
c 1980 by Xerox Corporation

PREPRESS MANUAL

PREPRESS version 2.1

Last revised by Lyle Ramshaw and Kerry A. LaPrade in September, 1980.

Available as: <AltoDocs>PrePress.Press (on your local IFS)

 or as: [MAXC]<AltoDocs>PrePress.Press

 or in raw form as: [MAXC]<AltoDocs>PrePressDocSources.Dm

PREPRESS MANUAL

Table of Contents

1 Introduction to the font world

1.1 Fonts and font terminology

1.2 Font representations and formats

1.3 PrePress file format

1.4 The type OrbitChars

1.5 The type MultiChars

1.6 Pointers to further information on fonts

2 Things to know before using PREPRESS

Figure 2-1 PREPRESS Main Menu

3 ReadSF: Reading .SF files produced by FRED

4 Convert: from splines to rasters

5 Show: examining an entire font

6 Edit: examining and altering rasters

6.1 Starting Edit from the main menu

6.2 Filing Characters in Edit

6.3 The "Edit Character" section of the Edit menu

6.4 Showing strings of characters

6.5 Calculating dot size for Edit

Figure 6-1 PREPRESS Edit Menu

7 Rotate: Rotating rasters

8 Width: extracting the width vectors of a font

9 Rename: changing the attributes of a font

10 Coordinate: checking rasters against splines

11 Grow and Shrink: adjusting the blackness of rasters

12 Scale: altering the resolution of a raster

13 OrbitFormat and DeOrbitize: back and forth between Chars and OrbitChars

14 MakeAL and ReadAL: back and forth between Chars and .AL files

15 MakeKS, ReadKS, and MakeStrike: back and forth between Chars and the
various flavors of strike formats

16 MakeCU and ReadCU: back and forth between Chars and .CU files

17 ImposeWidths: resetting the widths of a raster font

18 ReadWidths: constructing a Widths segment from scratch

PREPRESS MANUAL

19 Comments about Dictionaries

20 Trident: using a trident disk

21 List: getting a dictionary’s table of contents

22 Fast and Slow editing of dictionaries

23 Slow-Verify mode

24 Compact: cleaning up a dictionary

25 Merge: adding to or editing a dictionary

26 ReviseWidths: merge, and update MultiChars

27 Supersede: merge, but handle Widths specially

28 Delete: removing a segment from a dictionary

29 Extract: copying a segment from a dictionary

Appendix A: Using the command line

A.1 A command line example

Appendix B: Prepress revision history

PREPRESS MANUAL

1 Introduction to the font world

PREPRESS is an Alto program for manipulating font files of various sorts (version 2.1
of PREPRESS will also run on a Dorado emulating an Alto). Before you can
understand many of the weirder quirks of PREPRESS, it is crucial to have a good
general understanding of how fonts are dealt with in PARC software. Section 1 will
give you an overview of this fascinating subject, slanted towards what you need to
know to understand PREPRESS. In Section 2, we will get back to our main topic: the
questions of exactly what PREPRESS can do, and how to run it.

1.1 Fonts and font terminology

A font is a collection of character descriptions, indexed by character code. A font
posesses various attributes, including its family name, its point size, and others. Each
of these attributes has a collection of conventions surrounding it.

The family name of a font is a string that describes the particular design of character
shapes used in the font. Two of the primary font families at PARC today are
TIMESROMAN and HELVETICA. By convention, family names are written
without spaces, and using only upper case letters.

Be careful not to confuse the family name of a font with the name of a file that
happens to contain some representation of that font. The family name of a font is
often used as part of a file name; for example, a file that contains a 10 point
HELVETICA in .AL format (see Subsection 1.2 for formats) would conventionally
be named "helvetica10.al". In this file name, as in all file names, upper case and
lower case are interchangeable. Case only matters in the family name itself. Software
may or may not believe that the family names "Helvetica" and "HELVETICA" are
equivalent, and it is safest to punt the issue by sticking to upper case.

The point size of a font is some indication of how big the characters are. Most people
seem to define the point size of a font as the distance in 72’nds of an inch between
adjacent baselines of closely-spaced text. But there is a lot of room for argument
about precisely what point size does or should mean. The size of fonts can also be
measured in micas instead of points; a mica is 10 micrometers, or equivalently,
10^(�5) meters. There are precisely 2540 micas in an inch. According to PARC
software, there are exactly 72 points in an inch. The mica size of a font is simply its
point size adjusted by the appropriate conversion factor.

The face describes a grab bag of other characteristics of a font; italic, bold, and
condensed are all face attributes. There are two different encoding schemes in

PREPRESS MANUAL

common use for the face attributes. In file names, the only faces referred to are plain,
bold, italic, and bold-italic; these are encoded as ��’’, ��B’’, ��I’’, and ��BI’’ respectively.
In file names, the face code usually appears immediately after the point size. Thus, a
10 point HELVETICA in .AL format and with a bold face would be stored in the
file named ��helvetica10b.al’’.

Inside of PREPRESS, a fancier and more complete three letter code is used for face
attributes. The first letter is either ��L’’ for Light, ��M’’ for Medium, or ��B’’ for Bold;
the second letter is either ��R’’ for Roman or ��I’’ for Italic; the third letter is either
��C’’ for condensed, ��R’’ for regular, or ��E’’ for expanded. For example, a plain font
has the three-letter face code ��MRR’’; bold is ��BRR’’; italic is ��MIR’’; bold-
expanded is ��BRE’’.

As of version 1.13, the face code was extended somewhat. There is an optional
fourth digit that describes the character code convention used in the font: the values
are ��X’’ for Xerox, ��A’’ for ASCII, and ��O’’ for other. In addition, numeric values of
face are also allowed for TEX fonts; any integer or half-integer between 0 and 100 is
a legal face, and specifies the logical size of the associated TEX font in points.

The rotation of a font refers to its orientation on the printed page. Rotation is
measured in minutes of arc; there are 5400 minutes in 90 degrees. (The following
discussion assumes that a standard sheet of paper is being held with its long axis
vertically, as you are presumably holding the sheet upon which these words are
printed.) A Dover printer scans the page from bottom to top, left to right. On raster
devices with this scan pattern, a rotation of zero describes characters that (like the
ones you are reading now) go horizontally from left to right across the page. Rotation
increases in a counterclockwise direction; thus, on a Dover printer, characters rotated
5400 minutes would run vertically up the page. Most raster fonts that are
encountered in practise are rotated by some multiple of 90 degrees, and hence some
multiple of 5400 minutes. Arbitrary rotations are legal, from PREPRESS’s point of
view at least.

Devices that scan the physical page differently from a Dover have different rotation
conventions. The most common example is a raster device that scans the page from
left to right, top to bottom (the way that English is read). On such a device,
characters that go from left to right across the page have a rotation of 5400 minutes,
while characters that run vertically up the page are rotated 10800 minutes.

The origin of a character is a reference position that is used to describe the
character’s location on a page or display. Conventionally, the origin is located on the
baseline at the left edge of the character. When a coordinate system is put on a
raster, the PREPRESS convention is to locate the dots of the raster inside the squares
defined by the lines of the coordinate system. Thus, the origin point is located at the

PREPRESS MANUAL

corner where four different raster dots touch, rather than in the middle of a raster
dot.

The width of a character is a two-dimensional vector that describes the incremental
translation that should take place on the page to determine the origin of the next
character to be displayed in a string of text. The components of the width vector are
floating point numbers in general. The width vector has two components to allow for
fonts that are rotated by other than multiples of 90 degrees; if a font’s rotation is a
multiple of 90 degrees, one of the components of the width vector will be uniformly
zero. Because we associate one width vector with each character, we cannot adjust
the space after a character depending upon what character comes next. To say the
same thing another way, we do not do spacing based on character pairs (kerning).

1.2 Font representations and formats

The characters in fonts are represented in one of two ways: (i) as a collection of cubic
splines that specify the outline of the black area of the character, or (ii) as a raster
(loosely referred to as a "bit map") that explicitly specifies the locations on a
Cartesian grid that should be blackened to generate the character. A spline
description of a character is resolution and device independent; the splines describe
in a continuous, clean, mathematical universe the desired outlines of the character
bodies. Rasters are a lower level and less general description of a character shape.
First, a raster is tied to a particular combination of output device resolution and
desired character size. Secondly, rasters are often adjusted somewhat to allow for the
vagaries of a particular output device. If a printer tends to output less black than the
raster requests, for example, the black areas of the raster can be expanded a trifle to
compensate.

Perhaps the prime task of PREPRESS is to accept spline definitions of characters, and
convert them into the rasters appropriate for a particular size, resolution, and output
device. This process of going from splines to rasters is called scan-conversion.

In addition to scan-conversion, the PREPRESS program can perform many generally
useful functions on fonts in various formats. Each of these formats has associated
with it a filename extension; for example, a file containing a font in ��Carnegie
Mellon’’ format is usually given a name ending in the string ��.CU’’. In fact, it is often
convenient to use the extension as a name for the format: one speaks of a file in .CU
format, or of a .CU file. Learn now the lore of formats and extensions:

.SF -- Contains spline definitions of characters in a LISP’ish text format,
produced by a spline-editing program such as FRED.

.SD -- Contains spline definitions of characters in a more compact, binary form.

PREPRESS MANUAL

.AC -- Contains rasters for a font of a particular size at a particular resolution.

.OC -- Contains rasters for a font of a particular size at a particular resolution,
but in a format distinct from .AC: see section 1.4.

.WD -- Contains width tables for a font.

.MD -- Contains metric information for a font: the widths and character
dimensions are both described. This metric information is currently
used by the document compiler TEX, and may be used by other
formatters in the future.

.AL -- Contains an Alto font in a format suitable for use with the Convert
operation.

.STRIKE -- Contains an Alto font in a format suitable for use with BitBlt. This
original Strike format is unable to deal with characters that overhang
either to the left of the origin, or to the right of the end of their
width vector, however.

.KS -- Contains an Alto font in a format suitable for use with BitBlt. This new
KernedStrike format cures the problem mentioned above.

.CU -- Contains a font in "Carnegie Mellon" format.

1.3 PrePress file format

Several of these file formats, in particular, the .SD, .AC, .OC, .WD, and .MD
formats, are variants of a generic file format created and modified by PREPRESS,
which, for want of a better name, we will call PrePress format. A file in PrePress
format (called a PrePress file, for short) consists of an index followed by one or more
segments; each segment gives some kind of information about a font, while the index
includes pointers to all of the segments. In the simplest case, a PrePress file can
contain an index with a single entry, followed by a single segment. In fact, a file in
.AC format is more accurately described as a PrePress file with precisely one segment
of type Chars. Similarly, an .SD file contains a single segment of type Splines, a .WD
file contains a single segment of type Widths, and a .MD file contains a single
segment of type TexMetrics. (There are two other types of segments, OrbitChars and
MultiChars---but we will postpone discussion of them for a moment.) If a PrePress
file contains a single segment of type Chars, we will sometimes refer to it as a Chars
file, and similarly for each of the other four types of segments.

In general, a PrePress file can include many segments, of the same or different types;
files with more than one segment are called dictionaries. A printing server running
the PRESS program, for example, stores all of the fonts it knows about in a big

PREPRESS MANUAL

dictionary called Press.Fonts. This dictionary is a large file in PrePress format that
contains Splines segments and/or Chars segments (and/or OrbitChars segments) for
many fonts. The file Fonts.Widths is a dictionary of Widths segments, used by
formatting programs such as BRAVO.

There are currently six different types of segments that can appear in a PrePress file.
Four of them have already been mentioned:

Splines -- Compacted spline outlines for a font.

Widths -- A table of width data about a font.

TexMetrics -- A differently formatted table of width and size data for a font,
currently used by TEX (a document compiler).

Chars -- Rasters for a font.

The other two, OrbitChars and MultiChars, demand rather more complex
explanations.

1.4 The type OrbitChars

A raster for a character is simply a two-dimensional array of bits. The natural way to
store such an array is in some variety of row-major order. The rows of a raster are
known as scanlines, since the successive bits of a row are used to control one of the
scans of the output device. In a Chars segment, each scanline is stored 16 bits per
word in successive words, with the first bit of each new scanline constrained to start a
new word. Thus, if a raster has scanlines that are 17 bits long, each of them will
occupy two full words, with the last 15 bits of the second word wasted.

Some printers driven by Altos have a special piece of supporting hardware called an
Orbit; for example, a Dover printer is usually driven by an Alto equipped with an
Orbit. This piece of hardware is designed to help the program deal rapidly with
rasters. In particular, the Orbit is able to merge lots of little rasters from various
places in memory to produce one large raster for output to a printing engine. An
Orbit expects its input rasters to be stored scanline by scanline in successive words of
memory not aligned on word boundaries! That is, each scanline should start
immediately after the previous scanline ends, regardless of where in a word this
occurs; no bits are unused.

This provides the background for the OrbitChars type of segment. An OrbitChars
segment and a Chars segment both consist of rasters for a font at a particular size
and resolution. The primary difference is that the successive scanlines of the rasters
are aligned on word boundaries in a Chars segment, and not aligned in an
OrbitChars segment. The header information at the beginning of the raster is also in

PREPRESS MANUAL

a different format, but that is a minor point. PREPRESS prefers to work with rasters
of type Chars whenever possible. In particular, most PREPRESS commands that use
rasters as input (such as Show, Edit, Rotate, Grow, and Shrink) will only accept
Chars rasters, not OrbitChars ones. In fact, the only consumers of the OrbitChars
rasters are those printers that use an Orbit interface. Since the Altos that drive
Dovers use Orbits, the dictionary of fonts used by the programs PRESS and SPRUCE

when driving a Dover should have raster segments of type OrbitChars, rather than of
type Chars.

