension

Cleared version of May 24, 1981
Network Executive January 12, 1980 89

Network Executive

NetExec is an Alto command processor for invoking certain subsystems via the Ethernet without using the
local disk. Itisuseful for rebuilding a smashed disk and for loading diagnostic programs when the disk is
sick. Itsuser interfaceisintentionally similar to the standard Alto Executive.

The program is invoked by holding down the <backspace> and <quote> keys while pressing the boot
button. 'Y ou must continue to hold the keys down until a small square appears in the middle of the screen,
then you can let go. NetExec and all of the programs invoked by it are boot-format files kept by "boot-
servers' -- programs which implement the Alto boot protocol. Most gateways and some other programs
(such as Peek) contain boot-servers.

When the NetExec arrives, it displaysa">" and blinks its cursor to indicate that it is ready for commands
fromthe user. In parallel with thisit displays a pair of lines near the top of the screen with its name and
version number, adigital clock, and the machine' sinternetwork address.

Typing "?" causes the NetExec to display alist of the boot-filesit knows how to invoke. NetExec builds
thislist by probing the network for boot servers and asking them what boot files they are willing to give
out. There are also some built-in functions which arelisted by "?" asif they were boot files:

BootDPO Causes NetExec to boot the operating system on DPO of the current partition.

FileStat Prompts you for a boot file name and tells you all about it: its boot file number,
the host from which the NetExec will obtain it, and the key combination which
will boot it directly.

Partition prompts you for adisk partition number. If this number is zero, NetExec tells
you the current disk partition. If it isnon-zero, it attemptsto set the partition to
that number. Thiscommand is only available on machines that support multiple
disk partitions: Dorados and DOs.

Probe Causes NetExec to probe the network looking for boot servers. If it discovers
any new ones, it will add the new boot filestoitslist. Thisisdone once
automatically when NetExec starts, and whenever the user types an unrecognized
command.

Quit BootsDMT

SetTime Causes NetExec to probe the network looking for atime server. If it discovers
one, it setsthe Alto’s clock fromit. Thisis done once automatically when
NetExec starts.

In the future, common subsytems should be stored in a few places throughout the network, not on every
local disk; perhaps the local disk can be eliminated entirely. Doing so requires a much better integration
of network and OS facilites than currently exists. The NetExec described here is not intended to do this.

There are severd limitationsin the current implementation:

1) Most boot-files are quite large. Typical boot-servers have space for only the few
most commonly used programs.

2) Boot-serverstypically run in machines with some other primary purpose, such as
gateways, and must not consume too many resources. Asaresult, booting is dow
and only one machine can be served at atime.

Cleared version of May 24, 1981

OEDIT November 23, 1980 90
OEDIT
The OEDIT programis for looking at and modifying Alto files and Alto Trident files, in octal and other
formats. Call it with OEDIT f1f2 ... wherethef’sare the names of the files you want to look at (you are
limited to about 4 Trident files, 15 or 20 Diablo files). OEDIT will display the contents of the
corresponding words of all the files on the same line, with wrap-around printing if they don’t all fit.
Each filename can be optionally preceded by a disk drive specification asin the following examples:
"tp5:name.ext" means the file "name.ext" on Trident drive number 5, while "DP1:name.ext" means
"name.ext" on Diablo drive 1. The default is"dp0:", which means the standard system disk. Each T-300
disk has up to three distinct Alto file systems; if Trident drive 2 were a T-300 drive, thesefile systems
would be referred to as "tp2:", "tp402:", and "tp1002:" (a2 in the right byte, and either O, 1, or 2 in the | eft
byte).
Thefiles are initially opened with read-only access. The second and subsequent files can only be read and
displayed by OEDIT. But OEDIT has commands that write into the first of the specified files. If you want
to be able to alter thefirst file, use the /W switch on the OEDIT command. Otherwise, OEDIT will have
to reopen the first file to obtain read/write access the first time that you try to store into it; OEDIT will
request confirmation before reopening the first file.
OEDIT output usually goesto the Alto screen only; the font used is the one stored in the file named
"dp0:gachalO.a" if that file exists, otherwise the standard system font (fixed pitch looks better). If you
would like a permanent record of your OEDIT session, use the /F or /L switch on the OEDIT command,
which will copy the session on the file "dp0:Oedit.Lst". Note that this provides away to get octal dumps
of Altofiles.
When it starts, the program computes the lengths (in bytes and words) of all of the specified files. For
large files this can take upwards of 15 seconds (if the file system hints prove to be wrong), so don’t be
aarmed by the delay.

After typing the lengths, OEDIT waits for commands:
n/ show location n of each file in the standard modes

If show the next location of each file
A show the previous location of each file
cr show the current location again
tab show the location pointed to by the last displayed location
n! show locations n to n+40b of each file
> show the next 40b locations of each file
< show the previous 40b locations of each file
nv display the value n itself in both octal and decimal
nF beginning at current location in thefirst file,
find aword containing the value n, show it and its address
Q quit
Thelf, ~, tab, <, >, and cr commands can be preceded by a number which is written into the current

location of thefirst file. Control-W is synonymous with #, and control-V is synonymous with V.

All numbers can be input in avariety of formats, called modes. Each mode isreferred to be a one-letter
code (either upper or lower case), as described in the following table:

0] adouble-word octal number
W asingle-word octal number
an octal byte
S,orC an ASCII byte
a hexadecimal byte
an EBCDIC byte
adouble-word decimal number

OmX>»T

Cleared version of May 24, 1981

OEDIT November 23, 1980 91
N adecimal byte

When inputting a number, you announce the intended mode by giving a mode letter followed by a colon;
the default is"O:". Thus, "0:354" or "0:354" or "354" inputs the integer 354b, while "C:A" inputs the
character code for upper case A in ASCII. The register that you are loading with thisinput isa double
word, 32 bit integer; thisis necessary since file addresses may exceed 16 bitsin length. In situations where
only 16 bits make sense, such as specifying the new contents of the current word of the first file, the least
significant 16 bits of the input register are used. Each input mode specifies a new chunk of datato be
shifted in at the right of the input register. Input modes that describe only a byte of data shift this new byte
in at the right, while modes that describe a double-word of datareset the entire register. Separate multiple
chunks of 1nput with spaces. For example, "0:40502", "40502", "h:101 h:102", "C:A c:B", "x:41 x:42",
"x:41 c:B", and "d:16706" are all legal ways to describe the input value 40502b (a one-word quantity).

When inputting a number in octal, decimal, or hexadecimal, preceding the digits with aminus sign will
take the two's complement. In particular, "-1" is an easy way to input a number that has all one bits. Thus,
to give another example, "0:37777600000", "W:-1 W:0", and "h:-1 x:FF w:0" are all waysto specify a
double word quantity consisting of 16 ones followed by 16 zeros.

When inputting a number in octal, decimal, or hexadecimal, preceding the digits with aminus sign will
take the two's complement. In particular, "-1" is an easy way to input a number that has all one hits.

All addresses are word addresses (even though the file lengths are also shown in bytes.) Furthermore,
addresses are only displayed in octal. The datawordsin the files can be displayed in modes analogous to
the modes listed above:

O displays afull-word octal value

H two octal bytes

A,S orC two ASCII bytes

X two hexadecimal bytes

E two EBCDIC bytes

D afull-word signed decimal value
N two decimal bytes

The control character correponding to each output mode is a command to type out the current location in
that mode. If the control character is preceded by a number, it means open that location and display it in
the specified mode. When no particular mode is spcified, OEDIT uses a set of modes called the standard
modes. Unless you say otherwise, the standard mode set is OHA. 'Y ou may add modes to the standard set
by specifying them as global switches on the OEDIT command; you can aso remove a mode from the
standard set by preceding that |etter with aminus sign in the list of global switches. Thus, if one wanted to
display the filesin hexadecimal, ASCII, and EBCDIC only, one would type "OEDIT/-O-HXE filename".

A note on EBCDIC: the underline character in EBCDIC is represented by |eft-arrow in ASCII; the cents
symbol in EBCDIC is represented by backsash in ASCII; and the hook symbol in EBCDIC (logical
negation) is represented by up-arrow in ASCII. All unassigned character codesin EBCDIC are represeted
by tildein ASCII.

It is often useful to be able to scan through a portion of afilelooking at every d’'th word, that is, at a set of
addresses that form an arithmetic progression, and either searching for a particular value in a particular
field, or writing a particular value into aparticular field. This capacity existsin OEDIT by means of a
specia command, invoked by typing "F" or "f" without first giving a number. You will first be prompted
to input a starting address, ending address, and the parameter d (the common difference of the arithmetic
progression; d must be positive). Then, input amask that specifies by its one bits the relevant field. Next,
say Sfor Searching or R for Replacing. Finally, give the new data, with the bits already in the correct field;
data bits that are obscured by the mask don’t matter. Each number that you are inputting during this
process can be in any mode; separate multiple bytes with spaces, and end each numeric argument with

carriage return or escape.

Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 92

Alto microcode overlays

Large systems which use the Alto control RAM, such as Bytel isp and Mesa, inevitably want to put
more instructionsin the RAM than will fit. When this happens, the system implementors can choose
either to implement the additional functionsin software, or to change the contents of the RAM
dynamically. The package described here provides for relatively cheap dynamic overlaying of the RAM.
The overlay regime can be very simple (just one overlay in RAM at atime) or complex (a nested allocation
scheme) with no changes in the swapper or the overlays themselves.

Users of this package must, of course, still decide when loading microcode is preferable to falling back
into Nova code. Interms of space, one microinstruction does about 2/3 as much work asa Nova
instruction, and takes 32 bits rather than 16, so (overlaid) microcode takes about 3 times as much core
space for equivalent tasks. The package presented here imposes an additional space overhead which may
amount to as much as 2 * the square of the number of overlays. Interms of speed, loading a
microinstruction takes about as long as executing a Nova instruction, and the package described here adds
an additional time roughly equal to 1 Novainstruction for each overlay each time a new overlay must be
loaded, so for totally straight-line code the net execution time favors Nova implementation by about a
factor of 2 (i.e. to break even, agiven overlay must be executed at least twice). However, microcode has
easy access to the state information stored in the processor’s R registers, while Nova code does not (unless
it can all be passed through the AC’s), so this may make microcode execution preferable even in the case of

straight-line code executed only once.

1. How to useit

Using microcode overlays requires three steps that differ from normal use of the RAM. The Mu
assembly process is different; the Oram program must be run to construct the data structures necessary for
the swapper; and a small amount of extrainitialization isrequired at runtime.

Thefirst step in constructing overlayable microcode is to decide how to break up one's microcode into
overlays and to identify the entry pointsto each overlay. (One overlay may have more than one entry
point.) The microcode sources must be broken up into files: amain file that includes all the resident code,
plus predefinitions (but no code) for all entry points of al overlays; an initialization file (to be described in

amoment) that supplies dummy code for al entry points; and files for the individual overlays.
The main file must include the following code at the beginning:

10,1,zero; Required by the swapper
$ramvec2$Rnn; An Sregister for the base of the overlay table

[other predefinitions, symbol defs, constants, registers, etc.]
#swapper.mu; The swapper

This code must occur at the beginning of the main file because the swapper’s entry point (Iabel "swapper")
must be predefined as location 1000 in the RAM.

The initiaization file must have the following form:
#main.mu; (or whatever the main file is called)
ent0: T _ O, :swapper;

entl: T _1,:swapper;

ent2: T _ 2, :swapper;

ent3: T _ 3, :swapper;

and so on for al the entry points. (Ent0, etc. should be replaced by the names of the entry points, of
course.)

Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 93

Since microcode is not relocatable in the RAM, all decisions about what overlays can be co-resident
must be made at assembly time.

After assembling the dummy file and each leaf overlay file with Mu in the usua way, run the Oram

subsystem as follows:

>Oram xx.BR initt MB ov1.MB ... ovm.MB
where xx.BR isthe BR file on which Oram will write the overlay tables, init.MB is the result of assembling
theinitialization file, and ov1.MB through ovm.MB are the results of assembling the leaf overlay files. If
all goeswell, Oram will produce a variety of messages ending with

nnn words written on xx.BR
and return to the Executive. Oram also writes all its messages on afile called Oram.Lst.

When you load your program with Bldr, you must include the file xx.BR produced by Oram. The
datain thisfile, unlike the initial RAM image produced by PackMu, is required throughout the running of
your program. Y ou must also load the RWREG library package to obtain the WriteReg procedure used

below, but thisis only needed during initialization.
When loading the RAM during initialization, your program must include the following code:
external [MChase; MCtop] // defined in xx.BR
if (MCbase& 1) ne 0 then
[let len = @M Ctop
MoveBlock(M Ctop-len-1, MCtop-len, len)
M Cbase = MChase-1
]
WriteReg(nn, M Cbase-2)
where nnisthe register number in the definition of ramvec2 in the main file.

