
ALTO SOFTWARE PACKAGES

Compiled on: May 24, 1981

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

c Xerox Corporation 1981

Cleared version of May 24, 1981

This list is a directory of major Alto BCPL software packages. The files for these programs are available on
the <Alto> directory. The documentation for these packages is available on <AltoDocs>. This document is
filed as <AltoDocs>Packages.press. Some packages have closely-corresonding subsystems (e.g., TFS
Trident disk software and TFU utility); in this case, the bulk of the documentation is located with in the
Alto Subsystems Manual, and a cross-reference is included in this document.

The name at the end of each short description is that of the person last known to be responsible for the
package.

The items listed below may be flagged by a single character to indicate where the documentation may be
found:

* documentation for these items is contained within this manual;
** these items are described further in a separate document;
see the Alto Operating System manual for documentation.

#ALLOC: A boundary-tag storage allocator. Documentation is in the Alto Operating System
Manual. (David Boggs)

*ASIM: A procedure which simulates an Alto microprocessor equipped with a RAM. (Peter
Deutsch)

*BCPLRUNTIME: A replacement for the standard Bcpl runtime (in the OS), in whihcch nearly all
of the operations have been microprogrammed. Typical Bcpl programs run 25 to 30 percent
faster. (Ed Taft)

*BITBLT: Emulates the BitBlt instruction in BCPL/ASM. (David Boggs)

#BFS: The "basic file system" subroutines. These do page-oriented I/O to disk files organized
according to standard Alto conventions. Documentation is in the Alto Operating System
Manual. (David Boggs)

*BYTEBLT: Transfers an arbitrary block of 8-bit bytes from one place in memory to another. (Ed
Taft)

*CMDSCAN: An interactive command scanner and collection of command interpretation
procedures. (Ed Taft)

*CONTEXT: Provides facilities for managing multiple execution contexts for Bcpl procedures. (Ed
Taft)

DCBPRESS: This file provides one subroutine for making a one-page Press file from an Alto screen
bit-map. The calling sequence is: DCBPress("filename", pDCB, [width, height, left, top]), which
writes a file of the given name using pDCB as a pointer to a display control block. The last four
parameters allow you to select a portion of the rectangle described by the DCB for printing.
Width is the width (in bits) of the window you wish to see; height is the height in scan-lines; left
is the offset from the left edge of the bit-map; top is the offset from the top of the bit-map. (Bob
Sproull)

*DIABLOPRINTER: Routines that implement streams on the Diablo printer. (Ed Taft)

#DISKSTREAMS: The disk streams package provides facilities for doing efficient sequential
input/output to and from Alto disk files. Documentation is in the Alto Operating System
Manual. (David Boggs)

*DPDIVIDE: Computes the quotient and remainder from the division of one 32-bit 2’s
complement number by another. (Peter Deutsch)

#DSPSTREAMS: Provides a capability for display streams, multiple fonts, bit repositioning,

2

Cleared version of May 24, 1981

selective erasing and polarity inversion. Documentation is in the Alto Operating System Manual.
(Peter Deutsch)

*EFTP package: A Pup-based file-transfer package using a simple (EFTP) communications
protocol. (David Boggs)

*ETHERBOOT: A subroutine that will "boot" the Alto from one of several boot files supplied by
Ethernet gateways. (Ed Taft)

*ETHERRCVR: This package runs the Ethernet receiver in promiscuous mode copying every
packet it hears into an internal buffer. It is useful to diagnostic programs which want to provoke
inter-task interference failures. (David Boggs)

*ERP SERVER: implements a Pup Event Report Protocol (ERP) server on top of Level1 of the Pup
package. (David Boggs)

*ERP USER: A self-contained subroutine that logs events using the Pup Event Report protocol.
(Bob Sproull)

*FANCYTEMPLATE: A fancy version of the TEMPLATE package. (Ed McCreight)