Confusing as this dual format may seem, it is really not very painful, because
PREPRESS includes commands that translate a font both ways between the two
formats: the OrbitFormat command will convert Chars to OrbitChars, and the
DeOrbitize command will convert OrbitChars to Chars.

If the name of a font file ends with the extension .OC, that file, by convention,
should contain a single segment of type OrbitChars. Think of the following
mnemonics: .AC means a Chars segment and could be read �� Aligned Chars’’ while
.OC implies an OrbitChars segment and could be read �� Orbitized Chars’’. When the
OrbitChars type was new, many files that would be called .OC files today were given
the extension .AC instead. Some of these files may still be hanging around, or you
may just meet font files that don’t follow the standard naming conventions at all. If
you have a PrePress file with a single segment, you can easily determine what type of
segment it is (regardless of the file name) by the following technique: invoke
PREPRESS, select the Show command, and type the name of the file into the Source
File window. PREPRESS will display lots of interesting data about the file in various
places; in particular, the type of the segment will appear in the File Type window
(see Figure 2�1).

1.5 The type MultiChars

There is now only one more segment type to discuss, the type MultiChars. This type
is a recent addition to PREPRESS, and it is not yet well integrated into the PREPRESS

world. But the basic idea is as follows.

Over the years, fonts tend to be updated. For example, the basic PARC roman fonts
have been revised/improved several times. With each new revision, the characters
look a little more like the ones that real-world publishers and printers produce. In
particular, in each new revision, the characters tend to be thinner and more packed
together. Consider what will happen, now, when an old Press file is sent to a printer
using the new fonts. A problem arises because the old Press file has buried inside it
knowledge of the widths of characters: the formatter has to know these widths to
decide where to break lines, for example. Since the width information that the
formatter used is no longer correct, something bad is bound to happen.

PREPRESS MANUAL

In the Press file, the successive characters of a line are output in blocks whose left
edge position is prescribed in an absolute coordinate system. Since the characters in
that block are now thinner than the formatting program thought that they would be,
the block runs out too soon, and all the extra space is concentrated at the right end
of the block. Since these blocks often run up to half a line or so, this makes the right
margin of justified text look unacceptably ragged. The new characters, mind you, are
not all that much thinner than the old ones; no one would notice the difference if the
extra space in the line could be spread out more evenly. But concentrating all the
extra space at a few places, in particular, at the ends of lines, makes it painfully
obvious.

The type MultiChars is part of a fix for this problem. Each system that writes Press
files now timestamps them with the date of their creation. The printing servers are
expected to remember the old versions of each font, as well as the current one; each
Press file should be printed with the versions of its fonts which were current when
that Press file was created. In fact, to save space, the printers don’t remember the old
rasters: the new rasters presumably look better anyway. But they do remember the
old widths. When an old Press file comes in, the printer uses the new rasters, but
positions them according to the old widths; the resulting documents look fine, since
the extra space is spread out uniformly over the entire line. [All printing servers
should check the timestamp of Press files and act appropriately; SPRUCE actually
does so, but PRESS currently does not.]

A MultiChars segment is just like an OrbitChars segment, except that it allows for
more than one table of widths�in fact, the expression MultiChars is really short for
��MultiWidthChars’’. There is space in a MultiChars segment for up to four different
width tables with their associated dates. The PREPRESS command ReviseWidths
allows you to replace the rasters in a MultiChars segment with a new and improved
set of rasters, and to add the widths for these new rasters at the front of the current
table of widths.

But ReviseWidths is one of the few commands that understands about MultiChars
segments at all. To date, most PREPRESS commands cannot handle MultiChars
segments, and in fact, don’t even know of their existence. There are no capabilities
for Rotating, Editing, Showing, or otherwise dealing with MultiChars segments. If
you try to Extract a MultiChars segment from a dictionary, the extract operation
throws away all but the most recent widths, and outputs the resulting thing as an
OrbitChars segment. The current kludge status of MultiChars may change someday.

1.6 Pointers to further information on fonts

For a lower level introduction to what font files actually look like on a word by word
basis, for a definition of such interesting terms as bounding box, and especially for a

PREPRESS MANUAL

great figure on the last page, you should read the current version of the document
titled something like "Font Representations and Formats." It is stored on the file
[Maxc1]<PrintingDocs>FontFormats.Press.

2 Things to know before using PREPRESS

The PREPRESS program is available as the file <Alto>Prepress.Run (You should be
able to find it on your local IFS, but if not try [Maxc1].). There are two ways to give
commands to PREPRESS: through interactions with a menu, or through directives
typed on the command line. For most purposes, interacting with the menu is the
style of choice. The command line mode of operation is a relic from the early
development of PREPRESS. It has been retained because of its usefulness in a
particular situation: you occasionally want to direct PREPRESS to perform a long
sequence of similar operations, say when building a large new dictionary of rasters
from scratch. Doing this through the menu interface is tedious, since you must wait
for the previous operation to complete before issuing the request for the next
operation. Using the command line interface, you can construct a long command line
as the text file CommandFile.CM, invoke PREPRESS with the command ��Prepress
@CommandFile.CM@’’, and go out for a cup of coffee. Because the command line
interface is a relic of history, it has its own funny conventions and assumptions.
Most of the following text will describe the menu interface. The description of what
you can get through command line requests, the appropriate syntax, and related
issues are dealt with in an Appendix.

To use PREPRESS through the menu interface, one merely types "Prepress.Run" to
the Executive. After a little thrashing around, a command menu will appear, which
we shall call the Main Menu.

Note: You may wish to refer to Figure 2�1, which is an illustration of the PREPRESS

Main Menu, as you read the remainder of this section. Those blocks in the menu
requiring information to be entered, such as names of files, or the numbers needed
to perform one conversion or another, have a horizontal (and in the case of some
"Dictionary" operations, vertical) line dividing the block into two parts. One part
contains the title of the information required and the other part is reserved for
entering the needed information. In some cases, PREPRESS offers default information
for these blocks but you may change this information if you desire.

The various commands on the menu are invoked by moving the mouse until the
cursor is inside the desired block and then depressing any button on the mouse. The
cursor is in the shape of a small arrow pointing to approximately the 10 o’clock
position. Depending upon which command is invoked, certain of the blocks on the
menu may turn black to prompt you regarding what additional information
PREPRESS requires in order to perform the command selected.

PREPRESS MANUAL

It is mandatory that information be provided to some of the blocks and optional that
information be provided to others. The instructions that follow in other sections of
this document identify the mandatory and optional blocks. For example one of the
optional blocks, "Incline," may ask for the percentage of inclination the characters in
the file are to be tilted in order to create a font which looks (something) like italics.
The default inclination is, of course, zero.

Most information is entered by selecting a box, typing in the data on the keyboard,
and terminating with RETURN. For a few of the blocks, however, only one of two
answers are possible. In these cases, the blocks will always contain one of the two
possible choices. If the opposite choice is desired, it is invoked by moving the cursor
into that block and depressing any button on the mouse. The other possible choice
will then appear in that block. Each time any button on the mouse is depressed with
the cursor in one of those blocks, the opposite choice will appear. In the case of the
"Angle" block there are four possible choices. If one of the other three choices is
desired, it is invoked by moving the cursor into the Angle block and depressing one
of the three mouse buttons.

At the top of the main menu is a lightly outlined block that can contain a single line
of text. This block is used by PREPRESS to prompt you concerning information that
you have decided to enter. For example, if you indicate with the mouse that you
would like to enter an inclination for synthetic italics, the prompt window will tell
you what units to use in measuring the inclination. Once you have entered the
desired inclination, the prompting message will disappear. Other instructions and
information for the operator are displayed in the message area at the very top of the
screen.

There are currently four blocks on the menu pertaining to file names. These are
"Source file," "Output file," "Dictionary" (sometimes referred to as "Big") file, and
"Background" file. Each command on the menu involves either 1 or 2 of these
blocks. In general (but not always) invoking a command with either the left or middle
mouse button will fill in the appropriate file blocks with the default file name for the
appropriate file type, e. g., "SDTemp" for a (one-segmented) spline definitions file.
Invoking with the right mouse button fills in the appropriate block or blocks with the
most recently used file name (other than the default name) for the appropriate type.
After invoking a command, the same mouse button functions apply if you desire to
change a file block on an individual basis. The only exceptions to this rule (known to
this author) are the Background File (used only by the Edit Command), commands
involving STRIKE and CU files, and some commands which allow more than one
legal file format, in particular, the Rename command and most of the dictionary
commands. Note that the standard default name "ACTemp" is used for both the
Chars and OrbitChars file formats. In many situations you may be able to save

PREPRESS MANUAL

keystrokes by clever mouse-clicking.

After all of the mandatory and optional data for each operation is entered into the
blocks of the menu, the procedure being accomplished is started by moving the
cursor into the "DO IT" block at the bottom of the menu and depressing any button
on the mouse. When the procedure completes, the main menu will return, and you
may select another operation; to return to the Alto Executive, invoke the "QUIT"
block.

If you have selected an operation and, before invoking "DO IT", you change your
mind, you can simply select another operation; the menu will be adjusted to prompt
you for the information needed by this new operation. Alternatively, you could
return to the Alto Executive without performing any operation by invoking "QUIT".
By the way, it doesn’t work to set up the parameters first, and then select the
operation: in most cases, selecting the operation flushes any old choices for relevant
parameters and replaces then with the standard defaults, so you should first select the
operation, then set the parameters.

The blocks in the uppermost chunk of the menu are used to describe the contents of
the source file as well as to accept parameters from the user. In particular, if
PREPRESS is currently in a state in which it expects the Source file to be a file in
PrePress format with a single segment, and you enter a Source file name into the
appropriate block, PREPRESS will fill in the family name, the face, the type of that
single segment, the point size, the rotation, and (if appropriate) the resolutions by
reading the source file that you have named. If the Source file has more than one
segment, its type will be displayed as "Dictionary," and the family name of the first
segment in the file will be displayed, but all other displayed characteristics are
meaningless. You can put PREPRESS into a state where it expects a single segment
Prepress format file as input by selecting the Show command; after examining the
characteristics of the file in question, you may select another command or invoke
"QUIT" as you see fit.

The rest of this Manual will be devoted to explicit descriptions of each of the
available commands, at the rate of about one command per section. But before we
begin that large topic, perhaps a word of information about PrePress.Scratch is in
order. In addition to all of the official PREPRESS and non-PREPRESS files that are
discussed in the descriptions of the commands, PREPRESS sometimes just needs some
scratch file space to keep temporary results. When it feels this need, PREPRESS uses
the file named PrePress.Scratch; if such a file already exists, PREPRESS overwrites it,
otherwise PREPRESS creates such a file. This can cause unexpected results if you have
a Trident disk drive on line. You may delete PrePress.Scratch after leaving PREPRESS

if you like.

List

ExtractMerge

Supersede

Width
Rename

Delete

Show

MakeCU

MakeAL

MakeStrike

ReadWidths

ReadCU

Rotate

Grow
Shrink

Coordinate

OrbitFormat

Scale

ImposeWidths

ReadSF Convert

Edit

Family Name

Face

Source file

Point size

Output file

Mica size

Rotation

Incline

Dictionary

X factor

Y factor

X resol.

Y resol.

DO IT

QUIT

Background Dot size

Percent

Bit Factor

Update

Thicken

FastTrident

Orbitize

ReviseWidths

Clip

DeOrbitize

File Type

ReadAL Angle

Drive number

MakeKS
ReadKS

Compact

Verify

Figure 2-1: PREPRESS Main Menu

PREPRESS MANUAL

PREPRESS MANUAL

3 ReadSF: Reading .SF files produced by FRED

The command ReadSF takes the bulky .SF spline files produced by the spline editor
FRED, and reformats them in the more compact .SD format, which can then be used
as input to the scan-converting command. That is, ReadSF goes from .SF files to a
Splines file.

PREPRESS accepts spline font (.SF) files created with FRED. In reading in and
converting the file, problems can occur if the .SF file is not properly formed. One
area of potential trouble is in entering width and fiducial information and the data
required under the "Miscellaneous" block of FRED. Width and fiducial information
which appear to PREPRESS to be out of bounds or in some way improperly formed
may cause the .SF file not to be read in or if read in, not able to be converted into
other types of files. PREPRESS tends to be unforgiving in these matters. In some
cases, messages will appear on the screen alerting the operator of where the problem
lies, however, in other cases, PREPRESS will go into Swat or just "hang", requiring
the operator to either boot or Swat to recover.

In entering the data required by the "Miscellaneous" command of FRED, make sure
that the family name is the same for all of the characters in the same .SF file. If the
family names are not the same, a message to that effect will be displayed during the
conversion process in PREPRESS.

Generally, if a problem consistently occurs during the first two major steps of
PREPRESS, namely reading the .SF file and converting to an .AC file, the problems
can often be traced to an error in the .SF file created in FRED.

The ReadSF procedure (in conjunction with the Update flag) allows a number of
separate .SF files to be merged into a single compact .SD file. This single compact
file is usually called SDTemp; however, the name of the file can be changed if
desired. To read in an .SF file proceed as follows:

a. Type Prepress.Run to the System Executive, terminated by RETURN, and
wait until the main command menu appears.

b. Move the cursor to the block labeled "ReadSF" and depress the left
button on the mouse. The background in the ReadSF block will turn black
along with the backgrounds in some additional blocks. The color change is
used to prompt you regarding what information is required.

c. Move the cursor to the "Source file" block and depress any button on the
mouse. Type in the name of the source file (which for clarity should have
the extension .SF) and terminate with RETURN.