2. Design details

In the RAM, the entry instructions of each overlay are all in the permanently resident code. If the
overlay is present, the entry instruction is just the first instruction of its code; in this case we say the entry
instruction is"valid". If the overlay is absent, the entry instruction loads T with the entry number and
branches to the swapper (the entry instruction is"invalid"). Thuswhen an overlay is loaded, the entry
instructions of all overlaysit overlaps must beinvalidated. The chief advantage of this approach is that
thereis absolutely no time overhead if the overlay isaready in the RAM, so it isfeasible to overlay very
short sequences (15 instructions, say).

Thereisjust one global data structure (in core) that describes the overlay structure: atable indexed by
2* entry number which points to overlay descriptions, described in the next paragraph, and also specifies
where to start execution after the overlay isloaded. (This arrangement permits asingle overlay to have

multiple entry points.) The origin of thistable isthe only thing known to the swapper.

The description of an overlay (in core) must begin at an even location, and has two parts:

1) Aninvalidation table which specifies how to overwrite entry instructions. Each entry in thistableis a
2-word object: the first word is a RAM address, the second word is the upper half of the microinstruction
to write there (the lower half always being "BUS_constant, Load T, branch to swapper"). Thelast entry is
flagged by having bit O of the RAM address set.

2) A sequence of instruction blocks. Each block begins with a 2-word header (100000b+RAM address,
0). Thefollowing data are a sequence of instructions where each instruction’s NEXT field specifies where
to load the following one: this sequencing scheme eventually requires the block to end. This sequence is
terminated by afinal block consisting of two zero words.

The swapper isaroutine in the resident microcode which expects an entry number in T, loads the
appropriate overlay, and branches to the entry. It must fetch the overlay’s description from core and then

do the following things:
1) Invalidate the entry instructions of all overlays with which the one being loaded conflicts.
2) Load the code, which must include the entry instructions specified as being newly valid;
3) Branch to the code. Theinitia RAM load must have all entry instructions invalid.

Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 94

3. Mu/Bldr interface

The third design issue is how best to get the necessary data structures incorporated into Bcpl/Nova
programs. It turns out that it is possible to support nested overlays with no changesto Mu. For example,
suppose that the main body of the microcode is M, and that we have three overlays: X (entry point X1),
which takes all the overlay space, and Y (entry points Y1 and Y 2) and Z (entry point Z1), which will both
fit at the sametime. Assemble the following configurations with Mu: M+X, M+Y, and M+Y +Z. Then
an overlay preparation program, Oram, can compute all the necessary tables and produce a .BR file that
can be loaded with the user’ s program.

It is necessary to be alittle careful to arrange that the entry instructions fall in the same locationsin all
assemblies. Furthermore, if it is desired that one routine occupy a subset of the RAM locations of another,
they must have the same configuration of predefinitions (and, of course, appear at the same placein the

assembly sequence). Hereis asketch for the example:

M contains (somewhere):
10,1,X1;
10,1,Y1;
10,1,Y2;
10,1,21;

X contains:
X1: [codefor X]

Y contains:
Y1:. [codefor Y]
Y2: [morecodefor Y]

Z contains:

Z1: [codefor Z]
In general, some of the predefinitions could be omitted if the entry addresses were to be predefined earlier,
for example if they were entries in some kind of opcode dispatch. In addition, there must be another file

W which is assembled with M to produce the initial RAM load:

W contains:
X1: T _0, :swapper;
Y1 T _1,:swapper;
Y2. T _ 2, :swapper;
Z1: T _ 3, :swapper;

The pointer table would have the appearance
Xdesc; X1,
Ydesc; Y1,
Ydesc; Y2;
Zdesc; 71,
and the individual descriptionswould be as follows:
Xdesc: Y1, invaidateY and Z
BUS 1 (hi part);
Y2;

BUS 2 (hi part);
#100000+Z1,
BUS 3 (hi part);
[codefor X]

0;

Ydesc: #100000+X1; invaidate X
BUS 0 (hi part);
[codefor Y]

Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 95

0;
Zdesc: #100000+X1; invalidate X
BUS 0 (hi part);
[codefor Z]
0;
Fortunately, given the .MB files, the Oram subsystem can construct all the tablesitself. Oram assumes that
any instruction in the base file (W) which branches to the swapper is an entry instruction.

Cleared version of May 24, 1981
Packed RAM images March 17, 1979 96

PackMu, Rpram, ReadPram

These two subsystems and one library package make it easy for Alto programs which use the RAM to
check the constant memory and load the RAM as part of their initialization. The first subsystem, PackMu,
takes the output of Mu (a.MB file) and convertsit to a"packed RAM image" which is easy to load. The
second subsystem, Rpram, reads a packed RAM image, checks the constant memory, and loads the RAM
(i.e., itisamicrocode loader). Thisfunction is also available through a pair of library routines
ReadPackedRAM and L oadPackedRAM (available on afile called ReadPram.bcpl).

A packed RAM image isa.BR file containing 4401b words of data. Thefirst word isignored. The
next 400b words are the desired contents of the constant memory: a zero word (which Mu cannot generate)
means "don’t care”. Constant O is reserved for a version number, to help programs check that they are
getting the correct RAM contents. The remaining 4000b words are the contents of the RAM. Each
instruction occupies two words, first high-order part, then low-order part, e.g. words0 and 1 go into RAM

location 0, words 2 and 3 into RAM location 1, and so on.

The invocation format for PackMu is
>PackMu foo.MB fo0.BR version staticname

Foo.MB isthe output from MU. Foo.BR isthefilefor the packed RAM image. Version (optiona) is a
RAM version number which will be written as constant 0 in the output file; if omitted, it defaultsto zero.
Staticname (optional) is the name for the static in foo.BR which will point to the RAM data; if omitted, it

defaults to Ramlimage. PackMu prints out
XXX constants, yyy instructions
to indicate the number of constants and instructions read from foo.MB. If f00.MB is somehow illegal,
PackMu prints
Error:
and an error message instead.

Theinvocation format for Rpramis

>Rpram foo.BR version rambank
where f00.BR is the output from PackMu and rambank is the bank number (1, 2, or 3) if Alto hasthe 3K
RAM option. If there are any disagreements between the constants in foo.BR and the actual constant
memory, Rpram prints

Constant nnn is xxx, should be yyy
for each constant that disagrees, and a summary message

nnn constants differ
at the end of loading (but it still loads the RAM). If version is supplied and disagrees with constant
location 0in foo.BR, Rpram prints

RamVersion infileis xxx; version expected is mmm
If Rpram believes that foo.BR is not afile written by PackMu, it prints

Bad RAM image
If everything is OK, Rpram prints nothing.

Toread in a packed RAM image file from a program, use the subroutine ReadPackedRAM ((stream,
IvRamV [], rambank [1]). The stream argument should be a word-item input stream positioned at the
beginning of afoo.BR file; IvRamV, if supplied, is taken as the address of a variable in which to store the
value given by thefile for constant O (i.e. the RAM version). ReadPackedRAM does exactly the same
thing as the Rpram subsystem, including printing disagreement messages on the display, but instead of
printing the summary message it just returns the number of disagreements, or -1 in the case of a bad RAM
image file. Rpram essentially just opens foo.BR and calls ReadPackedRAM.

Alternatively, you may wish to load the RAM image foo.BR with your program. In this case, use the
subroutine L oadPackedRAM ((staticname, IvRamV [], rambank [1]) where staticname is the name you gave
to PackMu. LoadPackedRAM does the same thing as ReadPackedRAM, except it takes the data out of

memory instead of from afile.

On Altos with the 3K RAM, note that since L oadPackedRAM and ReadPackedRAM use two words

Cleared version of May 24, 1981
Packed RAM images March 17, 1979

in RAM bank 1 for checking the constant memory, you should load bank 1 last if you have a
microprogram.
Maintainer’ s notes:

PackMu uses the library packages GP and ReadMu.

Rpram uses the library package GP.

97

multi-bank

Cleared version of May 24, 1981
PeekPup May 17, 1976

PeekPup

PeekPup is a small subsystem enabling one to peek at Pups going to and from a particular Ethernet host.

isintended as an aid in debugging new Pup software.
PeekPup isinvoked by the command
PeekPup hostnumber filename

where "hostnumber" is the Ethernet address (octal) of the host whose packets you want to spy on
"filename” is the name of afile to write the output on. The program then looks for packets
Ethernet source or destination addressis equal to "hosthumber”, and buffers them in memory. For
Pup so processed, "!" is displayed on the screen. PeekPup terminates when any key is pressed, at
point it interprets the last 200 Pups received and writes the result on the specified file.

The output is mostly self-explanatory. The numbersin the left margin represent a millisecond clock
no particular starting value and wrapping around at 32768). For each Pup, afew lines of output
generated; the information about Pups sent to the host being spied upon isindented further
information about Pups generated by that host. Pup headers are fully interpreted, and Pup contents
displayed as either text or aseries of octal numbers representing bytes; large Pups get only the
portion of their contents displayed, followed by "...".

98

are
initial

Cleared version of May 24, 1981

Pressedit September 15, 1980 99
Pressedit
Pressedit is useful for combining Press files together, selecting certain pages from a Pressfile, or adding

extrafontsto aPressfile. The general command format isillustrated in the following example:
pressedit foo.press _ a.press b.press 2 5 c.press 3 to 7 9 TimesRoman10/f
This means "make a Press file foo.press from all pages of a.press, pages 2 and 5 of the Pressfileb.press, and
pages 3, 4, 5, 6, 7 and 9 of c.press; add font TimesRoman10 to the fonts defined in foo.press'. The
resulting file will be arranged in the same order as the component input files.
Examples:
To extract pages 3 and 17 from a Press file long.press, and put themin short.press:
pressedit short.press _long.press 3 17
To add fonts logo24 and helvetical4 to a.press:
pressedit a.press _ a.press logo24/f helveticald/f
Here the arguments on the right hand side of the arrow may be given in any order.
To make a blank, one-page Press file containing all three faces of Timesroman10:
pressedit blanktimes.press __ timesroman10/f timesroman10i/f timesroman10b/f

To append to the end of chap3.press all the Press files with names fig3-1.press, fig3-2.press, fig3-3.press etc:
pressedit chap3.press _ chap3.press fig3-*.press

Caution: when you combine files with Pressedit, try not to use different sets of fonts, or the same fonts in
different orders. Thiswill result in proliferation of font sets, making the file more bulky and creating other
minor sources of inefficiency.

Merging Press files together: Pressedit allows any number of Pressfiles to be merged onto the pages of
another Pressfile. Thisisuseful for inserting illustrations in a formatted document. The following

description assumes that the user wishes to add illustration figures figl.press, fig2.press, fig9.pressto a
document file doc.press.

[ustration files should be of one page only; Pressedit will ignore all but the first page. The document file
may have any number of pages. Theillustrations are placed in position on the appropriate page with the
aid of an ARROW. The document file must have an arrow for every occurrence of anillustration; every
illustration must also have an arrow. Pressedit aligns the pairs of arrows when merging the files, and

removes the two arrows.
In the document file, arrows have the form:
<==<fig3.press<

In other words, the name of the illustration file is preceeded by the string <==< and is followed by the
character <. NO SPACES are allowed before the arrow, but you may use tabs to position it if you wish.

In theillustration files, arrows have no file name:

<==<

Cleared version of May 24, 1981
Pressedit September 15, 1980 100

Again, no spaces before the arrow, please.
To merge the files, run Pressedit with a/m switch:

pressedit/m foo.press _ doc.press figl.pressfig2.press..... fig 9.press
This command can of course be typed more concisely as follows:

pressedit/m foo.press _ doc.press fig#.press

for the command interpreter to expand. All illustration files must thus be included in the input file list,
preceded by the document file name. The sameillustration may be inserted on several pages, using arrows
in the document file containing the same file name. In such cases, it is not necessary to mention the
illustration file more than once in the command file. For example, if doc.press has an arrow on every page

referring to squiggle.press, it is sufficient to type:

pressedit/m foo.press _ doc.press squiggle.press

When merging files, Pressedit uses a specia third pass during which it types out the page numbers
containing illustrations and the names of merged files. If the merged file was not listed in the command
line or was found not to contain the necessary arrow for positioning, Pressedit will complain, and will omit
theillustration.

Three limitations

Itis not currently possible to merge with selected pages of the document file, thus
pressedit/m foo.press _ doc.press 2 to 6 figl.press fig2.press...

Instead you must select the pages and merge in separate operations.

Ilustrations may include any legal Press entities, but at present there are likely to be difficulties with very
large images.