*FINDPKG: searches standard Alto files for certain simple kinds of patterns at very high speeds
using special microcode. (Peter Deutsch)

*FLOAT: Floating-point package for the Alto that uses no special microcode. (Bob Sproull)

*FORMAT: Routines for doing formatted I/O. (Ed McCreight)

*FTPPACKAGE: File Transfer Protocol (FTP) routines. (David Boggs)

*GETSETBITS: makes it easy to extract and replace strings of up to 16 bits in a vector of bits.
(Peter Deutsch)

*GP: General-purpose routines for parsing command lines and the like. (Ed Taft)

*INTERRUPT: permits Bcpl procedures to be called as a result of hardware interrupts on the Alto.
(Ed Taft)

*ISF: a package that provides pseudo-ramdom access to Alto files. (Peter Deutsch)

*KBD: provides a basic keyboard input stream capability. (Peter Deutsch)

*KPM: a simple efficient Knuth-Pratt-Morris pattern match of a name against a template that may
contain one or more wildcard characters. (Ed Taft)

*LOADRAM: loads a ’Pack Ram Image’ (see PackMu in the subsystems documentation) into the
ram, and optionally performs a ’silent boot’ to start one or more tasks in the Ram. (Ed Taft)

*MDI: Subroutine that looks up multiple files in one pass through the directory. (Peter Deutsch)

*OVERLAYS: Subroutine package for handling Bcpl overlays conveniently. (Peter Deutsch)

*PAPERTAPE: A package which implements streams to a high paper tape reader and punch which
can be attached to the Alto via the Diablo printer interface. (David Boggs)

*PUP PACKAGE: implements communications by means of Pups and Pup-based protocols.
(David Boggs and Ed Taft)

*QUEUE: a simple set of queue primitives. (Ed Taft)

3

Cleared version of May 24, 1981

*RANDOM: generates random numbers. (Ed Taft)

*READMB: Subroutine for reading micro-binary files created by MICRO (and other
microassemblers). (Peter Deutsch)

*READMU: Subroutine for reading microcode files created by MU. (Chuck Thacker)

*READUSERCMITEM: reads items from user profile files. (Peter Deutsch)

**READPACKEDRAM: Allows Alto programs which use the RAM to check the constant memory
and load the RAM as a part of their initialization. See Alto Subsystems Manual. (Peter Deutsch)

*RENAMEFILE: renames a file. (David Boggs)

*RINGBUFFER: a set of procedures for buffering data by means of circular buffers. (Ed Taft)

*RWREG: Procedures for reading and writing the Alto microprocessor R and S registers under
program control. (Peter Deutsch)

*SCANFILE: This package provides procedures for reading Alto files at full disk speed, and
overlapping computation with the reading. (Note: a similar capability is now provided by the
Operating System; see the documentation in the OS manual.) (Peter Deutsch)

*SCV: Scan-converts objects from a description of the boundaries of the object. (Bob Sproull)

*SDIALOG: A package for managing simple interactive dialogs with a user. It helps prompting
and response parsing. (Bruce Parsley)

**SORTPKG: a package for sorting things of arbitrary sort--you provide a "get" routine, a "put"
routine and a "comparison" routine. Documentation is found in the first page of the Bcpl
sources. (Ed McCreight)

*SPLINE: procedures for fitting cubic splines to sets of knots. (Patrick Baudelaire)

*STRINGS: useful procedures for extracting, concatenating, and comparing strings, plus string
streams (Ed Taft)

*TEMPLATE: formats output to a stream according to a template provided as a string. (Ed Taft)

*TIME: Subroutines for converting time-of-day readings to and from human-readable form. (Ed
Taft)

*TIMER: a set of procedures for setting, testing and blocking on timers. (Ed Taft)

*TRACE: Routines for tracing BCPL procedures. (Peter Deutsch)

*UTILSTR: A collection of utility and string-manipulation procedures. (Bruce Parsley)

*VMEM: A software virtual memory for the Alto. (Peter Deutsch)