PREPRESS MANUAL

NOTE

Once you have entered this name, it is remembered until you

either "QUIT" or type in another "Source file" name for a ReadSF

operation (since ReadSF is the only PREPRESS operation involving

.SF files). The name is automatically recalled whenever you invoke

ReadSF" with the right mouse button. Similarly, it is also recalled

when you invoke ReadSF with any mouse button and then select

the Source file block with the right button.

d. PREPRESS offers the default file name SDTemp (assuming you used the
left mouse button) for the output .SD file. If you want to change the name
of the output file, move the cursor to the "Output file" block and depress
any button on the mouse. Type in the name of the output file (ending it
with .SD) and terminate with RETURN.

NOTE

Once you have entered this name, it is remembered until you

either "QUIT" or type in another name in a "Source file" or

"Output file" block while PREPRESS is in a state expecting a Splines

file in that block. The name is automatically recalled when you

invoke with the right mouse button a command which involves a

Splines file as either Source or Output. Similarly, it is recalled

when you invoke such a command with any mouse button and

then select the relevant Source or Output file block with the right

button.

e. The block labeled "Update" has "false" as its default value. If the Update
flag is false, the original contents of the output .SD file are ignored: the
output file after the ReadSF command will contain compacted
representations of exactly those characters defined by the current .SF input
file. In many situations, however, you want instead to add some new
characters to an existing .SD file. For example, you might want to merge
the characters defined in several .SF files into a single .SD file. Or you
might want to replace the definitions of one or more characters in an .SD
file with new definitions from an .SF file, without altering any other
characters. In these situations, you should set the Update flag to "true".
Move the cursor to the block labeled "Update" and depress any button on
the mouse. The word "false" which normally is in the bottom half of the
block will change to "true." Now, when the ReadSF is performed, the
character definitions in the .SF file will be taken as additions or edits to
the current .SD file. If the .SF file defines a character that has no current
definition in the .SD file, the .SF definition will be added to the .SD file.
If the .SF file redefines a character that is already defined in the .SD file,

PREPRESS MANUAL

the .SF definition will replace the current definition in the .SD file; in this
case, a warning mesage will appear stating that characters have been
multiply defined.

NOTE

Steps f and g are optional commands which may be skipped if

desired. Step f describes how to slant the .SF file characters to

form pseudo-italics; and step g describes how to expand or

condense characters.

f. As the splines are read from the .SF files, it is possible at this time to
change the fonts into pseudo-italics by slanting each character to the right.
This is called "Incline" and is specified as a percentage. To slant all of the
characters in the file, move the cursor to the block labeled "Incline" and
depress any button on the mouse. The background on the bottom half of
the block will turn black and a message will appear requesting the
percentage of inclination. The incline is measured as a percentage of the y
coordinate to be added to the x coordinate. Type in the percentage
(typically 20% is more than sufficient) and terminate with RETURN. The
number entered will appear in the specified block and the block
background will return to white.

NOTE

The incline command is not a true representation of italics, but

only resembles this type form by slanting each character to the

right by the specified percentage.

g. As with the incline feature, characters may be condensed or expanded as
they are read in from the .SF files. The "X factor" and "Y factor" blocks
are used for this purpose. These functions are normally set with scale
factors of 1.0 (no scaling). The X factor scales the font in the horizontal
direction, and the Y factor scales the font in the vertical direction. To
condense a font, move the cursor to the block labeled X factor and depress
any button on the mouse. The background in the bottom half of the block
will turn black and a message will request that the scale factor be typed in.
Terminate with RETURN. If the font is to be condensed to 3/4 as wide as
specified in the .SF file, type in .75. To expand the character, you might
enter 1.25.

The Y factor block accomplishes the same condensing or expanding in the
vertical direction, however it should be used with some care as values
other than 1 in this block will alter the point size of a font. For regular
characters of the alphabet, the Y factor is seldom used, however, for

PREPRESS MANUAL

special characters or logos, it may be desirable to expand or condense in
the vertical direction.

h. When all of the information is entered, move the cursor to the block
labeled "DO IT" and depress any button on the mouse to complete the
command.

NOTE

Several kinds of errors can be generated during the "Read SF"

operation. Warnings are generated if characters with different

family names or different face designations are read into the same

file from different .SF files. Messages will appear on the screen

alerting the operator of these occurrences. Family name or different

face designation anomalies can be corrected by returning to the

FRED program and correcting these errors by invoking the

Miscellaneous block.

After the Read SF operation is complete, the .SF files are
no longer needed for PREPRESS operations and may be
stored or archived.

4 Convert: from splines to rasters

The Convert operation allows you to scan-convert the spline encodings contained in
the SDTemp file just created in section 3 (or other .SD file specified by the operator)
into an .AC file; that is, Convert takes a Splines file and produces a Chars file. The
default name ACTemp is provided for the output file, but you may change the name
if you wish. Of course, since you are moving to a raster representation, you must
specify the size, resolution, and rotation that you desire. There is abolutely no
guarantee that scan-converting splines at a particular size and resolution will produce
rasters that are acceptable, or even vaguely legible. If you are trying to produce good-
looking small rasters for a font, you can improve the results of scan-conversion
somewhat by a sampling process to be described later (see the Scale command). But
you will probably end up having to edit the resulting rasters by hand it you really
want them to look good (see the Edit command). At higher resolutions, a
straightforward scan-conversion is pretty likely to produce acceptable rasters.

To convert a Splines file to a Chars file, proceed as follows:

a. Move the cursor to the block labeled "Convert" and depress any button
on the mouse. The background in the Convert block will turn black along
with the background in some of the other blocks.

b. If you invoked Convert with either the left or middle button, the Source
file will automatically read "SDTemp." If you instead invoked Convert

PREPRESS MANUAL

with the right mouse button, the "Source file" will automatically read
whatever you last typed (other than "SDTemp) into a Source or Output
file block while PREPRESS was in a state expecting a Splines file in that
block. If this is the wrong Source file name, move the cursor to the Source
file block and depress any button on the mouse, type in the correct file
name (For clarity, this should be either "SDTemp" or a name ending with
".SD".), and terminate with RETURN.

c. If you invoked Convert with either the left or middle button, the Output
file will automatically read "ACTemp." If you instead invoked Convert
with the right mouse button, the "Output file" will automatically read
whatever you last typed (other than "ACTemp) into a Source, Output, or
Background file block while PREPRESS was in a state expecting a Chars
file in that block. If this is the wrong "Output file" name, move the cursor
to the "Output file" block and depress any button on the mouse, type in
the correct file name (For clarity, this should be either "ACTemp" or a
name ending with ".AC".), and terminate with RETURN.

d. The desired point size of the font or character must be entered in the
block labeled "Point size." This information is mandatory. Invoking this
block with the cursor will produce a message which requests "Size in
points". Type in the size (there are approximately 72 points to the inch)
and terminate with RETURN. The number will appear in the Point size
block and the size in micas will be computed by PREPRESS and appear in
the block labeled Mica size. An alternate method of entering the font size
is to use the block labeled "Mica size" and enter the vertical size in micas,
if known. (A mica is 10 micrometers and there are 2540 micas to the inch.)

e. The resolution of the printing device that will use the character must be
entered next. This information is mandatory. Since the horizontal (X) and
vertical (Y) resolution of the same printer could be different, two blocks,
one labeled "X resol." and another labeled "Y resol." are provided for that
purpose. Enter the appropriate resolution for the desired device. Since the
X and Y resolutions of most printers are the same, for convenience, the
number entered in the "X resol" box is automatically entered in the "Y
resol" box; however, you may change the Y value if you wish. For Dovers,
the resolution in both the X and Y direction is 384 bits per inch. The
resolution of the Alto screen is pegged by various authorities at anywhere
between 72 and 80 bits per inch. One common value is 72 bpi.

PREPRESS MANUAL

NOTE

Steps f through i are optional commands which may be skipped if

desired. Step f describes how to create pseudo-italics; step g

describes how to rotate characters; step h describes the Thicken

flag; and step i describes the Orbitize flag.

f. If it is desired to create pseudo-italics of all the characters in a font, it may
be accomplished during this operation. (This was also an option during the
previous step of reading the SF files.) To slant all of the characters in the
file, move the cursor to the block labeled "Incline" and depress any button
on the mouse. The background on the bottom half of the block will turn
black and a message will appear requesting the percentage of incline. The
incline is measured as a percentage of the y coordinate to be added to the
x coordinate. Type in the percentage (typically 20% is more than enough)
and terminate with RETURN. The number entered will appear in the
block and the background will return to white.

NOTE

The incline command is not a true representation of italics, but

only resembles this type form by slanting each character to the

right by the specified percentage.

g. Characters may be rotated, if desired, by entering a number in the block
labeled "Rotation." The number entered is the number of minutes of arc
that each character is to be rotated about the origin in a counterclockwise
direction. Since there are 60 minutes in each degree, to create characters
that will run up a Dover page (that is, to rotate the font 90 degrees in a
counterclockwise direction) enter the number 5400 (90 times 60) in the
block labeled "Rotation." Rotations by other than multiples of 5400
minutes are unusual, but legal; of course, neither component of the
resulting width vectors will be zero.

h. The Thicken flag is normally "false". When Convert runs in this mode,
thin lines of black in the character sometimes have gaps, caused by the
effects of discretization. Setting the Thicken flag to "true" changes the
discretization algorithm in such a way that bits are more likely to be made
black. This tends to make low resolution rasters more bold, but sometimes
a little better looking. More precisely, the output of Convert with the
Thicken flag set is the result of OR’ing together the raster that Convert
would normally produce with that same raster raised up by one raster dot.

PREPRESS MANUAL

NOTE

The Grow command (described below) is a more drastic way to

create a bolder raster.

i. The Convert operation usually produces a result of type Chars; setting the
Orbitize flag will cause the output to be of type OrbitChars instead. One
could achieve the identical effect by running Convert without setting the
Orbitize flag and then invoking the OrbitFormat command (see below).

j. When all of the information is entered, move the cursor to the block
labeled "DO IT" and depress any button on the mouse to invoke the
command.

5 Show: examining an entire font

The Show command allows you to examine an entire font of rasters, one character at
a time. Unfortunately, there is no way to change the order in which the characters
are shown. In order to examine a font with more flexibility, you should use the Edit
command described below. Both the Show and Edit commands only work on Chars
fonts, that is, non-orbitized rasters.

NOTE

If you are running PrePress on a Dorado emulating an Alto, the

display in the Show command will be smaller than it should, and

will have garbage below it. This happens because the Dorado

display microcode does not implement the low-resolution mode of

the Alto display. Fortunately, a Dorado is fast enough that there is

no reason to avoid the more powerful Edit command.

To Show a Chars file, proceed as follows:

a. Move the cursor to the block labeled "Show" and depress any button on
the mouse. The titles of the "Show" and "Source file" blocks will turn to
white on black.

b. If you invoked "Show" with either the left or middle button, the Source
file will automatically read "ACTemp." If you instead invoked Convert
with the right mouse button, the Source file will automatically read
whatever you last typed (other than "ACTemp") into a Source, Output, or
Background file block while PREPRESS was in a state expecting a Chars
file in that block. If this is the wrong Source file name, move the cursor to
the Source file block and depress any button on the mouse, type in the
correct file name (For clarity, this should be either "ACTemp" or a name
ending with ".AC".), and terminate with RETURN.

PREPRESS MANUAL

c. Move the cursor to the block labeled "DO IT" and depress any button on
the mouse.

d. The menu will disappear and the first character in the AC file will appear
on the screen along with its width information.

e. Each character is individually displayed by depressing the RETURN key.
Depressing the RETURN key after the last character is shown or
depressing the DEL key at any time returns PREPRESS to the main menu.

PREPRESS MANUAL

6 Edit: examining and altering rasters

The "Edit" command allows you to selectively display and edit the characters of a
Chars file (whose name conventionally has the extension .AC). This editing process is
called face editing and is accomplished by changing the status of bits in the raster
back and forth between black and white, and by adjusting if necessary the origin
point and width vector of the character. The characters of the font being edited can
also be displayed in a string or in words in order to evaluate their appearance and
spacing. Good face editing is art, not science; especially in low resolution fonts, there
just aren’t a whole lot of bits to play with, and producing good-looking characters
takes talent and work. This is the stage where most of the aesthetic judgements
regarding appearance of the characters and words are made.

It is often helpful to view the character being edited against a background that
consists of a higher resolution version of the same character. The background image
then provides a picture of what you want, as a guide for face editing. These
background characters are usually created by scan converting the splines at a larger
font size (in micas or points).

NOTE

If you want to use the background feature, you should generate

another Chars file containing the same characters as the font that

you want to edit, but in a bigger size. If the font being edited is 12

point, for example, the background characters might be 48 point;

the resolutions of the foreground and background should be the

same. The size of the background font must be an integral multiple

of the size of the font being edited. Furthermore, the (integral)

ratio of these two sizes must evenly divide the Dot size (see below).

See subsection 6.5 for a further discussion of resolutions and sizes.

It is possible to edit with the same file as both the foreground and

background, or, more generally, with another font of the same size.

6.1 Starting Edit from the main menu

To edit a font, proceed as follows:

a. Move the cursor to the block labeled "Edit" and depress any button on the
mouse. If you use the left mouse button, the name "ACTemp" will appear in
the Source file block, and the Background block will contain nothing. If
instead you use the right button, the name of the last Chars file you used
(other than ACTemp) will appear in the Source File block, and "ACTemp"
will appear in the Background block.

PREPRESS MANUAL

b. Change, if necessary, the name in the Source file block to be the name of the
Chars file that you would like to Edit.

c. Enter in the Background block the name of the Chars file that you would like
to use as a background, (if any). If you don’t want the background feature the
Background block should be changed, if necessary, to contain nothing (Blanks
and tabs do not qualify as "nothing"!!!). To do this, select the Background
block and type DEL followed by RETURN.

d. Next, you should set the Dot size; this parameter determines how large a
square of the Alto screen will be devoted to each dot in the character raster
when that character is displayed for editing. It is desirable to have this size be
as large as possible, subject to space and divisibility constraints.