Certain illustration files will give Pressedit problems, and will result in the message "negative origin." This
means that the illustration was drawn near the top of the page, and is now being inserted near the bottom,
causing the "origin" to move off the bottom of the document page. This happens only in rare cases of Press
files created with obsolete versions of Draw. If you should encounter this problem, get an up-to-date

version of Draw, read the Draw filein and write it out as anew Press file: the problem will go away.
Page Numbers
Pressedit will add page numbers to the output file if you use the /p switch:

pressedit/p foo.press _ doc.press

The /p switch may be used on partial and multiple input files. It will omit the page number on the first
page, and number the remaining pages starting at 2. Numbers appear about 3/4 inch down from the top
and 1 /4 inchesin from the right. To change these default options, append any of the following
paramenters to your command line:

xxx/o omit numbers on the first xxx pages. (default 1) xxx/s start numbering at xxx (default 2) xxx/x X
coordinate of number, in 100ths of an inch (default about 675), measured from the |eft edge of the paper.

xxx/y y coordinate of number (default about 1025) measured from the BOTTOM edge of the paper.

Thus to start numbering on the third page (i.e. omitting the first two), numbering from 17, with the
number positioned at x = 6.5 inches and y = 10 inches, use the following command:

pressedit/p foo.press _ doc.press 2/o0 17/s 650/x 1000/y

Cleared version of May 24, 1981
Pressedit September 15, 1980 101

Any and al of the page-numbering paramenters may be omitted if the default valueis OK.

Cleared version of May 24, 1981

RAMLOAD April 1, 1975 102
RAMLOAD

RAMLOAD isaprogram that acts as a microcode loader, using the output of the microcode assembler

Mu. Sincethere are now two types of microcode memory for the ALTO, some distinction must be made.

Hereafer, ROM means some combination of roms on the ALTO control board, and add-on goodies which

hang on the end of the control board like debuggers with 512 words of ram. RAM means the extra board

with 1K of ram which plugsinto aslot in the processor.

RAMLOAD gets its parameters from the command line and default values. If you do not specify a
parameter, the default is used. In addition there are some global switches which do other useful things as
explained below:

GLOBAL SWITCHES (of the form RAMLOAD/switchlist)

/IR compare the micro binary file against the contents of the RAM and display differences.

N compare the micro binary file against the contents of the ROM and display differences.

/C compare the micro binary file against the contents of the constant memory and display
differences.

IT Test the RAM and extra R registers by writing random numbers and then reading them back
displaying differences and addresses.

/0 Same as /T but do not test the R registers.

/N Do not request Confirming <CR> for any operation.

LOCAL SWITCHES (of the form foo/switch)

IF use foo as the name of the micro binary file. Default is"BINFILE."

M use foo as the name of the instruction memory in the micro binary file. Default is
"INSTRUCTION".

/IC use foo as the name of the constant memory in the micro binary file. Default is
"CONSTANT".

N fooisan octal number. Useit asthe boot locus vector. Bit 15 corresponds to task 0
(emulator). 0 means run task in the RAM. Default is#177777 - keep al tasksin ROM.

/A foo is an octal number, representing the base address of a5 word areain the RAM which
RAMLOAD can usefor utility purposes. Default isthetop 5 words (#1772). See warnings
below about restrictions for specific operations.

/S foo isan octal number interpreted as the beginning address of the emulator main loop
(START for microcode hackers). Default isthe current START address, #20.

Note that global switches/V, /C, and /T do the samethingsthat ;V, ;C, and ;T doin DEBAL.

RAMLOAD in effect does a;L, and also sets the boot locus vector. The /R global switch was added

because it was easy and people might want to see if the microcode got smashed after afiasco.

When RAMLOAD iscalled, it will first display what it thinks it is supposed to do as governed by the
switches and defaults, and wait for a confirming carriage return. When thisisreceived, it will attempt to
open the micro binary file. If thisisunsuccessful, it will put out a message to that effect. Next, operations

specified by global switcheswill be performed (If the micro binary file could not be opened, the only tests
possible are /T and /O). If no global switches were set, the program will assume you wanted to load, and
do so without waiting for confirmation. Loading is athree step operation in which the first step, setting the
boot locus vector, does not require an open micro binary file. This allows a user to change the boot locus
vector without reloading the RAM, by specifying a nonexsistant file name for the micro binary file. The
program will report the value the vector is set to. Steps two and three, unsnarling the micro binary file and
loading its contents, obviously require an open file and will cause RAMLOAD to bomb if thereis none.

When the loading operation is complete, the number of instructions loaded, and the highest address will be
reported ala DEBAL. Next the program will ask if you want to boot, thus moving the tasks specified in the
boot locus vector into the newly loaded microcode in the RAM. If you confirm, and if you have an
Ethernet board, the machine will do a software initiated boot. If you do not have an Ethernet, the boot will
be aNOP, and a FINISH is executed. Hitting the boot button after the program is finished will work for

those hermits who do not have Ethernets.

Cleared version of May 24, 1981

RAMLOAD April 1, 1975 103
The routine which reads the micro binary file expects the limited subset of block-types that DEBAL puts
out. If it encounters an unusual block-type (3, 5, or 6) , it will endeavor to do the right thing, and continue
on. When it isfinished reading, if any unusual types were encountered, it will list how many of each it
read. If the microcode was assembled using DEBAL, thisis cause for grave doubts about the correctness of
thefile, since DEBAL will not currently generate these types.
Where the 5 word utility areais specified can have profound (ie. potentially disasterous) effects on the
machine's operation if you are currently running from the RAM. Whileit is possible to load the RAM
while executing in it, thisisliving very dangerously. However, if you must, observe the following caveats:
* if constant memory is being checked, and you are executing out of the low 256 locations, you are
dead.
* the 5 word utility areamust be specified in a place you will not be executing from during the
RAMLOAD program. RAMLOAD always saves any word in RAM it modifies for utility

purposes, and restores it when it is done, but while in use, it can have an arbitrary value.

A number of things can cause fatal errors during execution. If one happens, an error message is written in
the system display area, and the program is aborted.

Cleared version of May 24, 1981

SCAVENGER May 24, 1976 104
SCAVENGER

A subsystem for checking and correcting disk packsis available as SCAVENGER. Invokeit with no

parameters and it will give you an opportunity to (1) change disks and (2) prevent it from altering your disk

serioudly (see below).

The scavenger does the following:
1. Corrects header blocks, prompting for confirmation.
2. Corrects check sum errors, by re-writing whatever came in, prompting for confirmation.
3. Discovers all well-formed files and all free pages. Any disk page (except page 0) that is neither free
nor part of awell-formed fileis considered bad.
4. Makes the serial numbers of all well-formed files are distinct.

5. Corrects the system’ s notion of what pages are free.

6. Corrects the system’s latest serial number.

7. Corrects the directory to contain precisely the well-formed files. If adirectory entry pointsinto a
chain of bad pagesit attempts to salvage thefile. If need be a directory is created from scratch.

8. Links all bad, unsalvaged pages together as part of the file Garbage.$.

9. Describes all changes to the disk in the file ScavengerL og, even those which were not actualy
performed.

10. Corrects leader page information. Changes to leader pages should not cause alarm. The
information there is used as a hint by various systems.

The datain bad pagesis not changed so you can attempt to reconstruct alost file by suitable operations on

Garbage.$, consulting ScavengerLog to interpret its contents.

A hopelessly smashed disk may be put back in shape by the following:

1. Invoke scavenger on a good disk and answer yes to "Do you want to change disks?"

2. Replace the good disk with the bad one.

3. Answer yesto "Isthe new disk ready?' when the yellow ready light comes on.

4. Answer yesto "May | alter your disk to corrct errors?"

5. If FTPlives on your disk, the scavenger will offer to invoke it rather than retuning to the executive.
Onceyou are in FTP you can receive critcal files (like Executive.Run or SysFont.Al) or evacuate
your disk by sending files elsewhere. If the scavenger does not offer FTP, it is not there and you
will have to do some more disk suffling to retreivefiles; i.e. invoke FTP from agood disk and
change disks after you arein.

Y ou should take precautions to avoid losing vital files (such as QUICKing your disk to another disk pack
prior to running SCAVENGER).

Cleared version of May 24, 1981
SCAVENGER May 24, 1976

PARC information

The following, more or less independent, procedure can be used to recover vital files that might have
lost during scavenging.
1. Invoke FTP on agood disk.
2. At an early point in the dialogue replace the good disk with the bad one and wait for the
ready light to come on.
3. Retrri]evliz ;he needed files from MAXC (Executive.Run and FTP are the minimum required,
think.
4. Quit out of FTP.
5. Run the scavenger. It will correct the DiskDescriptor file which became inaccurate during
process.

105

been

yellow

this

Cleared version of May 24, 1981
SWAT March 16, 1980 106

Swat, a BCPL-oriented debugger

Swat is adebugger meant to be used with the Alto operating system. While many of its features are BCPL
oriented, it can be used on any Alto program. This document describes version 28 of Swat, which is
compatible with Operating System versions 17 and greater.

1. History

Swat was designed and built by Jim Morris and Alan Brown during the summer of 1973. Bob Sproull
added the error file mechanism and parity error logging during 1976. Peter Deutsch rewrote the command
processor and added the command file facility in early 1977. David Boggs renovated the program, adding
mulitple proceed break points and TeleSwat, and Ed Taft added the help facility in late 1978. Everyone
agrees that the human interfaceis awful. Each person who has worked on Swat has added several more

obscure commands while they were at it.

2. How it works

Swat is an external debugger: with the exception of asmall piece of 'resident’ code in your address space, it
livesin a separate space. When Swat isinvoked, the resident saves your state on the file Swatee, and swaps
in Swat. Referencesto your memory from within Swat go to the Swatee file. When you tell Swat to
proceed, it savesitself on the file Swat, swaps you (the Swatee) in and resumes you. Y our state at the time
Swat got control is displayed in awindow at the bottom of the screen. "ACOQ", "PC", etc are built-in

symbols with which you can manipulate it.

3. Invocation
Swat may be applied to any program running under the operating system after it has been installed (see
Installation below). There are six ways of getting its attention:

(1) Hold down the <control> and <left-shift> keys and then
press the <Swat> key.

(2) Have your program execute the op-code 77400B.
(3) Invoke the Resume/S command (see below).

(4) Boot the file Dumper.Boot, normally by booting with the "DU"
keys depressed.

(5) Type <programName>/! to the Alto command processor.

(6) Call thefunction CallSwat. Up to 2 arguments will be printed
as BCPL strings. Thus CallSwat("No more memory")

Cleared version of May 24, 1981

SWAT March 16, 1980 107
4. Commands
The command scanner has suffix action symbols, all of which are control characters (e.g. *C). "n" is any
BCPL expression (see Expressions below), "$" is escape except where noted, "cr" means carriage return,
"If" means line-feed. Y ou can abort whatever Swat is doing at any time and get back to the top level
command scanner by pressing the <Swat> key.
4.1. Help facility
Most debuggers have aterse and obscure command syntax, and Swat is no different. Infactit's worse
sinceit doesn't follow DDT conventions. Typing "?" prompts you for acommand character which Swat
looks up inthefile "Swat.help”. Responding "?" to its prompt gives you a small table of contents for the
rest of the help file.
4.2. Displaying cells
address"D prints the contents of n in decimal
address™| prints the contents of n as two 8-bit bytes
address™N prints the contents of n as an instruction
address*O prints the contents of nin octal
address*S prints the contents of n as a pair of characters
address\V prints address in octal and decimal
The last cell printed is called the open cell. 2O, "D, ™, *N, or *S aone re-prints the open cell in the
appropriate format. If you wish to print out a number of cells, beginning with the open cell, say n$"D,
n$"l, etc. Thelast cell printed becomes the open cell.
If ("J) opens and prints the contents of the next cell (after the open one) in the same mode.
AW opens and prints the cell before the open cell.
A opens and prints the cell pointed at by the open cell.
= opens and printsthe cell at the effective address of the open cell.
Thelast cell that was opened by any command except LF or "W is called the last open cell. Oftenyou are
stepping through code, follow a pointer with ~E or "A, look around, decide it’s not interesting and wish to
Lesume where you were before following the pointer. Y ou can get back to last open cell plus or minus one
y:
$If ($°)) open and print last open cell+1.
$er ($'M) open and print last open cell.
W open and print last open cell-1
4.3. Changing cells
The contents of the open cell (if thereis one) may be changed by typing an expression for the new value

followed by acr, If or "W. A$B followed by cr, If or "W stores A Ishift 8 + B into the open cell.