4

Cleared version of May 24, 1981

Alto processor simulator

 The Asim library package very precisely simulates the Alto I or II processor, including the 2K ROM
and extended memory options. All references to the various Alto memories (R registers, microinstruction
ROM/RAM, constants, main memory) occur through procedures, so the simulator may be run using the
actual contents of the RAM or a core image thereof, the real contents of main memory or a SWAT-like file
image thereof, and so on. Memory timing is simulated properly, and a large number of minor logical
errors (such as mis-timing of memory references, assuming that L or T is safe over a TASK, or giving a
branch modifier in the instruction after a TASK) are detected.

(September 28, 1978)

 Asim now simulates all the memory reference capabilities of Alto IIs, and of Alto Is with the
doubleword store modification.

1. Requirements

 Asim expects the user to provide the following 7 procedures (and declare them external):
 ReadR(j) - return the contents of the j’th R register. J may be 0 through 37B or 41B through 77B.
 WriteR(j, wd) - write the value wd into the j’th R register.
 ReadRAM(j) - read a word from the instruction memory as described in the Alto reference manual, to
wit: bit 4 of j decides between ROM (1) and RAM (0); bit 5 of j decides between upper 16 bits (1) and
lower (0); bits 6-15 of j give the address. If Asim is simulating an Alto (II) with the 2K ROM option, then
when bit 4 of j is set, bit 3 of j chooses between ROM0 (0) or ROM1 (1). Note that this is not supported by
the actual Alto hardware.
 WriteRAM(j, wd) - write wd into the instruction memory. J is as for ReadRAM. Note that unlike the
hardware instruction, this procedure must be capable of writing into the upper and lower 16 bits
independently.
 ReadCON(j) - return the j’th constant. J is between 0 and 377B.
 ReadMEM(j) - return the contents of main memory location j. If Asim is simulating an Alto (II) with
extended memory, it will normally call ReadMEM(j, bank), where bank provides the 2 extra bits of
memory address. ReadMEM will still be called sometimes with only one argument for accessing I/O
locations (177000B and above), and it should check for j in this range before examining bank. Note also
that, as for the real extended memory hardware, Asim uses the contents of (simulated) location 177740B to
determine the bank numbers for all memory accesses.
 WriteMEM(j, wd) - write wd into main memory location j. With extended memory, Asim calls
WriteMEM(j, wd, bank) -- note the order of the arguments.
The user program may use any implementation it wishes for these operations. The only requirement is
consistency, i.e. a Read operation must retrieve the datum given to the last Write operation for that cell.

 Either the READMU package, or the PACKMU subsystem and ReadPackedRAM package,
described in separate writeups, may be useful for reading microcode into memory for simulation.

2. Use

 Asim is written in Bcpl and consists of a single file Asim.BR. It does not use any facilities of the Alto
OS. It provides two externally accessible procedures (InitAsim, Asim) and a large number of externally
accessible statics. The procedures and accessible statics are declared external in the file Asim.D which the
user should "get".

 InitAsim(altotype, extrarom, extendedmemory, doublestore) initializes the simulator state completely
-- declares the main memory interface to be quiescent, clears all internal registers to zero, and marks L and
T as undefined. It does not affect any of the memories. Altotype (defaults to 0) specifies the Alto
configuration: 1 means Alto I, 2 means Alto II, and 0 means that the microprogram is supposed to execute
compatibly on both Alto I and Alto II. Extrarom (defaults to false), if true, means that the Alto has the 2K
ROM option. Extendedmemory (defaults to false), if true, means that the Alto has the extended memory
option. Doublestore (defaults to false), if true, means that the Alto has doubleword store if AltoType=0
or 1 (all Alto IIs can do doubleword stores).

Alto processor simulator September 28, 1978 5

Cleared version of May 24, 1981

 Asim() executes one micro-instruction. Asim returns 0 if the instruction completed successfully,
otherwise a string which indicates the reason for the failure. In the latter case, no change has occurred in
any programmer-visible state (R, RAM, main memory, L, T, IR, carry flags, etc.), offering the possibility of
repairing a problem and resuming execution.