Typically, a dot size of 4 will be small enough to display an entire 12 point
384 bit per inch resolution character in the editing area of the screen. Other
typical dot sizes are as follows:

Point Size Dot Size
10 6
 8 8
 6 10

Subsection 6.5 discusses the calculation of maximum dot size.

The dot size must be an integer multiple of the ratio of background mica size
to foreground mica size (Normally this ratio will be exactly the same as the
ratio between their respective point sizes.) with a tolerance of plus or minus
one mica in the background mica size. If not, the background image will not
be displayed and a message will appear stating, "Scream: Background
enlargement does not divide cell size."

e. Move the cursor to the block labeled "DO IT" and depress any button on the
mouse. The main menu will be replaced by a new menu that we will call the
edit menu.

The edit command menu consists of three major parts:

1) A large square in which the character to be edited is
displayed.

2) A menu of available commands to the right of the
square.

3) A rectangular area (below the square) where sample
strings of text can be displayed.

PREPRESS MANUAL

It may be helpful at this point to refer to Fig. 6�1 at the end of
this section for an illustration of the Edit menu. Please note that
this illustration differs from the real menu in that on the real
menu the labels without blocks around them (i.e., "Symbol,"
"Octal," "File Character," and "Edit Character") are actually
displayed as white on black.

6.2 Filing Characters in Edit

There are three blocks in the section of Edit menu labeled "File Character".

a. Move the cursor to the block that says "Get," depress the left button on the
mouse, and type in the character to be edited. The character will be displayed
in the "Symbol" block, in the editing area, and in the small square in the
command area.

NOTE

A message appears at the top of the screen telling you that the

character was read from the "original file." Had this been a

character which you had altered and filed during the current

session of Edit, the character would have been read from a file

called "ACEdits." More about ACEdits later.

If a character is too big to be displayed in the editing area of the screen at the
chosen dot size, a message stating "Warning: tick mark for displaying widths
lies off screen" will usually appear in the message area of the screen. In this
case you should probably "Quit", pick a smaller dot size, and re-enter Edit.

The abscence of the warning message should not be taken as a guarantee that
you have chosen a dot size small enough for displaying the entire raster, but
only that the dot size is small enough for displaying the current foreground
character’s widths. An example of this is a large capital "Q", which is taller
than it is wide and which extends below the baseline. Parts of the character’s
raster bitmap could fall above and below the display window and yet it is
conceivable you would get no warning message. If you proceed to alter the
bitmap (or the widths), file the character away, and then "QUIT", you will
lose those parts of the raster which would not fit on the display.

You are probably safe, however, provided that the entire raster seems to be
there (not an exclamation mark with a missing dot, etc.) and there is at least
one column of empty grid squares constituting either a left-hand or right-hand
border, and at least one row of empty squares constituting either a top or
bottom border (empty fractional squares at the top and on the right don’t
count).

PREPRESS MANUAL

NOTE

If the "Get" command is invoked with the middle mouse button

instead of the left button, the desired character may be displayed

by typing in the octal number. The right button automatically

"Gets" the last character (if any) on the "ACEdits" file, which is

described below.

b. Edit the the raster bits of the character using the mouse buttons. The mouse
buttons perform the following functions:

Left Button - Turns the bit being pointed at by the cursor from white
to black.

Right Button - Turns the bit being pointed at by the cursor from black
to white.

Middle Button - Turns the bit being pointed at by the cursor to white if it
is black and to black if it is white.

By depressing and holding the left or right buttons, you may slowly paint
across an area and change all of the bits pointed at by the cursor to black (if
left button is used) or white (if right button is used).

Each time you press a mouse button, a message appears at the top of the
screen telling you the coordinates of the mouse within the display window,
and whether you are drawing, flipping, or erasing bits. When you release the
mouse button, a message will appear telling you the new coordinates of the
mouse and the "Extent" in x and y directions from the point where you
depressed the button. This feature is intended to aid measurements of
character stroke thickness and character width.

As you make changes to the bitmap in the large square, the same changes are
simultaneously recorded in the smaller square to the right. The position of the
cursor is also tracked in the smaller square, but if this feature bothers you, you
may turn it off by moving the cursor dead-center in the smaller square and
depressing any button. Doing so a second time turns it back on.

c. As soon as a change has been made to the character, the label in the "Get"
box becomes "Put," and the label in the "Delete" box becomes "Cancel." No
other character may be displayed until the changes to the currently-displayed
character are either "Put" or "Canceled".

d. When you have edited the bits of the character to your satisfaction, you may
store the fruits of your labor. Invoking the "Put" command writes the new
version of the raster into a file called "ACEdits" (for .AC Edits). When you

PREPRESS MANUAL

later invoke the "Quit" command to exit from Edit, the new characters
described in the ACEdits file are merged into the original .AC file,
overwriting whatever was there before.

e. At the completion of a "Put" operation, the label in the "Put" block changes
back to "Get", and the label in the "Cancel" box changes to "Unput". At this
point you have the option of either Getting another character or Unputting
and hence Getting an earlier version of the same character. Unput requires
confirmation unless you invoke it with the right mouse button. To confirm
type "Y", "y", or RETURN for yes, or "N", "n", or DEL for no. If you
invoke Unput with the middle mouse button, the earlier version will always be
read from the original file (if it is there). If you invoke Unput with either the
left or right mouse buttons, the most recent prior version of the character will
be used, whether on the ACEdits file or on the original Chars file. Use
"Unput" sparingly and carefully.

f. If in paragraph d. above you were dissatisfied with your fruits you could have
chosen "Cancel" instead of "Put". With Cancel, no writing or erasing is done
to the ACEdits file. The editing area on the screen is erased and an automatic
Get is done on the character. Cancel requires confirmation unless you invoke
it with the right mouse button.

g. The "Automatic" command is used to automatically Put the displayed
character (if it has been altered) and automatically Get one of the adjacent
characters in the input file. If Automatic is invoked with the left mouse
button, PREPRESS starts counting octal numbers beginning with [the octal
code displayed + 1] mod 4008 and continues until it finds a character in the
either the ACEdits, foreground, or background files, and Gets this character.
In other words, invoking Automatic with the left mouse button causes the
next character in the font (in terms of octal codes) to be displayed and
similarly if the right button is used, the previous character will be displayed.
The middle button will Put and Get the same character displayed.
"Automatic" with the left mouse button is an extremely convenient way of
skimming through an entire font.

h. Under certain rare circumstances you may wish to remove a character from a
font completely. This may be done by using the "Delete" command. To avoid
confusion, use Delete only on a character which has not yet been altered
during the current editing session. Since "Delete" is destructive, irreversible
(once you "Quit"), and rather unusual it requires two confirmations, unless
you invoke it with the right mouse button, in which case it requires one
confirmation. Do not do any other editing on this character lest this also lead

PREPRESS MANUAL

to confusing results.

6.3 The "Edit Character" section of the Edit menu

There are five blocks in the section of the Edit menu labeled "Edit Character".

a. A grid is provided to aid in the editing. To eliminate the grid, invoke the
"Grid" command. To re-display the grid, select the "Grid" command a
second time.

b. If a background file is being used, the background display may be alternately
turned on or off by invoking the "Bkgrnd" block with any mouse button.

c. If the character being edited and the background character are not quite
aligned, invoke the "Shift" command. Two locations must now be entered
with the mouse. Move the cursor to a point on the background and depress
any button on the mouse. Then move the cursor to a point where the
specified point is to be moved and again depress a mouse button.

NOTE

The two points actually specify only relative motion and the two

points specified can be anywhere inside the character display block

as long as the relative distance and direction between the two

points specified are correct.

d. The "Area" command computes the area of both the foreground and
background characters and displays the results in the number of dots with
respect to the foreground. The Area command can be used to help determine
whether the current foreground character has more black area or less black
area than the background character.

e. As a result of the editing, the height and width of the character may have
been changed. New height and width information can now be entered with
the use of the four tick marks which are displayed immediately outside the
borders of the character drawing area. The marks are short straight lines
which touch the border. The tick marks on the left and bottom, if extended,
locate the origin of both the foreground and the background characters, i.e., the
0,0 point of the x and y coordinates of the characters. The origin is the place
on the baseline where the character begins. The tick marks on the top and
right define the end of the foreground character’s width vector, rounding the
characters actual width vector coordinates to the nearest grid spacing (The
width vector of a character is the position that will be occupied by the origin
of the next character in a string.). For a normal character in a non-rotated
font, the left and right tick marks will line up, indicating that the y-component

PREPRESS MANUAL

of the foreground character’s width vector is zero, but the bottom tick mark
will be to the left of the top tick mark, indicating that the x-component of the
foreground character’s width vector has a positive value.

To reposition a tick mark, invoke the "Widths" command and then move the
cursor until it is pointing at the mark to be moved and depress and hold any
button on the mouse. The mark will begin flashing on and off. The mark will
now follow the cursor as it is moved until the mouse button is released. Note
that repositioning either the left or the bottom tick mark will cause the
background to be redrawn when you leave the Widths command mode
because you have tampered with the background character’s origin point. Also
keep in mind that moving any tick mark truncates the width vector to the
nearest grid mark in both directions when the character is "Put" on the
ACEdits file. To leave "Widths" command mode, move the mouse to the
block labeled "Widths" or invoke any other command.

There are also two tiny square dots displayed in the border with the tick
marks, one dot on the top and one on the right. If no background is currently
displayed, these dots will be in an undefined position; often, but not always,
they will be located immediately opposite the bottom and left tick marks,
respectively. If a background is displayed, however, the dots will represent
instead the end of the current background character’s width vector. This width
is actually comprised of floating point values (as in the case of the foregound),
but is rounded to the nearest background, rather than foreground, grid
spacing. These dots are helpful as reference points in setting the widths of the
edited character.

NOTE

Location of the tick marks is very important for the proper

positioning of each character. The tick marks not only specify the

space needed for each character, but also the empty space between

characters. If the empty space is incorrectly specified, the printed

characters may not be evenly spaced. Some may look crowded

together and others may look too spread apart. In addition, very

small (6 to 8 points) and very large (greater than 14 points) sizes of

the same characters may require non-proportional spacing. This

occurs because additional spacing is required between some letters

when they are very small to enhance readability and to eliminate a

crowded look. This is an aesthetic judgement that must be made

during this face editing process.

The empty space allotted for each character is usually evenly

divided, with half of the space placed on each side of the character.

The effects of repositioning the tick marks can immediately be

PREPRESS MANUAL

examined by viewing it in a string with other characters in the

"letter-fit window."

6.4 Showing strings of characters

The large, long block near the bottom of the screen is called the "show-string box"
or "letter-fit window."

a. At any time during face editing, the current character may be viewed between
two "H" characters. This is a useful standard for checking letter fit when
adjusting the width information of a character. To display the character
between two "H"s, move the cursor into the show-string box and press the left
or the middle button on the mouse. If any changes have been made to the
current character which have not yet been "Put," a Put is done automatically.
Alternatively, three copies of the character may be viewed by moving the
cursor into the show-string box and pressing the right button on the mouse.

b. A more versatile way of displaying characters in the show-string box is by
invoking the "Type in" command. If the command is invoked with the left
mouse button, the user may type in a string of characters to be shown.
Terminate with RETURN. If any changes have been made to the character
currently in the editing area which have not yet been "Put," and this character
appears in the string typed in, then a Put is done automatically. As much of
the string as will fit into the box will be shown. You may type in the octal
code for a character instead of typing the character itself by doing the
following: type "#", followed by a 1-3 digit octal number, then hold down
the Swat key and type "x", the octal code will be replaced by the appropriate
character. If the middle mouse button were used to invoke the command and
the string were too long to fit in the box, the user would have been asked if
the remainder of the string were to be displayed. PREPRESS remembers the
previous string that was displayed and if "Type in" is invoked with the right
mouse button, the previous string will be displayed with updated characters.

c. The "Consec" command is used to display a string consisting of a consecutive
sequence of characters. This is especially useful for comparing "stroke"
thicknesses. Invoke the "Consec" command with the left mouse button, type
RETURN, and a string will be displayed beginning with the currently selected
character. If you invoke the "Consec" command with the left mouse button
and type in a character (other than RETURN), a string will be displayed
beginning with the typed character. If any changes have been made to the
character currently in the editing area which have not yet been "Put," a Put is
done automatically. Invoking the command with the middle button allows
more characters in the source file to be displayed. The right button

PREPRESS MANUAL

automatically shows a string starting with the character previously specified
with the Consec command.

d. Invoking the "Quit" command of the Edit menu will cause all of the new
rasters sitting in the file ACEdits to be merged into the font being edited, with
new versions of characters overwriting old, and will then return you to the
main PREPRESS command menu. Quit requires confirmation unless you
invoke it with the right mouse button. To confirm type "Y", "y", or
RETURN for yes, or "N", "n", or DEL for no. If any changes have been
made to the character currently in the editing area which have not yet been
"Put," a Put is done automatically.

NOTE

Throughout the entire editing session the original Chars file is

never altered, thus if you desire to flush the entire Edit session and

get back to ground zero, you can always type <left-SHIFT><swat>

or (groan) boot the Alto. Unless you delete the "ACEdits" file you

can give yourself one last chance to change your mind if you re-

enter Edit with the same file parameters. Read on:

By the way, one more thing: when the Edit command starts up, it looks around to
see if there is an ACEdits file already in existence. If so, it offers you the option of
merging those changes into the current Chars file before you start any further
editing, if you would like.