Cleared version of May 24, 1981

SWAT March 16, 1980 108
4.4. Searching
= searches from the open cell+1 for a cell whose contentsisn. Prints and opens that cell.
n$"= seele}rchesfrom the open cell+1 for acell whose effective addressisn. Prints and opens that
cell.
A search terminates at the end of memory (location 176777b -- the I/O areais not touched) and can take
quite awhile: abort by hitting <swat>. The argument for a search command is defaulted to the last value
searched for if omitted.
4.5. Running the program
P resumes the program, i.e. proceeds.
address*G resumes the program at address, i.e. goes there.
<procName>$<el>$...$<en>"C calls the BCPL procedure "procName" with parameters <el>,....<en>
(n<6). If you wish one of the arguments to be a BCPL-format string, merely enclose it in
guotes. Thus OpenFile$'Com.Cm."*C will return a stream on the file. AC2 isassumed to
contain alegal stack frame pointer and ’procName’ will allocate a new frame on top of it.
Often AC2 isnot valid (e.g., Swat interrupted the program in the middle of allocating a
frame), and calling a procedure at this point may not work. Most of the time Swat can
detect this and warn you.
U restores the user’ s screen. Hitting the <swat> key brings back Swat.
K forces the user program to abort, just asif you had typed <left-shift><swat> while it was
running.
4.6. Break Points
A Break point can be referred to by its address or by the index assigned by Swat when the break point was
set. When printing or deleting a breakpoint, Swat reaches out into the user’ s address space to check that
the break is still there.
address"B sets abreak at address
B set abreak at the open cell
O$address*B deletes the break at address
proceedCnt$address™B sets a multiple-proceed break point at address. The breakpoint will take effect
when it has been hit proceedCnt times, and then it will be deleted. Passing
through a multiple proceed break point without stopping takes about 200 us.
index$"B deletes the break with index index
0$$"B deletes all breaks
$$"B prints all broken locations.
P removes the current break and proceeds.
address$$"P sets a one-shot break point at address and then proceeds. A one-shot break point

isone that isremoved after it is hit.

Cleared version of May 24, 1981

SWAT March 16, 1980 109
stackl ndex$"P setsabreak at aBCPL return point in the stack somewhere and proceeds from
the present break. The parameter n specifies the frame number, where the most
recent (top) frame is0. Thusif AT typed out 0:GOO+56 1:HAM+5, 1$P
would set abreak at HAM+6 and proceed.
4.7. Stack Study
See Chapter 10 of the BCPL manual and section 4.8 of the Operating System manual for the details of a
BCPL stack.
T prints the current PC and all return addresses in the call stack (symbolically), until an
Inconsistency in the stack (usually signaling its end) is encountered. After each return
addressis listed the parameters passed to the procedure that will be returned to. "2: 43752
137 0 Foo+45--(14 177777)" means the 2nd most recent frame at 43752, of length 137 is
procedure Foo in bank 0O, called with arguments 14 and -1 (fine point: 14 and 177777 are the
first two local variablesin Foo's frame, which Foo could have modified before Swat was
called, in which case they won’t be the values passed at call time).
T traces a stack beginning with the frame at location n.
index"F prints the parameters of the nth latest stack frame and sets the pseudo symbol "$" (not
escape) equal to the base of that frame. If AT displayed something like 0:FOO+3,
1:.BLETCH+10,... Type 1*F to see the parameters that were passed to BLETCH. $isset to
th%base of BLETCH’sframe (i.e., $ points at the frame’ s back link: the first local variable is
in$+4.
4.8. Symbol table
Y prompts you for the name of asymboal file. Type the name of the subsystem that’s running.
If it can't find afile with the name you typed, Swat appends ".syms" to it and looks up the
resulting file name before reporting failure. 1f BLDR created the file FOO.RUN it aso
created FOO.SYMS, which gives the locations of all the static names. Only statics can be
used in Swat. There are permanent built-in symbols for the interesting page-1 and high

memory locations, BCPL runtime routines, and the user’s state variables (ACO-3, PC, etc.).

4.9. Save/Restore

See'Resumablefiles' below for more details:

AL
"Q

prompts you for afile name on which it saves the current Swatee.

prompts you for afile name which it installs as the current Swatee.

4.10. The Spy Facility

The spy can be used to estimate where the time is going on a percentage basis. It samplesthe PC every
30-milliseconds.

Q) Type X and Swat will display how much user memory it needs for the metering code and tables.

2 Probe around to find a block of storage of the required size, and tell Swat by typing

"X

where nisthe first word of the block.

SWAT

Cleared version of May 24, 1981
March 16, 1980 110

©)] Proceed to run the program.

4 Once Swat gets control again you can type

to displ

to displ

X
ay the results and terminate the spying activity, or
$$X

ay the results so far and continue the spying.

4.11. Miscellaneous

Y

Y
"R
R
$$°z

Prompts for the name of a (text) file from which Swat commands should be taken. Reading
will continue across "proceeds’ from breakpoints, but will be aborted if Swat isinvoked by
the keyboard (<control><left-shift><swat>) or by the standard break-point trap (77400B).

Puts Swat into TeleSwat server mode. The keyboard isignored: to regain local control hit
the <Swat> key. For more on TeleSwat see the sections on Address Spaces and TeleSwat.

Prints the value of R or Sregister n. Y ou must have a RAM for thisto work.
Printsall of the R and S registers.

Repeats the message that was displayed when Swat was invoked. This is sometimes useful if
an error message has scrolled away as aresult of poking around.

4.12. Address Spaces

~nZ - promptsfor the target address space. Swat can treat any file created by OutL d, any bank of memory,

and any host in the internet (with the host’ s cooperation) as the Swatee: the address space into which you

peer with Swat. The syntax for address spacesis:

filename thisis’Swatee’ for normal debugging, but can be any file created by OutLd
(sysOut files (L) arein this category), or Dumper.

BankO Swat itself.

Bank1...3 the extended memory banks. These are only legal on Altoll XMs. No check is
made that a bank actually exists. If it doesn’'t, or if it hasn’'t been written into
since the Alto was powered up, you are likely to get parity errors.

[host] ahost that implements the server half of the TeleSwat protocol (usually another
Swat). [host] can be either aname: [Boggs], or an internet address: [3#2414].
The square brackets are required: thisis how Swat decides that you mean a
[host] rather than afile.

4.13. Examples

XrO"D prints the value of X in octal, then decimal.

func+3”"N If If
1rO7
label "B

printsinstructions 3, 4, and 5 of func.
setslocation 1to 7.
sets a break at label

Cleared version of May 24, 1981

SWAT March 16, 1980

7562"B sets a break at location 7562B

SQRT$16"C calls the (user) function SQRT (the returned value is printed)
label+3°"G transfers to the third instruction after |abel.

T prints the PC

ONF prints the parameters of the most recent call

2"F prints the parameters of the third most recently called procedure; then
$0 prints the saved stack pointer (frame!0)

$+1°0 prints the return address (frame! 1)

$+6"O printsthefirst local (if the procedure has 2 parameters).

5. Expressions

Expressions are asin BCPL with the following exceptions

means exclusive OR

means REMAINDER

means L SHIFT for positive arguments, RSHIFT for negative
means NOT

|\ — -

A string of digitsisinterpreted as octal unless suffixed by a"."

$ (not escape) isthe base of the last opened stack frame (see *F above). Initially it isthelast frame.

A<gtatic name>, "M followed immediately by a static name, means use the address of the static, not
value, evenif it isaprocedure- or label-type static.

. isthe last opened cell

PC isthe address of the cell containing the user PC. Thisisthe address at which Swat will resume
when you say "P.

AC1,...,AC3 are the addresses of the user’s accumulators.

CRY isthe address of the user’s carry hit.

INT = on = non zero if interrupts where on when the Swat trap happened.
No function callsin expressions.

No relational operators (e.g. EQ)

No conditional expressions

No Iv operator (well...see <static name> above)

111

its

Swatee

Cleared version of May 24, 1981

SWAT March 16, 1980 112
5.1. Examples

-170 prints the cell before the currently open cell.

4170 islikeline-feed.

AC1"06 setsAClto 6

PCrO72

P islike 72"G

PCrOIf IfIf If printsthe PC and the AC's

The conventions for expression evaluation are not truly BCPL-like. "F0" will print the first instruction of
Fif BLDR thought it was a procedure or label, but print the contents of static cell Fif BLDR thought it
wasavariable. If F started life asavariable, but had a procedure assigned to it you must call it by

"@F"C" instead of "F*C".

6. Resumable Files

Thefile Swateeis a snapshot of arunning program and can be saved for subsegent resumption or
examination. Y ou can create a copy of Swatee by using COPY or, if you arein Swat, typing L and giving
afile name. This copies Swatee to the named file and appends some information internal to Swat -- the

current symbol table and break point data.
There are several waysto restart resumable files:
1) Pressthe boot button while holding down the keys for thefile.
2) Typethe command (it isinterpreted by the Exec)
RESUME file
If "file" is omitted Swatee is assumed.
RESUME/Sfile
writes file onto Swatee and invokes Swat.

3) Whilein Swat, type *Q and give afile name. Thefile is copied onto Swatee and Swat’'s

internal information is restored to whatever was saved by the "L command that created

thefile. If thefile was created in some way other than L, the internal information is

reset to an empty state.
7. TeleSwat
Swat implements a simple Pup protocol, TeleSwat, by which it can treat a machine anywhere in the
internet as the Swatee (with the consent and cooperation of the other machine). The Swateeis made
receptive to control from the network by typing $$'Y. The controlling Swat’'s attention is directed at it by
specifying the Swatee' s network address as the target virtual memory (see the *Z command). When you
tell the Swatee to proceed (P, *G, ~U), you loose control: your Swat starts probing the Swatee once per
second, but if the Swatee never returns, you must get help from someone at the other end. Each time a
packet is sent, the cursor isinverted to let you know something is happening. Executing the opcode

77412b is equivalent to Call Swat(stringl [], string2 []) followed by $$"Y .

Cleared version of May 24, 1981
SWAT March 16, 1980 113

8. Desperation Debugging

If the resident is broken so you can't use <L eft-Shift><Control><Swat> to get to Swat to see what went
wrong, then you are desperate. Press the boot button while holding down the keys for the file
Dumper.Boot (the OS and Install Swat conspire to make this be "DU" normally). Thiswritesthe existing
memory onto Swatee with the exception of page 0 which islost (Dumper lands in page 0 when you boot it).

Also the display word (420b) is cleared. Finally, Swat isinvoked.

9. Error Message Printing

Swat contains some facilitiesto aid in printing error messages. Because the Swat resident is almost always
present when a program is running, an error message can be printed by simulating a Swat "break," and
letting the Swat program decipher the error specification and print a reasonable message.

If Swat isinvoked by the 77403b trap instruction, the contents of ACO are taken to be a pointer to a BCPL
string for afile name; ACL isapointer to table [errCode%ClearBit; pl; p2; p3; p4....], where errCode (0 le

errCode le 32000.) is an error code, the p’s are "parameters,” and ClearBit is either 200000b (clear the Swat
screen before printing the message) or 0 (do not clear).

Theintended useis with aBCPL procedure like:
let BravoError(code, pl, p2, nil, nil, nil) be

[

code = code%UserClearScreenBit

(table [77403B; 1401B])("bravo.errors’, v code)
[l do a"finish" hereif fatal error

]

The error messages file is a sequence of error messages, searched in a dumb fashion. An error messageis.

a. An unsigned decimal error number (digits only)
b. Followed optionally by:
C Alwaysclear the screen before printing the message
M (see below)
L Log the error via the Ethernet.
c. Followed by a <space>.
d. Followed by text for the message, including carriage returns, etc.
If ygu wish to refer to a parameter, give:

followed by adigit to specify the parameter number (1-9)

followed optionally by "!<offset>" which treats parameter asa
number, adds offset to it, and sets parameter to the
contents of the resulting address (i.e. avector ref).

followed by a character to say how to print the parameter:
O =octa
D = decimal
S =string (parameter is pointer to BCPL string)

(example: $1D will print parameter 1 in decimal)

The quote character is <escape>.
e. Followed by $$.

After the message istyped, if M was specified, the message "Type <control>K to kill, or <control>P to
proceed.” istyped out.

Cleared version of May 24, 1981
SWAT March 16, 1980 114

10. Parity Error Information

When the Alto detects a parity error, Swat is usually invoked to print a message about the details of the
error. It then attemptsto "log" the error with an Ethernet server responsible for keeping maintenance

information. If the server is not operating, or if your Alto is not connected to an Ethernet with such a
server, sSimply strike the <Swat> key, and the familiar "#" will appear.

In many cases, you will want to continue execution of your program after a parity error is detected. Simply
type <control>P to Swat.

11. Installation

Get thefile InstallSwat.Run. Then invoke it to create Swat (the debugger), Swatee (the swap file for the
user’s memory image), and Dumper.Boot (the desperation debugger invoker). Install Swat.Run may be
deleted after it has been run once. Use the Exec’s BootK eys command to discover the keys to depress for

Dumper.Boot; normally they are "DU".

InstallSwat.run is the Swat program. When invoked it, it hooks up to the current operating system,
iﬂitifal izesitself, and then OutLds all of coreincluding the OS (suitably Junted and dlightly patched) onto
the file Swat.

12. Cavests

1. Swat has about 1k of resident code in high memory. This code is not changed when new subsystems
comein. Therefore re-boot if it seemsto bein abad state. Swat can get itself into a bad state too.
SYSINing ("Q) Swateeis a very effective general purgative; ignore the warning message - its doing exactly
what you want it to. If all elsefails, make sure you have a clean copy of the OS, and then reinstall Swat by
running Install Swat.run.