 Asim maintains the state of the microprocessor in a set of Bcpl statics which are available to the user
for inspection. These statics are supposed to capture the entire program-visible state of the microprocessor,
plus a few useful quantities which are not normally visible from the outside between instructions. The
caller of Asim is free (but not encouraged) to alter any of Asim’s accessible statics between instructions --
there are no hidden interactions. The accessible statics are documented in Asim.D.

2.1. Errors detected

 The following is a (currently) complete list of the strings which Asim will return.
L undefined
T undefined
Branch modifier following TASK
Delayed F1 following TASK
TASK with memory running
ALU output discarded
DNS with BS#R_
2 memory ops
Memory timing error
Attempt to load R40
Attempt to mask MD
Bad ALUF
MAR_ with R37
STARTIO
Bad F1
Bad F2
Attempt to shift into 2nd R bank
MD_ at wrong time
_MD at wrong time
Odd double fetch not compatible
MD undefined

2.2. Limitations

 Asim only simulates the emulator task.

Alto processor simulator September 28, 1978 6

Cleared version of May 24, 1981

The following is a listing of the current contents of Asim.D.

//
// External definitions for Asim
// last edited September 28, 1978 12:33 PM
//

external // entry points
[InitAsim // (altotype [1], extrarom [false], extramemory [false], doublestore[false])
 Asim // () -> 0/errorstring
]

external // the microprocessor state
[@t // T
 @tu // T undefined flag (true or false)
 @l // L
 @lu // L undefined flag (true or false)
 @ir // IR
 @carry // emulator carry (0 or 1)
 @bus // temp. for bus data
 @alu // temp. for ALU output
 @sh // temp. for shifter output
 @skip // SKIP (0 or 1)
 @alucy // last ALU carry (0 or 1)
 @mar // last memory address
 @altbank // (XM) true iff last MAR_ selected alternate bank
 @mstate // memory state
 @marmod // 0 or 1 to OR (Alto I) or XOR (Alto II) with Mar for next reference
 @md // (Alto II) memory data addressed by MAR
 @mdx // (Alto II) memory data addressed by MAR XOR 1
 @mdu // (Alto II) MD undefined flag (true or false)
 @nmod // modifiers for NEXT
 @pc // (microinstruction) PC
 @waiting// TASK, RDRAM, WRTRAM, SWMODE waiting or -1
 @ramadr // RAM address
]

Alto processor simulator September 28, 1978 7

Cleared version of May 24, 1981

Bcpl Runtime Package

This package is a replacement for the standard Bcpl runtime (the one built into the Alto Operating
System), in which nearly all of the operations have been microprogrammed. Typical Bcpl programs run 25
to 30 percent faster than with the standard routines, depending primarily on their frequency of procedure
calls and their richness in complex structure references. Use of this package also permits one to Junta to
levBasic if desired, for a savings of approximately 500 words of main memory.

The microprogrammed runtime is entirely compatible with the standard one. It does not require programs
to be modified or recompiled, and it works correctly during calls to the Operating System as well as to your
own procedures. The simplest use of this package requires only that you load the necessary microcode into
the Ram and call one initialization routine.

The package also provides a convenient framework in which to define and microprogram additional
emulator opcodes.

1. Standard Use

The simplest case applies when you do not need to include any special microcode of your own. The file
BcplRuntime.Dm is a dump-format file containing BcplRuntime.Br and BcplRuntimeMc.Br. These
modules should be loaded with your program, along with the LoadRam procedure, available separately as
LoadRam.Br.

Early during initialization, your program should execute the following:

external [LoadRam; InitBcplRuntime; RamImage]
if LoadRam(RamImage) eq 0 then InitBcplRuntime()

(LoadRam returns zero if it successfully loaded the Ram and a nonzero result otherwise, e.g., because no
Ram board is installed.)