6.5 Calculating dot size for Edit

To calculate the maximum dot size and the best background resolution for displaying
in the PREPRESS Edit mode, proceed as follows:

a. Determine the maximum number of character dots to be displayed. This can
be calculated by using the following formula:

Point Size x Resolution = Dots per Em Quad
72

For example, a 10-point font and a printer resolution of 300 would require:

10 x 300 = 41.7 dots
72

NOTE

The point size of the font is a safe number to use for this

calculation since most characters fit within a square defined by the

fiducials (on the em quad). However, if any character is known to

be wider than the fiducial, or if all characters are known to be

PREPRESS MANUAL

smaller than the fiducial, the actual measurement in points of the

largest character can be used.

b. Determine the maximum dot size for the display. This can be calculated by
dividing the display area of 400 Alto bits by the number of required character
dots obtained from step a. above. For the same 10-point font in the above
example, the size would be:

400 bits = 9.5 bits per dot
42 dots

or a maximum dot size of 9 (an integer). Since it is not desired that the dot
size be an odd number, the next lower even number (8 in this case) would be
used.

NOTE

The number 9 is the maximum dot size that can be displayed and

it is possible to use the odd number if the background is obtained

from the same file as the foreground, or if a 9 to 3 ratio is

tolerable. The preference for even numbers comes only from the

necessity of scaling the background by some factor to match the

size of the foreground, and from the minimum dot size of 2 for a

half-toned background. In general, even numbers have a greater

variety of non-trival factorizations than do odd numbers.

c. Choose the size ratio to use for the background conversion. For the
continuing example of the 10-point font, a good ratio would be 8 to 2.

d. Determine the background point size. This is calculated by multiplying the
foreground point size by the point size ratio obtained in step c above. For the
10-point font this is:

10 points x (8/2) = 40 points

So the .SD file should be reconverted at 40 points into the ACTemp file.

PREPRESS MANUAL

Typical foreground/background combinations for a 300 line per inch system
would be as follows:

Foreground Background Dot No Background

Point Size Point Size Size Dot Size
 8 40 10 11
10 40 8 9
12 48 8 8
14 42 6 6
16 32 4 5
18 36 4 5

Automatic

Shift

Widths

Grid

Consec Type in

Quit

Area

Get Delete

Bkgrnd

Symbol Octal

File Character

Edit Character

Figure 6-1: Prepress Edit Menu

PREPRESS MANUAL

PREPRESS MANUAL

7 Rotate: Rotating rasters

The "Rotate" block in the main menu can be used to rotate scan converted
characters by any multiple of 90 degrees. Rotate will only work on input rasters of
type Chars. To use this feature proceed as follows:

a. Move the cursor to the "Rotate" block of main menu and depress any button
on the mouse. The names which appear in the relevant file blocks depend
upon which mouse button you use, as described in Section 2 of this
document.

b. Rotate expects the name of a Chars file to be entered in both the "Source"
and "Output" file blocks, although the name in the Output file block need not
be an existing file. The names may be changed if desired by moving the
cursor to the block whose name is to be changed, depressing any button on
the mouse, typing in the desired Source and/or Output file names, and
terminate by depressing RETURN.

c. The block labelled "Angle" specifies the number of degrees through which
the rasters should be rotated. This rotation will be in addition to whatever
rotation the font already has. The angle to rotate is a signed decimal number
in units of degrees (not minutes); positive means counterclockwise and
negative means clockwise. The angle must be a multiple of 90. The default
Angle is +90, but you may change this parameter if you wish by bugging the
"Angle" block. The left button on the mouse adds 90 degrees to "Angle", the
middle button adds 180, and the right button adds 270. If the resulting sum is
greater than 180 degrees, then 360 degrees is subtracted. Rotation by 0
degrees, or by 360 degrees is an expensive no-op.

d. Move the cursor to block labeled "DO IT" and depress any button on the
mouse.

8 Width: extracting the width vectors of a font

The "Width" block of the main menu is used to extract width information from a
Splines or Chars font, and to output this information as a PrePress file with a single
Widths segment. Dictionaries of these Widths segments can be used by formatting
programs as sources of information about the sizes of characters; the file
Fonts.Widths is just such a dictionary.

If you extract the width vectors from a Splines font, the resulting Widths segment
will include information that can be scaled and transformed to determine the widths
of any size and rotation of the font. Such Widths segments are distinguished by the
fact that they carry a size of 0 points (which is 0 micas). This proportional scaling of

PREPRESS MANUAL

width information works well over a fair range of sizes, but can cause problems with
very large or very small version of the font; small fonts really need slightly more
space between characters than simple geometric scaling provides (or equivalently,
large fonts need less than proportional space).

On the other hand, if you extract the width vectors from a Chars font, the resulting
Widths segment will only describe the widths in micas of that particular size and
rotation: no scaling or rotating will be performed. This type of Widths segment can
be distinguished by the fact that they have an explicit nonzero size.

To use the Width command, proceed as follows:

a. Move the cursor to the "Width" block and depress any button on the mouse.
The names which appear in the relevant file blocks depend upon which
mouse button you use, as described in Section 2 of this document.

b. Enter name of the file from which width information is to be extracted in the
"Source file" block (SDTemp, ACTemp, or other appropriate file) and
terminate with RETURN.

c. When all of the information is entered, move the cursor to the "DO IT" block
and depress any button on the mouse.

9 Rename: changing the attributes of a font

You sometimes want to change the index information of a single segment file in
PrePress format. This need frequently arises because the ReadAL, ReadKS, and
ReadCU commands fill in incorrect index information. But the need can also arise
for other reasons: you might want to change the family name of a font, for example.
The Rename command takes a single segment PrePress font file as input. When you
enter the name of that file in the Source file block, the Family Name, Face, Size,
Rotation, and (if appropriate) resolutions of the font will be displayed. You may alter
any of these parameters. Then, when you select the "DO IT" block, the index
information in the source file is changed to the new values that you have specified.

Note that the Rename command in PREPRESS and the Rename command to the
Alto Executive are not even remotely similar. The Exec Rename command changes
the name of a file, but leaves the data intact; the PREPRESS Rename command
changes the header information inside the file and lease the filename intact.

When invoking Rename, the File Type block will display the type of the single
segment of the input file: Chars, OrbitChars, or whatever, just as always. But the
Rename command does not allow you to change this. To change the Type of the
source file, you should use the appropriate PREPRESS command that really does the
work: just calling a Splines segment a Chars segment doesn’t make it one.

PREPRESS MANUAL

The Rename command alters the input file in place: there is no separate output file.

10 Coordinate: checking rasters against splines

This command is provided for helping to "coordinate" a hand-made or retouched
font set with the spline "masters." For some applications, it is essential that the actual
font symbols used are no larger than the scaled spline symbols. The "Coordinate"
command helps to uncover the differences.

Note: The "Coordinate" command will not work from the main menu in Prepress1.13. The

following instructions in the remainder of this paragraph are included anyway in the hope that this

problem will be fixed in a later version of PREPRESS. "Coordinate" does, however, work if invoked

from a command line. To invoke this command, move cursor to the block labeled "Coordinate" and

depress any mouse button, then invoke the "DO IT" block. The names which appear in the relevant

file blocks depend upon which mouse button you use, as described in Section 2 of this document.

The Coordinate command needs: (1) the name of a Splines file (extension .SD) and (2) the name of

a Chars file (extension .AC). (File (2) is usually the result of face editing operations with the Edit

command.) The size and resolution parameters of the .AC file are crucial to the calculations used to

decide whether the font is coordinated.

The results of the "Coordinate" command are written on a special text file named
PrePress.Lst; any old version of PrePress.Lst, if any, is overwritten. For each
character, the following are given:

a. The character width, followed by "s/b" and the spline width, converted
into the resolution of the device.

If the spline width is smaller than the character width, the warning [width]
is printed as well. If the font is fully coordinated, all character widths will
be less than or equal to the spline widths.

b. Coordinates of the edges of the bounding box of the black portions of the
character, referred to the (0,0) point.

The coordinates have the labels L, R, B, and T (for left, right, bottom, and
top). Each coordinate prints the corresponding dimension for the character
and then for the spline (scaled to the resolution of the device). If the font
is fully coordinated, the box surrounding the character black will lie inside
the box surrounding the spline black.

11 Grow and Shrink: adjusting the blackness of rasters

The Grow and Shrink commands provide a means for adding bits to and subtracting
bits from each raster in a Chars file in order to compensate for the effects of positive
and negative xerography. Growing a raster by k units turns black every raster dot
that, in the original raster, was at distance no more than k from a black dot, where

PREPRESS MANUAL

distance is measured as the sum of the x and y distances. Shrinking a raster only
leaves black those dots that, in the original raster, were at the center of black balls of
radius k (where balls are also determined by x distance plus y distance). To use these
commands proceed as follows:

a. Move the cursor to block labeled "Grow" (if it is desired to add bits) or to
"Shrink" (if it is desired to remove bits) and depress any mouse button. The
names which appear in the relevant file blocks depend upon which mouse
button you use, as described in Section 2 of this document.

b. The name of a Chars file automatically appears in the Source file and Output
file blocks. Either or both may be changed, if desired. Terminate with
RETURN.

c. Enter in the block labeled "Bit Factor" the number of units you want to add
(or subtract) from each character in the file and terminate with RETURN; the
default is 1.

d. Move the cursor to block labeled "DO IT" and depress any mouse button.

12 Scale: altering the resolution of a raster

The Scale command allows you to translate in as much as is possible between rasters
(that is, Chars files) of different resolutions. If you move from low resolution to high
resolution, each dot of the input raster will generate many dots of the output raster;
if you go the other way, an area of the input raster will get to vote about each dot of
the output raster. This voting is controlled by a percentage, which defaults to 50%; if
more than this percentage of the voting dots are black, then the resulting output dot
will be black.

If you are attempting to build a reasonable set of low resolution rasters for a font,
you will probably be revolted by the result of simply scan-converting splines at the
desired resolution. Before giving up on the splines completely, you should try scan-
converting the splines at a higher resolution (say, 400x400 if the font you want is
100x100), and then using Scale to reduce the resolution of the resulting rasters. This
two step process often produces a better looking result. But don’t get your hopes too
high: as a rule of thumb, all Alto-size fonts must be face edited by hand to look any
good.

The Scale command needs a Source Chars file, and an Output file, whose names are
set in the usual way. In addition, the Percent block contains the percentage used to
decide the results of the voting discussed above. Finally, the desired resolution of the
new raster is determined by the blocks labelled "X factor" and "Y factor"; these
factors are floating point numbers which, when multiplied by the resolution of the

PREPRESS MANUAL

input raster, determine the resolution of the output raster. Thus, factors smaller than
1.0 imply moving to a lower resolution. Setting the X factor also sets the Y factor,
since one normally operates with the same resolutions in both directions; if you want
the X and Y factors set differently, set X first, and then Y.

CAUTION

The "Scale" command may cause baseline misalignment.

13 OrbitFormat and DeOrbitize: back and forth between Chars and OrbitChars

Recall that there are two different formats for a segment of a PrePress file that
contains rasters: Chars and OrbitChars (see section 1). The OrbitFormat command
takes a Chars font and produces the corresponding OrbitChars one, while the
DeOrbitize command goes in the opposite direction. You should set the Source file
and Output file in the normal way.

14 MakeAL and ReadAL: back and forth between Chars and .AL files

As mentioned briefly in section 1, an .AL file contains a font designed for use on the
Alto screen in a format optimized for use with the Convert machine instruction on
the Alto. The MakeAL command takes a Chars font and converts it into the .AL
format. In order to correspond roughly to actual dimensions on the Alto screen, the
resolution of the Chars font should be in the neighborhood of 72. The rotation of the
Chars font should be zero.

A file in .AL format doesn’t include most of the attribute information that is carried
along by files in PrePress format. Hence, the resolution, family name, and the like of
the Chars input file are ignored by MakeAL: only the rasters themselves really
matter.

The ReadAL command attempts to go in the reverse direction: it takes an .AL file as
input, and constructs a Chars file with the same rasters. Since the .AL file doesn’t
include attributes like family name, the ReadAL command cannot guarantee to get
these attributes correct. ReadAL guesses the font attributes by looking at the name of
the input file. If your input file is named "Helvetica10bi.AL", the ReadAL command
will assume that these rasters form a 10-point HELVETICA with a BIR face. When
ReadAL returns, you should invoke Rename on the resulting Chars file, and correct
any wrong attributes.

Since a file in .AL format does not have as much information as a Chars file, going
from a Chars to .AL and back to Chars will not get you back to the same place: the
baselines, widths, and attributes of the final Chars file will only be approximations to
those of the initial Chars file. However, the other loop is safe. If you go from .AL to
Chars to .AL, you should get back to where you started. This makes the ReadAL

PREPRESS MANUAL

command particularly useful when you wish to add a few characters to an .AL font:
just invoke ReadAL, Edit the resulting Chars file, and then MakeAL again.

The .AL format has some trouble with characters that overhang, unfortunately; here
is the story in sad detail: Normally, one expects the black portions of a character to
be located from left to right somewhere between that character’s origin, and the
origin prescribed for the next character. But some characters violate this assumption.
A raster is said to overhang to the left if it includes black bits to the left of its origin;
it is said to overhang to the right if it includes black bits to the right of the origin of
the next character. Overhanging to the left is not too common, but overhangs to the
right are very common: in particular, many fonts incorporate accents as characters
with zero (or, if BRAVO is involved, very small positive) width that overprint the
following character by overhanging to the right.

The MakeAL command adjusts for overhangs in the following manner: The .AL

format can’t handle overhangs to the left at all. Hence, if any character overhangs to
the left, then the entire font is shifted to the right be just far enough so that no
character overhangs to the left. Subsequent to this shift, MakeAL checks to see if
any characters overhang to the right. The .AL format allows a character to overhang
to the right as long as the overhang does not extend pat the next even multiple of
sixteen, that is, as long as the length of the scan-line measured in words isn’t
increased by the overhang. Overhangs that don’t violate this guideline will work
correctly. MakeAL takes care of overhangs that exceed this guideline by one of two
methods, depending upon the setting of the "Clip" flag: if the Clip flag is set, then
that part of any overhang that extends into the next word will be omitted. If the
Clip flag is false (the default value), then the width of the offending character is
artificially extended by just enough to demand the right number of extra words, and
the entire overhang is included in the raster.