2. Instructions 77400B - 77777B are used by Swat. The actions of some of these (e.g. 77401B) are
pg(laa(lj ished; you get what you deserve if you use the unpublished ones. Location 567B (in the trap vector) is
used.

3. Interrupt channel 8 (00400B) is used by the resident for keyboard interrupts (getting to swat via a

<control><|eft-shift><swat> key combination).

4. A program fetching data from a broken location will get 774xxB.

5. While most interrupt routines are reasonably polite and always resume the interrupted code where it | eft
off, the politeness of Swat’s keyboard interrupt is entirely in the hands of the person at the controls. If he
re-starts by saying ~P, all goes well; but he may say G or ~C. Therefore

a) Y ou should disable the keyboard interrupt by anding 77377B into 453B during critical sections of
code (once they are debugged).

b) Expect occasional anomalies after *C or G is used.
6. The mappings between symbols and addresses are naive about BCPL’s block structure.
a) If asymbol is defined twice or more you get the lowest address.

b) An address is mapped into a procedure name plus a displacement for symbolic type out (e.g. for

Cleared version of May 24, 1981
SWAT March 16, 1980

AT). If procedure A is defined inside procedure B, most of B’ s addresses will be typed as
they were A’s.

7. 1f adisk error prevents swapping, the offending disk control block and label are displayed in the
lights" manner.

8. Locations 700b through 707b are used to save the machine state before each swap.
9. If afile created on a different disk is resumed by booting, invoking Swat may not work because Swat

Swatee may not reside at the same disk addresses on the different disks. This difficulty does not occur
the Exec’'s RESUME command is used, since it will fix up the addresses before resuming it.

115

Cleared version of May 24, 1981
Trident disk software June 14, 1980 116

Software and Utilities for Trident Disks:

Tfsand Tfu
1. Introduction
This document describes Bepl-based software for operating any of the family of Trident disk drives
attached to an Alto using a" Trident controller card” (the software presently deals with the T-80 and T-300
models). Hardware and diagnostic information can be found in the document "Trident disk for the Alto"

(on <AltoDocs>AltoTrident.press), by Roger Bates.
A "Shugart controller card" also exists, for connecting to Shugart model SA-4004 and SA-4008 disk drives.

The Shugart controller is microprogram compatible with the Trident controller, and the Trident software
can operate it aswell. In thisdocument, al referencesto Trident disks apply to Shugart disks as well,
except where noted otherwise.
The software documentation is divided into three parts: (1) abrief "how-to" section describing the
software package available for operating the Trident; (2) a section describing the utility program Tfu; and
(3) asection describing the software package in more detail. Thereis ashort revision history at the end.
(Documentation for the Triex program, formerly included here, has been eliminated. Triex is now needed
only for hardware checkout and is not required during normal operation.)
The Tfs package and utilities all assume that the disk is to be formatted with 1024 data words per sector.
The maximum capacity of each disk is given in the following table.

Disk Tracks Heads Sectors Total pages Total words

T-80 815 5 9 36,675 37,555,200

T-300 815 19 9 139,675 142,709,760

SA-4004 202 4 8 6,464 6,619,136

SA-4008 202 8 8 12,928 13,238,272
For all disks except the T-300, it is possible to construct a single Alto-format file system utilizing the full
disk capacity. Due to the restriction of virtual disk addressesto 16 bits, asingle file system may utilize only
about 47 percent of aT-300 disk, and it is necessary to construct multiple file systemsin order to make use
of the entire disk.
Because of bandwidth limitations, it is unwise to operate the Trident disk while the Alto display is on.
Although the Tfs package will save the display state, turn it off, run the disk, and restore the display for
every transfer, the user may prefer to turn the display off himself. The Tfs management of the display

causes the screen to flash objectionably whenever frequent callsto Tfs are underway.

The present version runs only under Operating System version 16 or newer.

2. Trident File System (Tfs) software package

The software for operating the Trident disk is contained in <Alto>Tfs.dm, and consists of the following
relocatable files: Tfslnit.br, TfsBase.br, TfsA.br, TfsWrite.br TfsCreate.br, TfsClose.br, TfsDDMagr.br,
TfsNewDisk.br, TfsSwat.br, and TriConMc.br. The definitionsfile Tfs.d is also included.

Source files are contained in <AltoSource>TfsSources.dm. Included also are the Trident microcode source
files, TriConMc.mu and TriConBody.mu. These are needed if you want to load other microcode into the
Ram along with the Trident microcode.

Cleared version of May 24, 1981
Trident disk software June 14, 1980 117

The LoadRam.br file, formerly included as part of the Tfs, is now available as a separate package.

2.1. Initializing the microcode

Operating the Trident requires special microcode that must be loaded into the RAM before disk activity
can start. The procedure LoadRam will load the RAM from atable loaded into your program (it Is
actually part of TriConMc.br). It will then "boot" the Alto in order to start the appropriate micro-tasks in
the RAM. (Thisbooting processis "silent" -- it does not re-load Alto memory from the file Sys.Boot, but
instead lets your program continue.) The standard way to call LoadRam to load the Trident disk microcode
is:

external DiskRamlmage
external LoadRam

let result=L oadRam(DiskRamlmage, true) //Load and boot
if result Is O then

[
Ws("The Alto has no RAM or no Ethernet board.")
Ws(" Cannot operate Trident™)

finish

]
After LoadRam has returned successfully, the code of LoadRam and TriConMc may be overlaid with data
-- they are no longer needed.
When exiting a program that has micro-tasks active in the RAM, it is helpful to "silently" boot the Alto S0
that all micro-tasks are returned to the ROM. If thisis not done, subsequent use of the RAM may cause
some running micro-task to run awry. To achieve the "silent boot," simply call the procedure

TFSSilentBoot() at 'finish’ time or as part of a’user finish procedure’ .

For further information, consult the LoadRam package documentation.

2.2. Initializing the Trident drive

Once the RAM has been loaded, the Trident disk can beinitialized. The procedure TFSInit will do this,
provided that alegal file structure has previously been established on the drive (see Tfu Erase, below). The
procedure returns a "disk object," a handle which can be used to invoke all the disk routines. This disk
object (or "disk" for short) can be passed to various Alto Operating System proceduresin order to open

streams on Trident disk files, delete Trident disk files, etc.
tridentDisk = TFSInit(zone, allocate [false], driveNumber [0], ddMgr [0], freshDisk [false])

zone Y ou must provide a free-storage pool from which memory for the disk object and possibly
for abuffer window on the disk bit table can be seized. The zone must obey the normal
conventions (see Alto Operating System Manual); zones created by InitializeZone are fine.

allocate Thisflag istrueif you wish the machinery for alocating or de-allocating disk space
enabled. If itisenabled, asmall DDMgr object and a 1024-word buffer will be extracted
from the zone in order to buffer the bit table (unless you supply addMgr argument,
described below).

driveNumber This argument, which defaults to 0, specifies the number of the Trident disk drive being
initialized. If the driveisaT-300, the left-hand byte specifies the number of the file
system to be accessed on that drive, in the range O to 2. (For further information, consult

the section entitled ' Disk Format’.)

ddMgr This argument, which defaults to 0, supplies ahandle on a’ DiskDescriptor Manager’

Cleared version of May 24, 1981

Trident disk software June 14, 1980 118
(DDMgr) object, whose responsibility it is to manage pages of the DiskDescriptor (bit
table), which, on the Trident, must be paged into and out of memory due to its
considerable size. If thisargument is defaulted, a separate DDMgr will be created upon
each call to TFSInit, at a cost of alittle over 1024 words. If you intend to have multiple
Trident drives open simultaneously, you may conserve memory by first issuing the call
"ddMgr = TFSCreateDDMgr(zone)' and then passing the returned pointer asthe ddMgr
argument in each call to TFSInit, thereby permitting the single ddMgr to be shared among
all drives. (Thisargument isignored unless the allocate argument istrue.)

freshDisk Normally, TFSInit attempts to open and read in the DiskDescriptor file in order to obtain
information about the file system. However, if freshDisk istrue, this operationis inhibited
and the corresponding portions of the disk object are set up with default values. This

operation is essential for creating avirgin file system.

tridentDisk The procedure returns adisk object, or 0 if the Trident cannot be operated for some
reason. The most likely reasons are:

1. No Trident disk controller plugged into the Alto.
2. No such disk unit, or disk unit not on-line.

3. Can't find SysDir, can’t open DiskDescriptor, or DiskDescriptor format is incompatible.
(These errors can't happen if freshDisk istrue.)

Important: If the AC power to drive 0 isturned off or no drive O is connected, it is not
possible to operate any drive. (Drive 0 need not be on-line, however.) Thisisdueto a
hardware bug that has been deemed too difficult to fix.

After TFSInit has been executed, the code can be overlaid, asit is not used for normal disk operation.

2.3. Closing the Trident disk

When all operations on the disk are completed, the TFSClose procedure will insure that any important
state saved in Alto memory is correctly written on the disk. This step can be omitted if the "alocate’
argument to TFSInit was false (assuming you don’'t mind the loss of the storage that was extracted from

'zone' by TFSInit).
TFSClose(tridentDisk, dontFree [false])

The second argument is optional (default=false), and if true will not permit the DiskDescriptor Manager
(DDMgr) to be destroyed. This option is useful in conjunction with the’ddMgr’ argument to TFSInit.

2.4. Example

Following is an example that uses the Trident disk system and demonstrates the procedures described
above. Notethat the calls on operating system disk stream routines all pass a private zone to use for stream
structures, rather than the default sysZone. The reason isthat streams on Trident disks require large
buffers (1024 words) which quickly exhaust the available space in sysZone. In addition, the stream
routines will consume more stack space when operating the Trident disk than they do when operating the
standard Alto disk.

Since the Alto OS does not know about Trident disks, acall to Swat will not properly wait for al Trident
transfers to complete, with consequent undefined results. This problem is easily remedied through use of
an assembly-language Swat context-switching procedure TFSSwat, which isincluded as part of the TFS

package. The example shows how it is set up.

/[Example.bepl -- TFS Example
//Bldr Example TfsBase TfsA TfsWrite TfsCreate TfsClose TfsDDMgr

Cleared version of May 24, 1981

Trident disk software June 14, 1980

/I TfsSwat TfsInit LoadRam TriConMc
get "streams.d"

external [
TFSInit
TFSClose
TFSSilentBoot
LoadRam
DiskRamimage

OpenFile
Closes
Puts
DeleteFile

InitializeZone
SetEndCode
TFSSwatContextProc
IvUserFinishProc
lvSwatContextProc

static [savedUFP; savedSCP; TFSdisk = 0]
let Trylt() be

let driveNumber=0
let zonevec= vec 3000
let TFSzone = InitializeZone(zonevec, 3000)

[Nnitialize the RAM:
let res=L oadRam(DiskRamlmage, true)
if resls 0 then [Ws("Cannot load the RAM."); finish]

//Set up to cleanly finish or call swat
savedUFP = @IvUserFinishProc
@lvUserFinishProc = MyFinish
savedSCP = @lvSwatContextProc
@lvSwatContextProc = TFSSwatContextProc

/lInitialize the disk:
TFSdisk = TFSInit(TFSzone, true, driveNumber)
if TFSdisk eg 0 then
[Ws("Cannot operate Trident disk"); finish]

/IReclaim space used by initialization code:

SetEndCode(TFSInit) //Overlay TFSinit, LoadRam, TriConMc

/INow we are ready to operate the disk:
DeleteFile("Old.Bad", 0, O, TFSzone, 0, TFSdisk)

let s=OpenkFile("New.Good", ksTypeReadWrite, 0,0,0,0,
TFSzone, 0, TFSdisk)

for i=1to 1000 do
for j=1 to 1000 do Puts(s, $a) //Write amillion bytes!