Once this has been done, the space occupied by LoadRam.Br and BcplRuntimeMc.Br may be reclaimed.
BcplRuntime.Br must remain resident throughout execution of the program, but it occupies only about 150
words whereas the others consume nearly 3000.

InitBcplRuntime sets up a ’user finish procedure’ (in the manner described in the O.S. manual, section
3.12), whose purpose is to restore the normal Bcpl runtime routines when the program ’finish’es for any
reason. Operation of this mechanism is ordinarily invisible; however, there are several situations in which
the programmer must be aware of its workings.

First, if you execute a Junta and later a CounterJunta, the CounterJunta will itself cause the standard Bcpl
runtime to be restored. The later restoration performed by the BcplRuntime package will be redundant
and will do no harm, but the standard (slower) Bcpl runtime will be in use once the CounterJunta has been
executed. This is probably unimportant in most applications.

Second, if you Junta away the standard Bcpl runtime routines themselves, you must be careful to perform
initialization in the correct order. In particular, InitBcplRuntime must be called before the Junta and
before any other code that sets up user finish procedures. This ensures that at ’finish’ time, the cleanup
procedure in the BcplRuntime package will be the last user finish procedure executed, immediately before
control returns to the operating system for the final time. If this convention is not followed, a subsequent
call on the Bcpl runtime would end up diving into garbage (since InitBcplRuntime saves and restores only
the runtime statics, not the code).

Bcpl Runtime Package October 16, 1977 8

Cleared version of May 24, 1981

Finally, if you have Bcpl-coded interrupt routines and you have Juntaed away the standard Bcpl runtime,
such interrupts must be disabled before the BcplRuntime cleanup is executed, for the same reason as given
in the previous paragraph. If you use the Bcpl Interrupt package to set up such interrupts, this is
performed for you automatically (that is, the Interrupt Package sets up a user finish procedure that turns
off all interrupts enabled by InitializeInterrupt). However, to ensure that the cleanup routines get executed
in a safe order, the call to InitBcplRuntime must precede any call to InitializeInterrupt. (If you wish
interrupts to remain active during the CounterJunta, your program should quit by calling CounterJunta
explicitly before executing ’finish’. This is important in the case of keyboard interrupts.)

2. Adding Your Own Microcode

In order to implement additional emulator instructions or install microcode for special devices, it is
necessary to understand the workings of the package in some detail. If you don’t want to do those things,
you need read no further.

The source files are contained in the dump-format file BcplRuntimeSource.Dm. It includes, among other
things, the following microcode source files:

BcplRuntimeMc.Mu The top-level microcode source file, which ’includes’ all the others.

EmulatorDefs.Mu Standard label and R-register definitions useful in writing code to be run as part
of the emulator task.

RamTrap.Mu Declarations and code for dispatching all opcodes that trap into the Ram.

GetFrame.Mu Microcode implementing the Bcpl runtime ’GetFrame’ and ’Return’
operations.

BcplUtil.Mu Microcode implementing all remaining Bcpl runtime operations.

In addition to these files, you need AltoConsts23.Mu (or whatever the current version is), Mu.Run, and
PackMu.Run. The latest (October 11, 1977) version of Mu is required.

To add new opcodes, you will need to edit BcplRuntimeMc.Mu and RamTrap.Mu (which should be
renamed to something else first). The changes to BcplRuntimeMc.Mu are trivial: simply append ’include’
statements for each of your own source files.

RamTrap.Mu contains the following predefinition:

!37,40, TrapDispatch,,, GetFrame, Return, BcplUtility;

The labels in this predefinition correspond to the opcodes #60000, #60400, #61000, #61400, ..., #77400
(a total of 32). However, several of these cannot be used because their execution does not cause a trap into
the Ram. These are #60000, #60400, #61000, #64400, #65000, #67000, and #77400. The GetFrame,
Return, and BcplUtility instructions use #61400, #62000, and #62400. All others are available for your
own use simply by adding labels to the predefinition.