The real solution to the overhanging rasters problem is to use the new "kerned
strike" of .KS format discussed in the next section.

15 MakeKS, ReadKS, and MakeStrike: back and forth between Chars and the
various flavors of strike formats

More recent Alto systems don’t use the Convert instruction (which is not to be
confused with the "Convert" command in PREPRESS) to put characters onto the
screen, but instead use BitBlt. The various flavors of Strike files contain rasters for an
Alto font in a format optimized for use with BitBlt. Files in the original Strike format
are given the extension .STRIKE. The MakeStrike command will take a Chars font,
and produce the corresponding .STRIKE file. Once again, you probably want the
Chars font to have a resolution of 72, and to have rotation zero.

PREPRESS MANUAL

The original Strike format cannot handle characters that overhang in either direction,
unfortunately; for the definition of "overhang", see the preceding section.

If you call MakeStrike on a font with characters that overhang to the left, it will
bomb out. But, if your only overhangs are to the right, PREPRESS gives you two
choices for what will happen, depending upon the value of the "Clip" flag. If the
"Clip" flag is false (the default value), the width vectors of any overhanging
characters will be artificially extended just enough to eliminate any overhang. On
the other hand, if the "Clip" flag is true, then the overhanging bits will simply be
ignored.

The real cure for the overhang problem is to use a new font format called
KernedStrike format; files in this format conventionally have the extension .KS. For
the details of .KS format, seethe memo "Font Representations and Formats"
mentioned is SubSection 1.6.

The command MakeKS will go from a Chars file to a .KS file, and the command
ReadKS will go in the reverse direction. As in the case of MakeAL and ReadAL, be
warned that the .KS format does not have as much header information as the .AC
format; hence, the ReadKS command is forced to do some guessing about font
attributes. After ReadKS is done, you should examine the attributes of the resulting
.AC file and use Rename to change them if they are incorrect.

16 MakeCU and ReadCU: back and forth between Chars and .CU files

"Carnegie-Mellon" format, called .CU format, was once the standard format for
raster fonts. It has the great virtue of simplicity, but is rather bulky and carries less
attribute information than a Chars file.

The "MakeCU" command takes as input a Chars font, and produces a font in .CU
format. Set the Source and Output files in the standard way.

The "ReadCU" command takes as input a .CU file, and produces a corresponding
Chars file. As with ReadAL, the ReadCU command attempts to deduce from the file
name and other heuristics the correct attribute information for the Chars file; after
ReadCU returns, you should invoke Rename, and correct any wrong data.

Since a file in .CU format does not have as much information as a Chars file, going
from a Chars to .CU and back to Chars will not get you back to the same place: the
baselines, widths, and attributes of the final Chars file will only be approximations to
those of the initial Chars file. However, the other loop is safe. If you go from .CU to
Chars to .CU, you should get back to where you started.

PREPRESS MANUAL

17 ImposeWidths: resetting the widths of a raster font

The "ImposeWidths" command takes a Widths file as input, and overwrites the
width information in the Output file with the widths given in the input. The Output
file must be of type Splines, Chars, or OrbitChars.

This facility was added so that width information suitable for phototypesetter
equipment could be imposed on a font, and that proof copies could be printed using
Xerox standard printing facilities.

18 ReadWidths: constructing a Widths segment from scratch

The "ReadWidths" command reads an input text file in its own funny format, and
uses the data in that input file to construct a Widths file. This just provides you with
an easy way to construct an arbitrary Widths segment; these arbitrary widths can
then be imposed upon an existing font with the ImposeWidths command.

The input file consists of a number of nouns followed by values:

NAME font name
SIZE point size
FACE face code (e.g. BIR)
XL xl value
YB yb value
XW xw value
YH yh value
SCALE number
WIDTHS (see below)

The XL, YB, XW, and YH values are the dimensions of the font bounding box (see
the document entitled Font Representations and Formats mentioned in Subsection
1.6).

The WIDTHS noun is followed by (character,width) pairs, terminated with the noun
STOP. A character may either be the individual character or its octal code (a number
with two or more digits). All the numbers given will be multiplied by the global
SCALE factor (a floating-point number). For example:

A 104
72 230
STOP

If the widths are to be all the same, the noun ALL followed by the value will give
the widths. Here is a sample file for the HyType printer:

Name HyType

PREPRESS MANUAL

Size 12
XL 0 YB -70 XW 254 YH 353
Widths

All 254
Stop

PREPRESS MANUAL

19 Comments about Dictionaries

The commands described in the remaining Sections are used to build and manipulate
dictionaries that contain spline encodings, scan-converted character encodings, width
encodings, or combinations of these. Recall that a dictionary is simply a file in
PREPRESS format with (possibly) more than one segment. For example, the Width
command is used to build Width files, each of which describes a single font. These
tables can then be welded into a dictionary of width information with the commands
described in the following Sections. Dictionaries have three uses:

a. Hold information in one place, permitting easy backup of fonts.

b. Deliver to printing programs the Splines, Chars, or OrbitChars segments
required to actually print a document.

c. Deliver to formatting programs the Widths segments required to provide
width information.

The dictionary commands generally operate by shuttling information between
(typically small) Source and Output files, and a (perhaps huge) Dictionary file. By
default, PREPRESS assumes that the Dictionary file contains information of only one
type ("SD" is the default name of the spline encoding dictionary, "CD" that of the
character encoding dictionary, and "WD" that of the width table dictionary).
However, the name of the Dictionary file may be provided to any of these
commands by invoking the "Dictionary" block with any mouse button and typing in
the desired dictionary name.

Since dictionaries may contain various kinds of information, it is helpful to be able to
tell the information apart. Spline encodings are always stored with size=0, to
indicate that they may be scaled; character encodings always have non-zero size.
(Internally, the different kinds of information are kept separate, but this separation
does not always surface at the command level.)

20 Trident: using a trident disk

PREPRESS has facilities for dealing with files on a Trident disk, should your Alto be
so equipped. In particular, on any of the upcoming Dictionary commands, you may,
if you wish, set the "Trident" flag. The default value of the Trident flag is "Ignore",
if you are using the command line, and "Prefer" if you are using the menu. "Ignore"
orders PREPRESS to deal only with the normal Diablo disk system. If the Trident flag
to is set to "Prefer", PREPRESS will look for all files (except Prepress.lst) first on the
Trident, and failing that, on the Diablo.

NOTE

Due to the current state of the Dorado microcode, it is not possible

PREPRESS MANUAL

to use the Trident connected to a Dorado both as a simulated

Diablo disk and as a simulated Alto Trident. Therefore, when

running on a Dorado, the value of the Trident flag is irrelevant,

and all files reside on the standard system disk (one partition of the

Trident simulating dual Diablo Model 44’s).

If you are using a Trident disk, you should specify its drive number in the
appropriate block. The drive number of a T-80 disk will be an integer between 0 and
7 inclusive. The larger T-300 disks include up to three logically distinct file systems,
which are referred to in the standard way: for example, the three file systems on T-
300 drive number 3 are called 3, 403, and 1003.

The Trident feature is usually used to allow the larger font dictionaries to reside on a
large, fast disk. But note that PREPRESS tries for all files on the Trident first, not just
Dictionary files. This can cause some confusion when combined with the following
fact: Only the dictionary commands can talk to the Trident; the other commands (a
different overlay) only talk to the Diablo. Suppose, then, that you scan-convert some
splines into a desirable raster font, and you call the output file ACTemp; of course,
this means ACTemp on the Diablo. Now, you want to Merge this raster font into a
dictionary file located on the Trident. If the Trident file system should happen to
contain a file named ACTemp, you are in trouble, since that file will be taken in
preference to the one that you just created. Moral: never allow the Trident and
Diablo file systems to share names (except Prepress.scratch).

Recall that PREPRESS uses the file PrePress.Scratch to keep temporary information
in, during the execution of some commands. The above conventions about Tridents
and Diablos apply to this file as well. Suppose that we are about to do a command
involving a Dictionary, and that the Trident flag is set. If a PrePress.Scratch exists on
the Trident, that file will be used; if none exists on the Trident, but there is one on
the Diablo, it will be used; and if none exists either place, one will be opened on the
Diablo. Some of the dictionary commands (such as a non-Fast Merge) need a scratch
file as large as the dictionary on which they are working; hence, if you are playing
with a large dictionary on the Trident, you had better arrange that a file named
PrePress.Scratch exist on the Trident as well. It doesn’t matter what is in this
PrePress.Scratch file or how long it is; but it must exist (use Neptune to transfer your
User.cm to the Trident under the name PrePress.Scratch if nothing else).

By the way, when working with Tridents, the program TFU (for Trident File Utility)
is often helpful. This program handles such mundane issues as copying and renaming
files on the Trident. The TFU "address" command can also check to see whether or
not a file occupies a contiguous block of disk pages on the Trident; this is important
to font wizards, because the font dictionary used by the PRESS printing server must
be contiguous.

PREPRESS MANUAL

21 List: getting a dictionary’s table of contents

This command lists some fraction of the contents of a dictionary file on the list file
PrePress.Lst. Enter the dictionary’s name in the Dictionary block, and set the Trident
flag if necessary. The original contents of the file PrePress.Lst (if any) are
overwritten. PrePress.Lst is always on the local (Diablo 31) disk.

If the Fast flag is set to true, the listing will describe each segment of the dictionary
by a couple of lines of text which give its type and its attribute information. If the
Fast flag is set to false, the listing will contain a summary for the data on every
character in every segment as well; warning, a non-Fast listing of a large dictionary
can be quite long.

In a non-Fast listing, different kinds of per-character information are provided for
the different kinds of file segments:

a. Spline Encoding

Width in x (fraction of point size); width in y; left edge of black
information relative to (0,0) point; bottom edge; right edge; and top edge.

b. Character Encoding

Width in x (bits); width in y; offset from (0,0) point to the left-most black
of the character; offset in y to the bottom of the character; width of black;
and height of black.

c. Widths

Widths in micas. If size=0, scaling of widths is permitted and the number
given should be multiplied by the size (in micas) and divided by 1000 to
obtain the width in micas.

d. Tex Metrics

Nothing at the moment.

When first using PREPRESS, it is probably advisable to do quite a lot of Listing. Note
that List can handle any file in PrePress format, including those with only one
segment. Thus, you may also List Chars files, Splines files, OrbitChars files, what
have you; just enter the name of the desired file in the Dictionary block.

List distinguishes between the three possible flavors of Chars segments: Chars,
OrbitChars, and MultiChars. For MultiChars segments, List will print out the
number of old width tables that are present; but it will not print out the data
contained in the old width tables.

PREPRESS MANUAL

22 Fast and Slow editing of dictionaries

The commands Merge, Supersede, Delete, and Compact are the facilities that
PREPRESS provides for editing dictionary files; future sections will discuss each
command in detail. Each of these commands can be used in one of two modes,
either Fast or Slow, depending upon the setting of the Fast flag; this section
discusses the difference between Fast and Slow dictionary editing. In addition, if the
operation is done in Slow mode, setting the Verify flag will enable extra checking as
discussed in the following section.

A dictionary file consists of an index portion followed by a data portion. The index
portion is usually rather small; it consists of a sequence of index entries, each of
which either defines the numeric code associated with the string form of a family
name in the dictionary, or describes a data segment located in the data portion of the
dictionary. An index entry for a data segment points to that data segment by giving
its length, and the address in the file where it begins.

The index portion of a dictionary can’t have any holes in it; the next index entry
must start immediately after the previous one ends. But the data portion of the file
is less constrained. Programs that use dictionaries are supposed to use the index to
determine what data segments are in a dictionary, and then find the data segments
they want by following the pointers in the index entries. There is no requirement
that the data segments come in any particular order; and there is no reason why
there can’t be gaps in the data portion of the file, regions that aren’t part of any data
segment.

In the simplest kind of dictionary, the data segments begin right after the the last
index entry, they occur in the same order as their index entries, and they are tightly
packed together. This kind of a dictionary is called compact, since it occupies as little
disk space as possible for any dictionary containing those data segments.

If you use Merge, Supersede, or Delete in Slow mode (with the Fast flag set to false),
what happens is this: the input files are read, and PREPRESS decides what data
segments should go into the output file. PREPRESS then opens the temporary file
Prepress.Scratch, and builds the output dictionary there. When the output has been
entirely written on Prepress.Scratch, PREPRESS will notify you with a sprightly
message at the top of your screen. PREPRESS then turns around and copies that data
to the original dictionary file, notifying you when the copying is complete.

The slow method of operation has problems and advantages. Since the output
dictionary is being completely rebuilt, it is produced in compact form, and hence
doesn’t have any wasted space. Since the output is first built in a scratch file, a Slow
edit operation is also fairly safe: if your machine crashes at any random instant due

PREPRESS MANUAL

to a parity error, cosmic ray, or whatever, you won’t loose your dictionary. Either
the crash comes before Prepress.Scratch is completely built, in which case your input
files haven’t been changed yet, and you can just start over; or the crash comes while
Prepress.Scratch is being copied back to the dictionary file, in which case
Prepress.Scratch itself contains the valid output of the editing operation.

The problem, of course, is that Slow-mode operations aren’t very speedy. In
particular, if you are trying to add a single new data block to a large dictionary, a
Slow merge will have to copy all of the data blocks in the big dictionary twice,
basically to no avail. This becomes truly painful if you are building a large
dictionary by doing many successive merges of this sort. As a cure for this problem,
there is Fast mode.