Closes(s)

119

Cleared version of May 24, 1981
Trident disk software June 14, 1980 120

finish

E’;\nd MyFinish() be

if TFSdisk ne 0 then TFSClose(TFSdisk)
@lvUserFinishProc = savedUFP
@lvSwatContextProc = savedSCP
TFSSilentBoot()

3. Trident File Utility, Tfu

The Tfu utility (saved on <Alto>Tfu.Run) is used to certify a new Trident pack for operation, to initialize a
pack with avirgin file system, and to perform various file copying, deleting, and directory listing
operations.
Commands are given to Tfu on the command line: immediately following the word "Tfu" isa sub-
command name (only enough characters of a sub-command are needed in order to distinguish it from
other sub-commands), followed by optional arguments. Several subcommands may appear on one
command line, separated by vertical bars. Thus"TFU Drive 1 | Erase" will erase drive 1. There must be a
space on each side of the vertical bar.
All information shown on the display by Tfu isaso written into file Tfu.log (on the Diablo disk). Certain
commands pause and type "Continue?" after each screenful; type any character to proceed.
In what follows, an "Xfile" argument is afilename, perhaps preceded by a string that specifies which disk
isto be used:

DPO:name.extension -- use standard Alto (Diablo) disk

TPn:name.extension -- use Trident drive n (n=0t0 7)

name.extension -- use default disk (Trident)

The "default disk" is always a Trident drive; the identity of the drive is set with the Drive command.
TFU DRIVE driveNumber

This command sets the default Trident drive number to use for the remainder of the command
line. Thedefault driveis effectively an’argument’ to the CERTIFY, ERASE, DIRECTORY,
CONVERT, and BADSPOTS commands. (On aT-300, file systems0, 1, and 2 are specified as

"TPx’, " TP40x’, and ' TP100x’, where’x’ isthe actual unit number.)
TFU CERTIFY [passes]

This command initializes the headers on avirgin Trident disk pack, then runs the specified number
of passes (default 10) over the entire pack, testing it using random data. Any sector exhibiting an
uncorrectable ECC error, or correctable ECC errors on two or more separate occasions, is
permanently marked unusable in the pack’s bad page list. Thisinformation will survive across all
subsequent normal file system operations (including TFU ERASE), but may be clobbered by the
Triex program.

This command should be executed on every new Trident pack before performing any other
operations (such as TFU ERASE). 10 passes of TFU CERTIFY are adequate for reasonably
thorough testing, though more are recommended for packs to be used in applications requiring
high reliability. The running time per passfor TFU CERTIFY is approximately 3 minuteson a

Trident T-80, 9 minutes on a T-300, and 1.5 minutes on a Shugart SA-4008.

Cleared version of May 24, 1981

Trident disk software June 14, 1980 121
TFU CERTIFY may be terminated prematurely by striking any character to get its attention, then
typing 'Q’. Subsequent runs of TFU CERTIFY will not clobber the existing bad page information
but rather will append to it. It isrecommended (though not necessary) that TFU CERTIFY be

executed before each TFU ERASE so asto pick up any new bad spots that may have devel oped.

TFU CERTIFY ordinarily asks you to confirm wiping out the disk before going ahead and doing
so; however, the /N global switch may be used to indicate that no confirmation is necessary.

TFU BADSPOTS
Displays the addresses of all known bad spots on the disk pack mounted on the default drive.
TFU RESETBADSPOTS

Resets the bad spot table of the disk pack mounted on the default drive. (Note that TFU
CERTIFY appends to the existing bad spot table.) There should normally be no need to execute
this command, but it may be useful, for example, after adisk pack is cleaned, if the known bad

spots were caused by dirt.
TFU ERASE [tracks]

This command initializes (or reinitializes) afile system on the pack mounted on the default Trident
drive, after asking you to confirm your destructive intentions (overridden by the /N global switch).
The tracks argument specifies how many "tracks" of the drive are to beincluded in the file system;
it defaults to the maximum possible. If smaller numbers are used, the initialization is
correspondingly faster. In any case, tracks beyond the one specified are available for use outside
the confines of the file system. (Note that one "track" is 45 pages; this corresponds to one cylinder
on aT-80 and to nothing in particular on other disks.)

The disk pack should previously have been initialized and tested by means of the TFU CERTIFY
command.

The DiskDescriptor fileis normally located in the middle of the file system so asto minimize
average head movement between DiskDescriptor and file pages. However, this does limit the
maximum size contiguous file that can be created to alittle less than half the file system. If you
wish to create a contiguous file larger than that, use the /B local switch (i.e., TFU ERASE/B) to

force the DiskDescriptor to be located at the beginning of the file system instead.

TFU COPY Xfile _ Xfile
This command copies afile in the direction of the arrow. The destination file may be optionally
followed by the switch /C, in which case (provided it is a Trident disk file), the file will be
alocated on the disk at consecutive disk addresses. (Note: More precisely, an attempt will be made
to perform such an allocation. If the attempt fails, you will sometimes get an error message. The
best way to verify that afileis contiguousisto use the "address' command, below.)

TFU CREATEFILE Xfile pages
This command creates a contiguous file named Xfile with length "pages.”

TFU DELETE Xfile Xfile...
This command del etes the given file(s).

TFU RENAME Xfile _ Xfile
This command renames afile.

TFU DIRECTORY [Xfile]

Cleared version of May 24, 1981

Trident disk software June 14, 1980 122
This command lists the directory of the default Trident drive on thefile Xfile; if Xfileis omitted,
each entry will be shown on the display. A somewhat more verbose listing can be obtained with
TFU DIR/V.

TFU ADDRESS Xfile

This command reads the entire file and displays alist (in octal) of virtual disk addresses of the file
pages.
TFU CONVERT

An incompatible change in the format of DiskDescriptor was made in the Tfs release of July 24,
1977. The current Tfs software will refuse to access Trident disks written in the old format
(specifically, TFSInit will return zero). The TFU CONVERT command reformats the
DiskDescriptor to conform to current conventions (it is ano-op if applied to adisk that has already
been converted). Once you have converted al your Trident disks, you should take care to get rid

of all programs loaded with the old Tfs, since the old Tfs did NOT check for version compatibility.
TFU EXERCISE passes drive drive drive ...

This command embarks on alengthy "exercise" procedure; it is repeated ’ passes times
(default=10), and uses the disk drives listed after ' passes’ (if none are specified, all drives that are
on-line are used). It operates by making a series of files (test.001, test.002 etc.) on the disk packs,
and performing various copying, deleting, writing and positioning operations. Thefiles are deleted
when the exercise finishes. It is not essential that the packs be fully erased initially; the procedure
for building test files will try to fill up the disk, just short of overflowing. Each pass of the test

takes approximately 20 minutes per T-80, 60 minutes per T-300, and 10 minutes per SA-4008.

One or more of the following global switches may be specified (i.e., acommand of the form
TFU/switch EXER...):

/W Use asystematic data pattern when writing files, rather than arbitrary garbage.

/C Carefully check the data read from the disk (implies/W). Use of this switch makes the test
run considerably slower than normal.

/D Leavethedisplay on during Trident disk transfers. This causes data late errors to occur and
the;eby exercises the error recovery logic. (It also slows down the test by at |east afactor of
10.

/E Turn the Ethernet on during Trident disk transfers, with results similar to /D.

4. The Tfs software package in more detail

If programmers wish to interface the the Trident disk at levels lower than Operating System streams, the
Tfs package provides an additional interface. The"disk" object created by TFSInit has a number of
abstract operations defined on it, which the Tfs package implements. Documentation for these operations
can be found in the Alto Operating System Manual in the section labeled "Disks and Bfs." The catalog of

available proceduresis:

In TfsBase.Br and TfsA.Br:
ActOnDiskPages(disk, CAs, DAS,)
Real DiskDA (disk, vda,)

Virtual DiskDA(dis,)
InitializeDiskCBZ(disk, cbz, ...)
DoDiskCommand(disk, cb, ...)
GetDiskCb(disk, cbz, ...)

Cleared version of May 24, 1981
Trident disk software June 14, 1980 123

In TfsWrite.Br:
WriteDiskPages(disk, CAs, DAS,)
AssignDiskPage(disk, vda)*

In TfsCreate.Br
CreateDiskFile(disk, name,)*
DeleteDiskPages(disk, CA,)*
Rel easeDiskPage(disk, vda)*

In TfsClose.Br
CloseDisk(disk, dontFree)

The items with *’ s following may be invoked only if the disk object was created with the "alocate’
argument set to true. WriteDiskPages may be invoked even if "allocate’ isfalse, provided it never allocates
new disk space. It should be noted that the standard Alto Streams package invokes WriteDiskPages even
for files opened for reading only, and that TFSInit uses Streams to read in the DiskDescriptor. Hence it is
necessary that all of the Tfs modules (TfsBase, TfsA, TfsWrite, TfsCreate, and TfsDDMgr) be loaded in
order to avoid undefined 'external’ references. However, after initialization is complete, the space
occupied by TfsCreate and TfsDDMgr may be reclaimed if you do not intend to allocate or delete pages,
gnd T;‘sWrite may be discarded if you are not using streams but rather are calling ActOnDiskPages
irectly.

The TfsWrite and TfsCreate modules require that TfSDDMgr.Br (or some equivalent) be loaded. This
modul e provides the standard primitives necessary for managing the DiskDescriptor. The DDMgr is an
"object’, so it may be replaced by one of your own devising so long asit provides equivalent operations. An
exampl e of this would be to manage pages of the DiskDescriptor as part of a more general virtual memory

mechanism (perhaps through use of the Alto VMem package). A complete description of the required

DDMgr operations may be found as comments at the beginning of TfsDDMgr.Bcpl.

In addition to the standard "actions' defined in Disks.d, Tfs permits the following. These actions are
defined in Tfs.d and are available only on Trident disks.

DCreadLnD Read header, read label, no data.
DCreadnD Check header, check |abel, no data.
DCwriteLnD Check header, write label, no data.

These actions neither read nor write the data record and therefore do not require a buffer to be provided.

CreateDiskFile has a special feature for operating the Trident disks -- an optional seventh argument. If
this argument (pageBuf) is present, it is assumed to point to a 1024-word buffer that will be used to create
the leader page for the file. Thisfeature may be used to save stack space in CreateDisk file and/or to write
interesting data into the portion of the leader page not used by the file system (only the first 256 words are
used by the file system; the remainder has no standard interpretation).

VirtualDiskDA returnsfillInDA asthe virtual address for areal disk addressthat is either illegal or outside

the confines of the file system.

The procedures for creating and destroying the disk object, TFSInit and TFSClose, were explained above.

The procedure TFSWriteDiskDescriptor(disk) will write out onto the disk all vital information about the
disk that is presently saved in memory. If you write programs that run the disk for extremely long periods

of time, it iswiseto write the disk descriptor occasionally. The only automatic call on
TFSWriteDiskDescriptor is performed by TFSClose.

TfsInit.Br contains a procedure TFSDiskM odel (disk) that returns the model number of the drive
referenced by the disk handle (80 = T-80, 300 = T-300, 4004 = SA-4004, 4008 = SA-4008). This is

useful in deciding whether to open a second or third file system on a T-300.

Cleared version of May 24, 1981

Trident disk software June 14, 1980 124
A lower level of accessis permitted with the routines InitializeDiskCBZ, GetDiskCb, and
DoDiskCommand, analogous to the Bfs routines described in the Operating System Manual. Users of
these routines may wish to retrieve source files for the Tfs package and examine the definitionsin Tfs.D

and the actual disk operation in some detail. Sources are on <AltoSource>TfsSources.Dm.

4.1. TFSNewDisk

The TFSNewDisk procedure, defined in TfsNewDisk.Br, "erases" adisk (formatting it and making all its
pages appear free) and creates avirgin Alto file system (SysDir and DiskDescriptor). It iscaled by:

success = TFSNewDisk(zone, driveNumber [0], diskSize [default], ddV DA [diskSize/2])

The zone passed to TFSNewDisk must be capable of supplying about 3500 words of storage. If the drive is
a T-300, the driveNumber may include afile system number (0 to 2) in itsleft byte, asis the case for
TFSInit. The diskSize argument is the number of disk pages to be included in the file system; it defaults to
the maximum possible, which is all of any disk besides a T-300 or alittle less than half of a T-300. ddvDA

isthe virtual disk address at which to locate the DiskDescriptor file; see the TFU ERASE command for

elaboration on this.
TFSNewDisk returnstrue if successful.

4.2. DiskFindHole

The procedure DiskFindHole, in DiskFindHole.Br, can be used to locate a "hole" of available spacein the
disk bit table. The call:

virtual DA = DiskFindHole(disk, nPages)

will attempt to locate a contiguous hole nPages long. If it fails, the procedure returns -1, otherwise the
virtual disk address of thefirst page of the hole.

In order to create a contiguous file, it is first necessary to create the minimal file with aleader page at the
given disk address and then to use Operating System or Tfs routines to extend the file properly. The first

step is achieved by calling
ReleaseDiskPage(disk, AssignDiskPage(disk, vda-1))

where’vda isthe desired disk address (i.e., the result returned by DiskFindHol€). This value will control
the selection of aninitia disk address for the leader page. Oncethefileis created, it iswiseto extend it to
itsfina length immediately, as other disk allocations might encroach on the "hole" that was located.

For example, if we are using the Operating System, we might proceed as follows:

let nPages=433 //Number of data pages needed.
let vda=DiskFindHole(disk, nPages+2)
/[(+2=1for leader, 1 for last page)
test vdaeq -1
ifso Ws("Cannot find a hole big enough")]
ifnot ReleaseDiskPage(disk, AssignDiskPage(disk,vda-1))

let s=Openkile("New.Contiguous' ksTypeWriteOnly,0,verNew,0,0,0,
TFSzone, 0, disk)

PositionPage(s, nPages) //Make the file the right length

Closes(s)

Cleared version of May 24, 1981
Trident disk software June 14, 1980 125

5. File structure on the Trident disk

Thefile structure built on the Trident disk by Tfs (Trident File System) is as exact a copy of the Alto file
structure built Bfs (Basic File System) asis possible. Certain exceptions are present due to hardware and
microcode differences. The Alto Operating System Reference Manual should be consulted for all file

formats and internal information not presented here.