In Fast mode, the edits are done to the dictionary file in place, and as few changes
are made as possible. For example, suppose that you are adding one new segment to
a large dictionary; a Fast Merge will add the new data segment to the end of the
dictionary, extending the file. Of course, the Merge also has to add a new index
entry to the index portion of the file. In order to make room for the new index
entry, it might be necessary to take the first data segment in the dictionary and move
it to a new location at the end of the file as well, to get it out of the way. Finally, the
Merge rewrites the index portion of the dictionary to install the pointers to the new
data blocks.

The primary advantage of the Fast mode is speed; but this speed is gained at some
cost. First, the output dictionary won’t be compact. A Fast Delete of a data
segment, for example, just removes the index entry that points to the segment, and
leaves that space as a hole. Also, the data segments won’t be in the same order as the
index entries that point to them.

Secondly, a Fast edit is a trifle dangerous. In particular, if your machine should
happen to randomly crash while the new index portion is being written, your
dictionary will be left in a useless state. The data segments will still be there, but the
index portion of the file will consist of pieces of the old and new indices, smashed
together. PREPRESS warns you when it starts writing the new index portion, and
then informs you when it is finished; if your machine crashes during that time, you
are out of luck. Therefore, it is advisable to keep some form of backup copy of your
dictionary in some other file or files if you plan to edit it in Fast mode. If you are
building a large dictionary by merging together a bunch of .AC files, on the other
hand, you might as well use Fast mode: if disaster strikes, you can always just start
again from the beginning.

In all of the dictionary commands that use the Fast flag, the default value is True if
you are using the menu interface, and False if you are using the command line.

PREPRESS MANUAL

As of version 1.13, the index entries in every dictionary output by PREPRESS will be
in alphabetical order, to make it easier to read the text files produced by List. Index
entries to data segments appear ordered first by type, then by rotation, then by
family name, then by size, then by face, and finally, if Chars type, by resolution. In
addition, as of version 1.13, any index entries that define the string-code
correspondence for family names that aren’t used in the dictionary will be deleted.

 23 Slow-Verify mode

Data segments of type Chars, OrbitChars, and MultiChars have an internal structure
that is a miniature version of the structure of an entire dictionary file. At the
beginning of these segments, there is a table of header information that specifies the
dimensions and widths of each character in the font. Next, there is a table of file
pointers that give, for each character code, the location of the corresponding raster
block. And finally, there are the raster blocks themselves. Most font software always
writes the individual raster blocks in character code order, and without leaving any
gaps; that is, the font segment is compact at the character level. But there are
exceptions. For example, the program Metafont on Maxc writes the raster blocks in
random order.

Some font software, such as the printing program Spruce, will perform better if all of
the individual font segments are compact; in Spruce’s case, this improves
performance by helping Spruce to access the disk in ascending order of virtual disk
address. Thus, if you have produced rasters with Metafont, it is advantageous to be
able to compactify the resulting dictionary at the character level as well as at the font
level. This is purpose of the Verify flag. If the Verify flag is set for a dictionary
command, the output dictionary is written one character (raster block) at a time
rather than one font segment at a time. This is slow, but it guarantees that the
output dictionary will be compact at the character level.

It doesn’t make sense to have the both the Fast and Verify flags set to True, and the
rule is that the Verify flag wins: if the Verify flag is True, then the dictionary
operation will be done in Slow mode regardless of the setting of the Fast flag.

When doing a dictionary command in Verify mode, PREPRESS takes the opportunity
to check various consistency conditions about the dictionary. For example, the
height and width of the rsater for a character are stored in two places in the
dictionary. If these don’t agree, the dictionary is in error, and could cause Spruce to
fall into Swat. If any heights or widths don’t match, a Verify will detect the problem
and give an error message. In addition, Verifying will guarantee that all empty
characters have valid empty raster blocks.

Thus, Verifying a dictionary is a way of checking its health and putting it into a

PREPRESS MANUAL

standard form at the character level. But it is quite slow.

 24 Compact: cleaning up a dictionary

The Compact command is provided in case you want to massage a dictionary without
Merging in anything new or Deleting anything old. Any Compaction of a dictionary
will be in Slow mode, and hence will rewrite the data segments contiguously and in
the same order as the corresponding index entries. It wouldn’t be a bad idea to
Compact a dictionary after performing lots of Fast Merges, for example, to make the
dictionary’s use of file space more ordered and rational. A Compaction with the
Verify flag set will also make each character-type data segment compact at the
character level. This is both more expensive and less useful, but it should be done to
certify the health of dictionaries that are being released for use on printing servers.

25 Merge: adding to or editing a dictionary

This command merges two PREPRESS files. The two input files are specified in the
Dictionary and Source file blocks (remember to set the Trident flag if necessary).
The Merge command takes each segment in the Source file, and adds it to the
Dictionary file; if the Dictionary file already contains a segment of the same type and
with the same attributes, the new Source file segment will overwrite it. The Merge is
performed in either Fast, Slow, or Slow-Verified mode, as determined by the Fast
and Verify flagss.

Remember that a PREPRESS file with a single segment is also a valid dictionary.
Hence, if you want to put the three files File1.AC, File2.AC, and File3.AC into a
dictionary, proceed as follows: First, retreat to Alto Executive, and rename File1.AC
to be Dict.fonts. By this operation, you have created a dictionary with one of the
right segments. Now, go back into PREPRESS, and Merge the Source file File2.AC
into the Dictionary Dict.fonts; then Merge the Source file File3.AC into Dict.fonts;
then List the file Dict.fonts just to be on the safe side. (You could just Merge the
.AC files into each other without any initial renaming, but sticking to the file naming
conventions is usually the best idea.)

See the next section for a discussion of what happens if either the Source or the
Dictionary file contains MultiChars segments.

Note: If you bug "DO IT" with either the first or the second mouse button, and if the source file

specified is not on your local disk or if it is not a single-segment Prepress file, Prepress requires

confirmation before continuing.

26 ReviseWidths: merge, and update MultiChars

ReviseWidths is an option on the Merge command, but it deserves a Section unto
itself. Unless you really know what you are doing, you probably don’t want to set the

PREPRESS MANUAL

ReviseWidths flag. ReviseWidths is another facet of the MultiChars phenomenon, so,
before reading further in this Section, you should reread Subsection 1.5.

There is one situation where a knowledgeable font wizard would use the
ReviseWidths option: if he or she is putting a new version of a collection of raster
fonts into the font dictionary of a printing server that runs the SPRUCE program.
With the ReviseWidths flag set, what will happen is this: The Source file should
consist of OrbitChars segments. If one of these segments represents a new font, not
yet contained in the dictionary, it will simply be added to the dictionary. But, if an
OrbitChars or MultiChars segment already exists for that font, a new MultiChars
segment will be generated that has the new rasters and all of the widths, both the
new and all of the old, appropriately timestamped (up to a maximum of 3 old width
blocks are allowed).

In more detail, here is what happens if the two files that you are Merging both
contain either a MultiChars or OrbitChars segment for a font. If the Source file has
a MultiChars segment, then that segment simply replaces whatever was in the
Dictionary. So suppose that the Source file has an OrbitChars segment. There are
four cases left to consider, depending upon the type of segment in the Dictionary
and the value of the ReviseWidths flag.

If ReviseWidths is true and the Dictionary segment is type OrbitChars, then the two
OrbitChars blocks from the Source and the Dictionary are combined into one
MultiChars segment in the output file. This MultiChars segment has the rasters from
the Source segment; it has the widths from the Source segment labelled as expiring
in the infinite future, and the old widths of the Dictionary segment labelled as
expiring at the instant of the Merge.

If ReviseWidths is true and the Dictionary segment is type MultiChars, the output
will be another MultiChars segment with rasters from the Source as the only rasters,
the widths from the Source as the current widths, and the old widths from the
Dictionary pushed down one level.

If ReviseWidths is false and the Dictionary segment is OrbitChars, then the Source
segment replaces the Dictionary segment in the usual way.

If ReviseWidths is false and the Dictionary segment is MultiChars, then the most
recent rasters and widths in that MultiChars segment are replaced by the rasters and
widths from the Source file, while the old widths are left unchanged.

27 Supersede: merge, but handle Widths specially

This command is identical to Merge except in the processing of Widths segments.
Recall that there are two different types of Widths segments in the world. Those that

PREPRESS MANUAL

came from Splines segments contain width information that can be scaled to handle
any size and rotation; those that came from Chars segments only handle one size and
rotation. For now, let us call the first type S-Widths and the second C-Widths;
(remember that you can distinguish them because an S-Widths segment has size
zero).

The Supersede command (called, in earlier versions of PREPRESS, the Supercede
command) allows you to clean up a dictionary of C-Widths segments if you are now
lucky enough to have a S-Widths segment. In particular, if there is an S-Widths
segment in the Source file, it will be added to the Dictionary file, and all existing
Widths segment of either variety that include subsidiary information will be deleted.

Using S-Widths segments has the advantage that the width dictionaries can be much
shorter. You only need one S-Widths segment for each family and face, whereas you
need one C-Widths segment for each family, face, size, and rotation. If a width
dictionary has both S-Widths and C-Widths segments for the same font, formatting
programs will preferentially use the C-Widths. Thus, you can make a particular size
and rotation of a font space non-proportionally if you desire.

Note: If you bug "DO IT" with either the first or the second mouse button, and if the source file

specified is not on your local disk or if it is not a single-segment Prepress Widths file, Prepress

requires confirmation before continuing.

28 Delete: removing a segment from a dictionary

This command is used to delete a font from a dictionary. Enter the dictionary’s name
in the Dictionary block, and set the Trident flag if necessary. The rest of the input
information is a collection of attributes that are used to specify the proper segment to
delete. The following types of information must be specified:

a. Family name
b. Face type
c. Size
e. Rotation
f. Resolutions

You can’t avoid specifying these things, since they each default to something. You
should be able to specify the File type as well, but you can’t in this version of
PREPRESS.

By specifying a size of zero, you are requesting a segment that is either of type
Splines, or is a Widths segment that came from Splines. In this case, the specified
size, rotation, and resolution are ignored.

If no segment exists in the dictionary with the correct attributes, nothing is deleted

PREPRESS MANUAL

and a complaining message appears. Delete can be run in either Fast, Slow, or Slow-
Verified mode; in Fast mode, only the index to the dictionary is affected by the
Delete

29 Extract: copying a segment from a dictionary

The purpose of Extract is to pull a single segment of interest out of a dictionary.
Enter the dictionary’s name and deal with the Trident issue as usual. Then, by
specifying attributes exactly as in the Delete command, identify the particular
segment of interest. The Extract command will read the dictionary file to find the
segment of interest, and then write a single segment PREPRESS file that contains that
segment. The dictionary file is not changed. The name of the resulting single
segment file is determined by the Output file block. If no segment exists that has the
correct attributes, a complaining message appears.

Be warned that attempting to Extract a MultiChars segment from a dictionary has
exotic effects; in particular, the segment is translated into an OrbitChars segment by
throwing away all of the old widths as a side effect of the Extract.

PREPRESS MANUAL

Appendix A: Using the command line

As commented in Section 2, the PREPRESS program can be driven either from the
command line or from the menu. All of the above discussion assumed that you were
using the menu. But there are situations where the command line approach would be
more convenient. The basic command line format is:

PrePress.Run <com>/s <arg>/s <arg>/s <arg>/s . . . <arg>/s.

The command name is specified in <com>, and it may be followed by switches.
Arguments usually require switches. All command input may be in upper or lower
case. Command names may be abbreviated as long as they remain unambiguous.

When using the command line, it is more trouble to specify file names; hence, the
default names that PREPRESS assumes for convenience when driven from the menu
assume a more mandatory nature when you work from the comand line.

Finally, here is a list of the PREPRESS commands with a description of the
appropriate arguments, switches and default file names.

ReadSF: Unswitched argument is .SF files to read. Output is to the file SDTemp. Set
the Update flag with the /U switch on the command. Set the Incline by an argument
with the /I switch (example: 20/I). Set the X and Y factors by arguments with the
/X and /Y switches (example: 1.25/X). The I, X, and Y arguments apply to all of
the .SF files following them on the command line.

Convert: Source file is SDTemp; output file is ACTemp. Thicken with the /T switch
to the command. Set size with /P switch for points, /M for micas. Set both
resolutions with the /D switch (unit is 10 times the number of dots per inch); set just
the Y resolution with /E (same unit). Set rotation with /R (unit is degrees, not
minutes). Set italic slant with /I.

Show: Source file is ACTemp, but you can specify another Chars file as an argument
with /S.

Edit: Source file is ACTemp, but you can specify another Chars file as an argument
with /S. Specify the background Chars file (if you want one) by giving its name as an
<arg> with the /B switch. Dot size is 20 unless you set it to something else as an
argument with the /D switch.

Rotate: Source and output are ACTemp. Set the amount of rotation to be added by
an argument with the /A switch; the argument will be interpreted as a signed
decimal number of degrees (not minutes), and must be a multiple of 90.

Width: Output is to WDtemp. Specify ACTemp as the input by giving the /C switch
to the command, or specify SDTemp as the input by giving the /S switch to the

PREPRESS MANUAL

command.

Rename: Source file is set by the command switch: /C for ACTemp, /S for SCtemp,
and /W for WDtemp. New attributes are specified as arguments. Use /N for family
name, /F for face, /P for size in points, /M for size in micas, /R for rotation (in
degrees), /D and /E for resolution (according to conventions for Convert).

Coordinate: You will be prompted for the file names. You may override the size and
resolution data in the Chars input file by giving a size and/or resolution as
arguments; same conventions as Convert.

Grow and Shrink: Source and output are ACTemp. Set the Bit factor with /D.

Scale: Source and output are ACTemp. Set the X and Y factors with /X and /Y;
setting X also sets Y for convenience. Set the Percent with /D.

OrbitFormat, DeOrbitize: Source and output are ACTemp.

MakeAL, MakeCU, MakeKS, and MakeStrike: Set Source with /S, set Output with
/O; if unspecified, the Source defaults to ACtemp.

ReadAL, ReadCU, ReadKS: Set the Source with an unswitched argument; the output
is to ACTemp.

ImposeWidths: Source file (for widths) is WDtemp. Set the output file with
command switch: /C says ACTemp, /S says SDTemp.

ReadWidths: Set the Source with an unswitched argument; the output is to
WDtemp.

List: Put /F after the command to set the Fast flag; put /T before the command (on
the word PrePress) to go to the Trident. A command switch of /S, /C, or /W sets the
Dictionary file to SD, CD, or WD respectively. Alternatively, you can give the
Dictionary file as an argument with the /B switch.

Compact: Put /V after the command to set the Verify flag; put /T on the word
PrePress to go to the Trident. The command switches /S, /C, and /W set the
Dictionary default to SD, CD, and WD respectively. The Dictionary default can be
overridden by an argument with the /B switch.

Merge, Supersede: Fast and Trident flags are set as in List. Verify flag is set as in
Compact. The command switches /S, /C, and /W set the Source and Dictionary
files to SDTemp and SD, ACTemp and CD, and WDtemp and WD respectively.
The Dictionary default can be overridden by an argument with the /B switch.

Delete: Fast and Trident flags are set as in List, Verify flag as in Compact.
Dictionary name is specified by a command switch or argument/B as in Merge.

PREPRESS MANUAL

Attributes are set as in Rename.

Extract: Output and Dictionary file names are set via command switches and
arguments exactly like the Source and Dictionary names in Merge. Attributes are set
as in Rename.

A.1 A command line example

Suppose it is desired to build a dictionary of font files for use by a Dover printer. It
is desired to include spline definitions for Helvetica and Times Roman, along with
scan-converted versions for quick reference: 10 point Helvetica, and 10 and 12 point
Times Roman. The dictionary is to be called G.

PrePress ReadSF HELVETICA.*-SF (Read Helvetica splines)
Rename G _ SDTemp
PrePress Convert 10/P 3840/D (Make 10-point font at 384 bpi.)
PrePress OrbitFormat (Orbitize ACTemp.)
PrePress Merge/FC G/B (Fast Merge ACTemp into G.)
PrePress ReadSF TIMESROMAN.*-SF (Read Times Roman into SDTemp.)
PrePress Merge/FS G/B (Merge SDTemp into G.)
PrePress Convert 10/P 3840/D (Make 10-point font at 384 bpi.)
PrePress OrbitFormat (Orbitize ACTemp.)
PrePress Merge/FC G/B (Merge ACTemp into G.)
PrePress Convert 12/P 3840/D (Make 12-point font at 384 bpi.)
PrePress OrbitFormat (Orbitize ACTemp.)
PrePress Merge/FC G/B (Merge ACTemp into G.)
PrePress Compact G/B (Compact the dictionary to clean up)
PrePress List/F G/B (Get summary listing to verify G.)
Empress 6/p PrePress.Lst (Print the summary listing in 6 point.)

PREPRESS MANUAL

Appendix B: Prepress revision history

Prepress version 2.1:

Modified September 28, 1980 10:20 PM by Lyle Ramshaw:

// Changed TEX face encoding/decoding to work backwards.

// Fixed MapACtemp to follow the pointer in the IX to find

// the data segment in the input instead of assuming that

// that the data segment immediately follows the EndIX.

// Added the Verify flag to the MergeDelete commands:

// a Verified operation sorts the individual raster blocks

// within Chars, OrbitChars, and MultiChars fonts, and checks that

// the CharWidth blocks and raster blocks give consistent

// descriptions of the raster dimensions. Fixed several

// bugs in the Area command of FEdit. Result is 2.1.

//Modified September 17, 1980 12:10 PM by Kerry LaPrade:

// Edit function now works differently for Dot Size of 1.

// Also in Edit, fixed bug so that characters which do

// not fit in the editing area are once again clipped

// more properly. Updated files: AuxiliaryMenuBox.bcpl,

// FEdit.bcpl, FEditFile.bcpl, FEditUtil.bcpl, and

// Prepress.bcpl. Result is 1.21.

//Modified September 12, 1980 5:48 PM by Lyle Ramshaw:

// changed storage allocation in MergeDelete to allow larger

// dictionaries to be merged. Also went through and made

// most of the static variables "page zero statics" to save

// space; the statics themselves don’t take up as much room,

// and the code that references them is shorter and runs

// faster. Result is 1.20.

//Modified August 18, 1980 9:56 PM by Lyle Ramshaw:

// fixed bug in MakeStrike: the Length field in the StrikeBody was

// getting computed wrong. (How is it that this wasn’t noticed

// before, I wonder..) Result is version 1.19.

//Modified July 31, 1980 11:40 AM by Lyle Ramshaw:

// fixed bug in PrepressMenu1; adjusted dictionary commands

// so that all family names are output in all caps, and with all

// all trailing bytes = 0. Result is version 1.18.

//Modified July 6, 1980 9:53 PM by Lyle Ramshaw:

// Delete was bitten by the same CompareIx problem that bugged

// Extract last October!! So I moved the Extract patch to a

// place where it fixes both problems. In passing, I also added

PREPRESS MANUAL

// a "Beginning dictionary command..." message; result

// is version 1.17.

//Modified June 25, 1980 12:42 PM by Lyle Ramshaw:

// Improved the quadratic equation solver in SCVMain; result

// is version 1.16.

//Modified June 17, 1980 3:11 PM by Lyle Ramshaw:

// Fixed bug in Show command: released version 1.15.

//Modified June 15, 1980 3:33 PM by Lyle Ramshaw:

// Added a Junta back to levDisplay, to save enough space so

// that the Edit overlay will fit for a little while longer (sigh)...

// Also installed new Trident package.

Prepress version 1.13 (May 22, 1980 by Lyle Ramshaw, PARC)

This version will run on Dorados emulating Altos; on

a Dorado, the floating point is done in software and the

Trident disk stuff is disabled.

The code for editing dictionaries has been redone. The

primary new feature is the Fast mode, in which the dictionary

is rewritten in place. Minor new features are that the index

now appears in sorted order, and that family names with no

associated fonts are deleted. In passing, fixed a longstanding

bug that sometimes smashed fonts when doing Merges into

dictionaries that contained MultiChars blocks.

 Added the new segment type TexMetrics for use by

the local Tex hackers; PrePress doesn’t create or modify

such segments, but it will Merge, Extract, and Delete

them from dictionaries.

Added the MakeKS and ReadKS commands that translate

back and forth between .AC and the new kerned strike

format, .KS. In the process, altered the MakeStrike

command by changing the old "Kerned" flag to the new

"Clip" flag. The MakeAL command also now pays attention

to the "Clip" flag. "Clip" flag is settable from the

command line with /K.

Changed the DecodeFace and EncodeFace definitions and

calls to allow for a fourth letter in the face code (X, A,

or O), and also to allow for numeric face codes (TEX logical

sizes). For details, see the new version of "Font

Representations and Formats."

Added stack space to the Trident overlay to prevent a

fall into Swat when the requested file is not on the Trident.

Fixed a bug in the menu interface that caused falls into

Swat under certain conditions, especially when several

PREPRESS MANUAL

commands are selected before any are executed.

Restored the FileName/B feature for driving the

dictionary commands from the command line.

Changed List so that MultiChars segments are

distinguished from OrbitChars, and took some of the

carriage returns out of the List output to save space.

Changed the overlaying structure to make overlaying

faster. The first time that the .RUN file is started,

PrePress will go through the file to find the starts of all of

the overlays, and store these in the .RUN file. Subsequent

invocations of PrePress and overlay swaps within PrePress

will be fast, working from a table of file addresses.

Prepress version 1.12 (incompatible with OS versions prior to OS 17)

Modified April 7, 1980 by Kerry LaPrade, XEOS and Lyle Ramshaw, PARC

Fixed bugs introduced in version 1.11 to Main Menu user interface and to writing of family names

in dictionaries. Fixed MakeStrike to handle kerned characters more reasonably. Increased List capacity

from 100 to 200 names, and changed carriage return-line feed sequences to simply carriage returns.

Restored and modified command line capabilities for calling Edit, which first disappeared in version

1.9. Updated the set of device names which the /D and /E command line switches recognize. Changed

command line spellings from Supercede to Supersede. Also, Supersede changed to again allow

dictionary and/or Trident files as source files from the menu. Incorporated Trident microcode version

of 1-31-80.

Prepress version 1.11 (incompatible with OS versions prior to OS 17)

Modified February 7, 1980 by Kerry A. LaPrade, XEOS

Sped up FEdit "Get" command for high resolution (small dot size) editing. Added obscure

BravoX-like capability to "TypeIn" chars > 200b in FEdit show string box. Added toggleable "gnat" to

update box. Increased size of show string box (again) necessitating transferal of some resident code to

overlay in order to allow use of moderately-sized sysFonts.

Decreased size of resident code by moving some stuff from Prepress.Bcpl to

PrepressCommands.Bcpl.

Cleaned up PrePressMenu code for smarter and more protective user interface. Different mouse

buttons do different things. In general, first and second mouse buttons invoke standard default, and

third button reverts to last thing used. As per Lyle Ramshaw’s sugestions and instructions, fixed Trident

drive menu specification to allow access to multiple directories on T-300’s. Menu boxes can no longer

be bugged in the wrong order. User is warned if source file isn’t on local (sysDisk) disk.

Fixed list bug for chars > 200b.

Lyle Ramshaw (PARC) changed representation of blank characters in .AC files as produced in

OrbitFormat.bcpl, and bounding box calculation as produced in Convert.bcpl.

Prepress documentation is now kept as [MAXC]<AltoSource>PrepressDocSources.DM.

Changed ReadAL to create .AC files at 72 bpi instead of 77 bpi.

Added measurement messages to bit manipulations in Edit, and "ACEdits" vs original file

notification to "Get" command in Edit. Changed background/foreground ratio determination to have a

PREPRESS MANUAL

plus or minus 5 mica tolerance in background size as opposed to plus or minus 1 previously.

Changed "Incline" prompt to percentage instead of degrees.

Modified December 21, 1979 by Lyle Ramshaw, PARC

Put in an OS version warning. Prepress 1.11 Trident and Edit sections are incompatible with OS

versions earlier than OS 17.

Added a Notify window to the main menu, for prompt strings.

Installed the new Trident microcode of Ed Taft.

Fixed the Rename bug associated with ACTemp’s parameters.

Installed the fix for the "ConvertAChar returns 14" bug (discussed below).

Allowed Tridents other than drive zero to be accessed.

Made ReadAL and DeOrbitize accessible from the command line.

Improved Rotate to handle rotations by any multiple of 90 degrees:

there is a new window in the main menu called "Angle" that holds the amount of rotation to be

added, positive or negative, measured in degrees and stored in the static angleToRotate.

Modified December 5, 1979 (by LaPrade)

Changed user type-in scheme to be echoed inside menu box instead of dsp, reducing the amount of

resident code and freeing up room for work on FEdit overlay. Enlarged FEdit "show string" box.

Sped up FEdit "Put" command for high resolution (small dot size) editing. Updated .d files to

David Boggs’ 1979 versions. Miscellaneous housekeeping.

Modified November 26, 1979

A bug fix by Lyle Ramshaw in the microcoded floating point, and in the Convert routine,

Arithmetic Splines. The microcoded version of FCM was using a signed instead of an unsigned

compare to compare the lower order parts of the mantissa, and hence came up with the wrong

answers once in a great while.

The Arithmetic Splines version of the routine SCVReadRuns had an apparent problem as well,

which I fixed, although I never found an actual case where this bug showed up once the FCM bug

mentioned above was fixed. The problem is the following: in the ArithmeticSplines version of

SCVMain, each monotone spline segment is considered as linearly interpolating the spline values at

the points t0, t0+dt, t0+2*dt, ... t0+K*dt=t1. The value of dt is calculated in floating point from

the values of t0, t1, and K. But then, while finding intersections with successive scan lines, the t

values are computed by repeated addition of dt, as in the sequence above. If rounding error leads to

t0+K*dt being substantially different than t1, and if the spline has as s value at t1 a number just

barely bigger than an integer, the s value at t0+j*dt might be smaller than that integer (which will

be smax) for all j.

Prepress version 1.10 (incompatible with OS versions prior to OS 16)

Modified October 26, 1979

Bug fix by Lyle Ramshaw in Extract command, related to MultiChars hack.

Modified by Lyle Ramshaw, September/October 1979. The main changes were:

 -getting a version of the Trident BR’s compatible with OS17

 -adding the ReadAL command, to go from .AL to .AC

PREPRESS MANUAL

 -adding the DeOrbitize command, orbitized .AC to vanilla .AC

 -loading a newer version of the microcoded floating point

 -adding a window to the main menu which displays the file type

Prepress version 1.9

Modified September, 1978 by Kerry A. LaPrade, XEOS

Major improvements to "Edit" section:

- now uses Keith Knox’s menu package

- business-like looking menu displays more information than before

- larger editting area

- less likely to accidentally change character’s widths

- can turn background off during session

- confirmations required before invoking "hazardous" functions

- faster grid, exclusively ored for eraseability without leaving holes

- new window for viewing character being editted at one Alto pixel per printer pixel

- strings are clipped if necessary

- "Auto" command makes filing easier

Bob Sproull fixed a bug in ImposeWidths, and Joe Maleson revised the menu to allow calling

ImposeWidths with arbitrary source and destination files.

File names CDTemp and CDEdits were replaced by ACTemp and ACEdits, respectively.