5.1. Disk Format

The Trident or Shugart disk drives are set up to run with the following parameters:

Disk Cylinders Heads Sectors
T-80 815 5 9
T-300 815 19 9
SA-4004 202 4 8
SA-4008 202 8 8

TFU CERTIFY will format each sector of the disk in the standard Tfs format:

header words per sector: 2
label words per sector: 10

data words per sector: 1024
Thus, for example, a T-80 disk will have 9*5*815 = 36,675 sectors = 37,555,200 words. Sector 0 will not
be used by Tfs. All but sector O will be available to the file system.
Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 sectors = 67,064,032 words) of a T-300 disk.
Thisisthe largest integral number of cylinders that can be addressed using a 16-bit virtual disk address.
The 16-bit virtual address limitation is deeply embedded in all existing higher-level Alto file system
software, so changing the Tfs interface to permit alarger virtual address space would be impractical.
Instead, Tfs permits one to obtain another, entirely independent disk object for referencing the second 383
cylinders of the same T-300, thereby permitting a separate, self-contained file system to be constructed.
Thisisdone by passinga’l’ in the left byte of the’driveNumber’ argument to TFSInit or TFSNewDisk
(that is, drive "#400' refers to the second file system on a T-300 pack mounted on drive 0). A third file
system (number '2', drive '#1000") may also be constructed, but it contains only 49 cylinders (= 8379

pages, only 6 percent of the disk’stotal capacity), so doing so is probably not worthwhile.

5.2. Disk Header and L abel

On the Trident, areal disk address requires two words to express, rather than the single word on the
Diablo 31. Also, microcode considerations gave rise to areordering of the entriesin the Label. The result
isthat both the header and label formats are different for the Trident. The Trident format follows. |If you
areinterested in thislevel of detail, the file Tfs.d (contained within <Alto>Tfs.dm) should be consulted.

/I disk header
structure DH:

track word

head byte
sector byte
]

/I disk |abel
structure DL:

[
fileid word IFID

Cleared version of May 24, 1981
Trident disk software June 14, 1980 126

packlD word
numChars word
pageNumber word
previous @DH
next @DH

]
manifest IDL =size DL/16

5.3. Disk Descriptor

Every valid Tfs disk has on it two files which must contain the state information necessary to maintain the
integrity of the file system. The Tfs system directory, "SysDir.", isidentical in format and purpose with its
Bfs counterpart. However the Tfs disk descriptor file, "DiskDescriptor.”, while identical in purpose, is
formatted differently to allow easy manipulation of the bit table (which, for the Trident, has to be paged in
and out of memory). Thisdifferencein format should not be evident to even low-level Trident users

(unless you write your own DDMgr), but is mentioned here for completeness.

5.4. Bad Page Table

Tfsand Tfu observe the standard Alto file system convention of recording -2’ sin the labels of all known
bad pages. However, if thiswere the only location of such information, “erasing” a disk (to create a virgin
file system) would require two passes over the entire disk: one to collect the addresses of all known bad
pages and one to mark all remaining pages deleted. Thiswould require an excessive amount of time,
particularly on a T-300.

A duplicate table of known bad pages is therefore recorded on physical page zero (= cylinder 0, head 0,
sector 0) of thedisk. This page is ot available to the file system for other reasons having to do with end-
of-file detection. The format of the table is given by the BPL structure, which is defined in Tfs.d. Note
that the entries are REAL disk addresses and can therefore refer to any page on the disk regardless of
whether or not such a page is accessible through the file system. (A T-300 has only one bad page table,

even if it contains several file systems.)

The TFU CERTIFY command is responsible for testing the pack and building the bad page table. The
TFSNewDisk procedure (called by TFU ERASE) is careful not to clobber this information but rather to
propagate it to the other places where it is needed (namely, the disk bit table and the labels of the bad
pages themselves). Asaresult, the bad page information, once initialized, will survive across all normal

operations on the disk, including "erase" operations.

There does not presently exist any facility for manually appending to this list when new bad pages are
discovered. Experience to date with the Trident disks (which provide correction for error bursts of up to
11 bitsin length) has shown that such afacility is probably not needed. Thorough testing of disks (using

TFU CERTIFY) is recommended before putting them into regular use, however.

6. Revision History

July 24, 1977
Incompatibilities:

The format of DiskDescriptor has changed. The new Tfs cannot access old disks or vice versa. See
description under "TFU CONVERT".

Thereis now another file, TfsA.Br, that islogically part of TfsBase.Br and must be |oaded along with it. It
contains assembly-language code formerly included as "tables’ in TfsBase.Br.

Cleared version of May 24, 1981
Trident disk software June 14, 1980

New Features:

Partial support for T-300 disks.

Conforms to new conventions for maintaining addresses of known bad pages.
TFSInit checks for valid SysDir |eader page and DiskDescriptor version.

Count of bit table discrepancies added to DiskDescriptor. (These are pages falsely claimed to be free
the bit table.)

Virtual DiskDA returns fillInDA for illegal real disk addresses.
Additiona Trident-specific disk actions.

Tfsisnow entirely reentrant, so it is safe for the Idle() procedure to give control to another process that
turn calls Tfs procedures.

October 21, 1977
Incompatibilities:

The former TfsWrite module has been broken into four pieces: TfsWrite, TfsCreate, TfsClose,
TfsDDMgr. In most applications, all four must be |loaded.

The’sharedBT’ argument to TFSInit has been replaced by a’ddMgr’ argument. The mechanism
sharing a bit table buffer among multiple drives has been entirely changed. (Programs that omit
argument are unaffected by the change.)

127

and

for
this

The TFSCreateV DA static has been removed. Inits place isanew procedure TFSSetStartingV DA (disk,

vda) that serves the same purpose.

The syntax of the TFU EXERCISE command has been changed. It isnow ' TFU EXERCISE
<list of drives>’, and <list of drives> defaultsto all drivesthat are on-line.

New features:

g;adrgé)l ete support for T-300 disks. In conjunction with this, the TFSDiskModel procedure has

It is now possible for DiskDescriptor pages to be managed externally (perhaps through some sort of
memory mechanism) by use of a user-defined ' DiskDescriptor Manager’ object.

TFSSilentBoot procedure added.

November 9, 1977

Incompatibilities: None.

New features:

TFU CERTIFY and TFU BADSPOTS commands added. TFU CERTIFY initializes the headers on
virgin disk pack and then runs repeated tests over the entire pack, permanently recording any bad
that it finds. This command replaces all the normal uses of the Triex program, documentation for
has been removed.

Microcode modified for more efficient reading on Alto-11s (by about 25%).

February 26, 1978

<passes>

been

virtual

spots
which

Cleared version of May 24, 1981
Trident disk software June 14, 1980 128

Incompatibilities: Software updated to new time standard; will not run under OS versions earlier than 14.

New features: Microcode source now in two parts, to facilitate combining it with other microprograms.
December 15, 1978

Incompatibilities: some of the TFS DDMgr procedures renamed (used internally).

New features: returnlfNoCb argument to TFSGetCb; ddV DA argument to TFSNewDisk; TFU
ERASE/B option to maximize contiguous free storage; TFU RESETBADSPOTS command added; TFS
and TFU should run on Dorado.

June 25, 1979

Incompatibilities: none.

Changes: Optional "hintLastPage" argument added to ActOnDiskPages, WriteDiskPages, and
DeleteDiskPages; several minor bugs fixed.

July 17, 1979

Incompatibilities: The structure of a DSK (and therefore a TFSDSK) changed, so programs that get
"Tfs.d" must be recompiled; TFSSetStartingV DA (disk, vda) procedure removed--instead use
ReleaseDiskPage(disk, AssignDiskPage(disk, vda-1)).

Changes: New operations InitializeDiskCBZ, DoDiskCommand, and GetDiskCh added to the DSK object
in preparation for OS 17. Note that the new TFS will work under earlier versions of the OS, but the old

TFSwill not work under OS 17.
November 24, 1979

Incompatibilities: The manner in which the TFS turns the display off and on has been changed so that it
works correctly even if the caller accesses the disk at the DoDiskCommand/GetDiskCb level, and even if
there are multiple contexts making callsto the TFS. Existing software that uses the low-level procedures

may require modification.

The microcode has been modified, so recompilation is required of any microprograms that include
TriConMc.mu or TriConBody.mu as a component. (The interface to the microcode has changed dightly;

consult the revised documentation in <AltoDocs>AltoTrident.press.)

Changes: Thisrelease includes some substantial changesin error recovery at both the microcode and the
software level. Formerly there were problems that could cause the software to get hung up under extreme
conditions such as operating the disk with the display on.

Unrecoverable disk errors are now reported with more complete information. (This requires new versions
of Swat and Sys.errors, being released simultaneously.) Additionally, if the currently-selected drive goes
not-ready, TFS generates an error rather than hanging indefinitely. Finally, attempting to write on a read-

only drive givesrise to adistinct error.

TFU has been cleaned up somewhat. It always generates atypescript in file TFU.log (this replaces the
former TFU.ExerciseLog). Disk drive names are now standardized: TPO for Trident drive 0, DPO for

Diablo drive 0. TFU DELETE can take multiple arguments. TFU RENAME command has been added.
June 14, 1980
Incompatibilities: none.

Changes: The software is now capable of dealing with Shugart SA-4004 and SA-4008 disk drives,
interfaced through a Shugart controller card. The TFSDiskModel procedure has been changed

appropriately.

Cleared version of May 24, 1981
Trident disk software June 14, 1980 129

Note: Thisversion of the software must be compiled with the OS 18 system definitions files (Disks.d, etc),
but may be operated under OS releases as old as OS 16.

Cleared version of May 24, 1981
VIEWDATA September 9, 1977 130

ViewData -- 2D projections of 3D data on Display Screen

ViewDatais a BCPL subsystem that will draw a picture of afile of data on your dispaly screen, and alow
you to interactively control your point of view on the data. It handles only a two-dimensional array of
single-word values (i.e. athree-dimensional surface, afunction of two variables evaluated over a regular
finite grid). Hereisalist of features:
1) ViewData accepts input in the ssimplest possible file format: an optional header of any humber of
words (with any contents, which are ignored), followed by a block of (signed) data words of any size,

with any dimensions.

2) ViewDatatakes all parameters from a dialog with the user via keyboard and mouse. By specifying
giffelfent hﬁad]grl sizes and dimension sizes, the user can exercise limited control over the selection of
atafrom hisfile.

3) ViewDatatakes al graphical parameters from screen points clicked with the mouse. A point of view
is specified by clicking the screen positions of three corners of the dataarray. Zooming is
accomplished by clicking opposite corners of the rectangle to be expanded. Prompts appear below the
plot region to indicate what points and/or switchesto click.

4) ViewData contains acall to DCBPress to allow generation of a one-page output file with a picture of
your data. This can be annotated by Markup and printed by an appropriate server. With PressEdit, it
can be editted into areport.

5) ViewData uses the new PlotStream package (to be released soon) to provide a display interface
which is transparent to the average programmer; thus the program is easily modified to better suit your

data viewing requirements.

6) ViewDatais reasonably small, especidly if one deletes unneeded routines from the various files
which are loaded with it (MathUtil, SDialog, UtilStr, PlotStream, FractionProduct, DCBPress).

Getting and Running Viewdata:

Use FTPto retreive viewdata.run. If you need some sample data, use the FTP Load command to get
Test.Datafrom ViewData.Dm (stored with sources). Execute ViewData and default all the parameters
with CR to get asample display. Using the mouse, follow the instructions of the prompts to zoom, redraw
in anew orientation, or overview (zoom back out to the highest level). After you finish by pressing al
three mouse buttons at once, you have the options of producing a pressfile, restarting (possibly with a new

datafile), or quitting.

Cleared version of May 24, 1981
New Disks May 24, 1981 131

Making anew Alto disk

This document describes procedures for creating anew disk, either by copying a"Basic disk" or by using
the File Transfer Program. 1t may be helpful to refer to documentation for Copydisk and FTP.

The normal way to obtain anew, clean disk isto copy one of the Basic Alto Disks (Non-Programmer’s,
BCPL Programmer’s, Mesa Programmer’s, or Proofreader’ s) using Copydisk. Images of these basic disks
are kept in the <BootFiles> directories of various file servers; at PARC the desired server islvy. The disk
image file names are NonProg.bfs, BCPL Prog.bfs, MesaProg.bfs, and Proofreader.bfs. Put a blank disk in
your Alto and type:

>NetExec

>CopyDisk

*Copy from: [fileServer]<BasicDisks>fileName.bfs

Copy to: dp0

where fileServer is the file server name and fileName is the disk image file name, as explained above.
Copydisk will copy the basic disk image onto your disk, overwriting its previous contents.

An alternative way of building anew disk from scratch isto erase it by means of the Install procedure, then
use FTP to retrieve the subsystems and other files that you need. This procedure isrequired if you are

building a non-standard disk (for example, a double-disk system or a Dolphin or Dorado partition).

First, bootstrap the NetExec by booting the Alto with the BS and single-quote keys depressed. Then type:
>NewOS.boot

Thiswill load a copy of the OS from the network. When it starts up, it will ask you if you want to install
the OS; respond " Y".

Install will ask if you want the long dialog; respond *Y’. Thenit will ask if you want to erase adisk. Reply
"Y', It will ask you for the name of the local file server (at PARC this should be’Maxc’) and the name of
the directory on that server from which to obtain files (the correct response to the latter question is usualy

"Alto’). Finally, it will ask the usual questions about your name, the disk name, and the password.

When Install has finished initializing the disk it will run FTP to obtain the Executive. Now, to obtain
current versions of the 'basic’ software type

>ftp fileServer ret/c <alto>newdisk.cm

>@newdisk.cm@

where'fileServer’ isthe name of your local file server.

After this has completed, to obtain additional software for a’basic non-programmer’s disk’ type
>@npdisk.cm@

To obtain additional software for a’basic BCPL programmer’s disk’ type
>@pdisk.cm@

To obtain additional software for a’basic Mesa programmer’s disk’ type
>@mesadisk.cm@

Y ou can copy files from your old disk to the new onein two ways. Oneisto put them onto afile server
and retrieve them with FTP. If there are many, it isagood ideato package them into a dump file. The

Cleared version of May 24, 1981

New Disks May 24, 1981 132
other way isto copy them from the old disk on one Alto to the new disk on another Alto. On your new
disk, type

>ftp

On the Alto with the old disk, type
>ftp <Host name> store/c <filenamel> <filename2> ...

<Host name> is the name of the Alto which has the new disk.

The easiest way to specify and transfer lots of files between two disksis to put both disksinto a double-disk
Alto and use Neptune; see the Neptune documentation for details.

Another method isto use DDS (if you have it on your old disk) to select the desired files, then issue the
<Send to ...> command and type in the name of the Alto with your new disk, which should be running
FTP.

Without DDS, away to specify lots of filesisto obtain afile with all your file names by typing
>*<control-X><control-U><return><return>

Thiswill automatically invoke Bravo and read in’line.cm’. Y ou may then edit line.cm to exclude the files
which you do not want to transfer and insert the necessary FTP commands, thereby creating a command
file which may be invoked in the usual way. For example, at the beginning of the file insert

ftp <Host name> store/c

then delete everything except the files which you want to transfer. P’ ut the command string onto a file.
"Q'uit out of BRAVO and type

>@foo@

where'foo’ isthe name of the file which you just created with BRAVO. The selected files will be sent to

the waiting Alto with the new disk.

Executing either variant of procedure | to erase and initialize your disk, followed by procedure |1 to
transfer al of your filesusing FTP, is a good way to compact a fractured disk.

Cleared version of May 24, 1981
For PARC Alto Users May 24, 1981 133

1. PARC Information

1.1. Getting Started

Each administrative group in Parc handles disk pack allocation differently. Ask your secretary how to get a
disk.

A set of BASIC ALTO DISK imagesis maintained on [lvy]<BasicDisks>, as discussed in the "NewDisk"
procedure.

1.2. MAXC Directories for Alto Software

The <ALTODOCS> directory contains documentation for the subsystems and subroutine packages.

The <ALTO> directory contains current versions of all the Alto programs. Programs are normally kept in
executable form; thus the CopyDisk program appears as <ALTO>CopyDisk.Run. In addition to the
executable file, some programs also have a symbol file on <ALTO>. The symbol file for CopyDisk is
<ALTO>CopyDisk.Syms. Thisfileis useful to the author when something goes wrong with a subsystem,

but it is not normally needed by users. Subsystems which need more than one file, either because they
have overlays or because they need data files, should have the individual files stored, together with a
command file which may be run to retrieve each file via FTP. The command file should have the

extension .CM. Definition files have the extension .D. Thesefiles are useful only to programmers.

Subroutine packages are kept on <ALTO> with an extension of .BR or as "dump" files (extension .DM) if
several files belong together as a package.

The <ALTOSOURCE> directory contains the source files for the subsystems and subroutine packages. It
also contains the PUB files for the documentation which is on <ALTODOCS>.

1.3. Alto Software Maintenance Procedure

The maintainer of a subsystem or subroutine package handles anew or revised release in the following
manner:

A. Copy adump file with a name of the form SubsystemName.DM and the following contents to
<ALTOSOURCE>:

1) The source files from which the subsystem may be created.

2) The command files which are needed to create the subsystem from the enclosed source, unless
the creation procedure is "obvious." The following are the usua ingredients:

a) A command file containing statements to compile the enclosed source. Compiler
messages should be written to afile. For example:

BCPL/F FOO.BCPL.

The filename should be in the format, COMPI L EsubsysName.CM.

b) A command file to load the files which were produced in step a. For example:
BLDR FOO

The filename should be in the format, L OA DsubsysName.CM.

Cleared version of May 24, 1981
For PARC Alto Users May 24, 1981 134

If the subsystem is small, the two command files may be combined into one. The
name should be in the format, CREATEsubsysName.CM. The following example
will create the package for subsystem FOO.

BCPL/F FOO.BCPL; BLDR FOO

¢) A command file containing statementsto save all relevant files in subsysName.DM, eg.
the file DUMPFOO.CM would contain;

DUMP FOO.DM FOO.BCPL CREATEFOO.CM DUMPFOO.CM

B. When you have a change to make to documentation, or wish to introduce new documentation into the
system, the following three steps are required:

1. Retrievetherelevant .PUB file from <ALTOSOURCE>. Thefile nameisinthe format,
sys.PUB, where'sys' isthe name of the subsystem or subroutine package. If you are creating brand new
documentation, start with the file <ALTOSOURCE>ALTODOCTEMPLATE.PUB, which contains the

necessary Pub incantations and some instructions to authors.

2. Editthepubfile. Passitto PUB--a.TTY version of the documentation will be produced.

3. When you are finished, copy the pub file back to <ALTOSOURCE>, and copy the JTY
version to <ALTODOCS>.
Please be sure to copy the pub files from <ALTOSOURCE> afresh each time you edit them, because they
may have been edited to produce expurgated versions (for distribution outside PARC), to produce indexes,
remedy formatting problems, etc.
Please try to avoid needless references to PARC or Maxc facilities. Other sites maintain copies of release
directories such as <ALTO> on their own file servers; and users at those sites are encouraged NOT to go to

Maxc for their software.

C. Copy files needed for the new releaseto <ALTO>.

D. It wasformerly the custom to notify all interested parties of the new version of the software, by sending
amessage either to AltoUsers'PA (for subsystems of general interest) or AltoBCPLProgrammers-PA (for
BCPL packages of interest only to programmers). However, this should now be done only for major
releases. The subject of the message should be the name of the subsystem or subroutine package. Try to
keep the message short.

All Xerox users with MAXC accounts can connect to the ALTO-related directories without giving a
password. Software maintainers are cautioned to alter only files for which they will take responsibility.
Feel freeto archive old versions, but please leave the current version of al files. (If you can’t find
something, it may have been archived forcibly due to disuse; browse the archive directory using the

INTERROGATE command before creating version 1 of some previously-existing program.)

1.4. Alto Documentation

Formal documentation is provided in two forms: a"perusal” form, which can be conveniently typed at an
Alto using CHAT (or from some other MAXC terminal) or perused with Bravo on an Alto, and a
"notebook™ form, which can only be printed on a Press printer, and may have fancy illustrations or fonts in
It.

A. The"perusal" documentation is always stored on <ALTODOCS> under afile namelikesysTTY, where
"sys' isthe name of the subystem or package you are interested in. For example, the documentation for a
subroutine package, FOO, would be found on <ALTODOCS>FOO.TTY. Thereis one exception to this
rule: for very simple subsystems the documentation isin <ALTODOCS>SMALLSUBSYSTEMS.TTY. (If
you can't find the . TTY file you want, it might be archived; check the archive directory using the

INTERROGATE command.)

Cleared version of May 24, 1981

For PARC Alto Users May 24, 1981 135
B. The "notebook" documentation is packaged in larger packages to reduce storage overhead and to
provide more manageabl e sets of documentation for printing. Currently, the following files are maintained
in notebook-style:

Alto User’s Handbook. This document is available only as a printed, bound manual. It contains
the Non-Programmer’ s Guide to the Alto, and manuals for Bravo, Markup, Draw, and
FTP.

A number of subsystems have their own separate Press documentation, stored as
<ALTODOCS>*.PRESS. (Exception: the SIL and Design Automation documentation is
stored as <SIL>SIL.PRESS.)

OS.PRESS. Operating System manual.

BCPL.PRESS. BCPL manual.

SUBSY STEMS.PRESS. Documentation for most Alto subsystems. These are arranged
aphabetically, with headings to indicate which system is being described. A directory at
the front of the file contains documentation about very simple subsystems. The last
section of this manual contains special information relating to Altos at PARC--where to
find the software, how to maintain it, etc.

PACKAGES.PRESS. This contains documentation for the software packages available for the
Alto. A directory at the front of the file contains documentation about very simple
packages.

ALTOHARDWARE.PRESS. Thisisthe "hardware" manual for the Alto.

Thesefiles are formatted, and should therefore be printed with
@PRESS fileName.PRESS
1.5. Command Files
In addition to the subsystems, packages, and definition files, the following command files may be found on
the <ALTO> directory:
NEWDISK.CM: creates aminimal system on anew disk. Seethe NewDisk procedure, in the Alto

Subsystems manual.

MESADISK.CM: creates aBasic Mesa Disk. NEWDISK.CM must be run first.
NPDISK.CM: creates a Non Programmer’s Disk. NEWDISK.CM must be run first.
PDISK.CM: creates a BCPL Programmer’s Disk. NEWDISK.CM must be run first.
PROOFDISK.CM: creates a ProofReader’ s Disk. NEWDISK.CM must be run first.

INDEX

<ALTO>
<ALTODOCS>
<ALTOSOURCE>
<control>P

Analyze
ASM

BCPL

BLDR

Boot Files
BootBase
BootFrom
Booting
BootKeys
BRAVO
Build
BUILDBOOT

CallSubSys

CHAT

CLEANDIR
Com.Cm

command processing
Copy

COPYDISK
CREATEFILE

DDS

Delete

disk
DiskBoot.Run
display protocol
DMT

Documentation
DPRINT
DRAW

Dump

Dump Format
Dumper.Boot

EMPRESS

ERP

EtherBoot

EtherBoot loader
EXECUTIVE
Executive Commands

FileStat
FIND
font files
FTP

IFS

illustrator

Install

Install Swat.Run

LISTSYMS
Load

Cleared version of May
May 24, 1981

24,1981

136

Cleared version of May 24, 1981

INDEX May 24, 1981 137
Login 54, 65
MAILCHECK 3,78
MARKUP 3

Maxc e 14
memory diagnostic 2
Mesabed file 56
Mesaimagefile ... oo oL 56
MesaBanks 55
MICRO e 3
microcodeassembler L. 3, 82
microcodeloader 96, 102
MICROD e 3
MOVETOKEYS 3

MU 3,4, 82, 96, 102
Neptune L 3
NetDdlays 4
NETEXEC . 3,55
newdisk L 131
NEWDISK 5
NEWOS.BOOT . . e 3
OEDIT 3,90
ORAM 3
PACKMU 3, 96
PARC Information 133
PARCALTOS e 5
parity error L 114
PEEK 2,39
PEEKPUP 3,98
PEEKSUM . 2,39
PREPRESS 3
Pressfile 4,99
Pressfiles 3
PRESSEDIT 3,99
PROOFREADER o 4

Pup 98
PUPTelnet . 2,14
Quit e 54
RAM . 3,4, 96, 102
RAMLOAD 4,102
ReadPram 96
READPRESS . 4
Release 54
RemCm 51
Rename 54
Resume L 55, 106, 112
Route o 4
RPRAM 3,96
RunMesarun . o 56
SaveState . 12
SCAVENGER .. 4,55, 104
SetTime . 54

SIL 4

Software Maintenance Procedure 133

INDEX

StandardRam
Subsystem Lookup
SWAT

Swatee
SYS.BOOT

TeleSwat

TFS

TFU

Trident disk software
TRIEX

Type
User.Cm

VIEWDATA
WriteDirectory

Cleared version of May
May 24, 1981

24, 1981

138