When one of these labels is reached, the Alto is in a clean state (no TASK or memory reference pending),
the accumulators AC0 through AC3 contain the values supplied by the emulated program, and IR (the
DISP bus source) contains the low-order 8 bits of the opcode, which may be used for further dispatch if
desired.

The routine should finish by executing the following sequence of operations:

TASK;
something;
SWMODE;

Bcpl Runtime Package October 16, 1977 9

Cleared version of May 24, 1981

:START;

It is essential that the TASK be executed as late as possible before the branch to START. The worst-case
path in the Rom microcode beginning at START consists of 19 microinstruction cycles without a TASK. It
has been determined empirically that as few as 3 microinstructions inserted between ’something’ and
’SWMODE’ in the above sequence causes Diablo Model 44 disks to get data-late errors. (Alas, it is not
possible to say ’SWMODE, TASK’ in one microinstruction because they are both F1’s. In hindsight, it
would have been nice if SWMODE had been implemented in such a way as to cause a TASK also.)

BcplUtil.Mu contains three convenient exit points to which opcode emulation routines may branch. The
code for these exit points is:

Start0: PC_L;
Start1: L_PC, SWMODE;
Start2: PC_L, :START;

One may branch to Start0 having just executed ’L_ new PC, TASK;’, to Start1 having just executed
’TASK; something;’, or to Start2 having just executed ’TASK; something; L_ new PC, SWMODE;’.

Standard R-registers available to the routine are listed in EmulatorDefs.Mu. These are SAD, XREG, XH,
MTEMP, DWAX, and MASK. All except MTEMP are used exclusively by the emulator task and may be
clobbered arbitrarily (the standard Nova emulator in the Rom does not depend on them). MTEMP is
usable by any task but is safe only until the next TASK.

You may need to modify EmulatorDefs.Mu if your microcode defines labels in low, fixed locations (e.g.,
START or the task starting addresses). Note that EmulatorDefs.Mu defines all labels except TRAP1 in a
way that does not consume space in the Ram. You may need to change one or more of these (e.g.,
START) to ordinary predefinitions if you intend to define them in the Ram.

The microcode is assembled and turned into a .Br file by means of the commands:

Mu BcplRuntimeMc.Mu
PackMu BcplRuntimeMc.Mb BcplRuntimeMc.Br

The Bcpl runtime microcode contained in the package occupies 337 (decimal) microinstruction words.

Bcpl Runtime Package October 16, 1977 10

Cleared version of May 24, 1981

Soft BitBLT

This package contains a single procedure, BitBlt, which emulates the BitBlt instruction in software. It is
not reentrant.

BitBlt(bbt)
bbt points to an even word aligned BBT structure as defined in BitBlt.decl. See the Alto hardware
manual for details.

BitBlt does some setup in BCPL and then calls an assembly language procedure to do the work. It is
distributed as three files:

BitBlt.decl Declarations needed to use the package
BitBltB.br BCPL setup code
BitBltA.br Assembly language inner loop

SoftBitBLT May 22, 1978 11

Cleared version of May 24, 1981

ByteBlt -- Fast Byte Block Transfer

This package contains a single procedure, ByteBlt, which transfers an arbitrary block of 8-bit bytes from
one place in memory to another as quickly as is possible without special microcode. The procedure
handles all cases of blocks starting or ending on even or odd byte boundaries and whose lengths are even
or odd. The bulk of each transfer is done using the "blt" instruction if possible and using a fast inner loop
(4 instructions per byte) otherwise.

ByteBlt is written in assembly language. It is distributed as AltoByteBlt.br, which is assembled from
AltoByteBlt.asm. It is 107 (decimal) instructions long and calls no external procedures (aside from the
BCPL runtime). A Nova-compatible version of this package is also available (though it works less
efficiently due to lack of a "blt" instruction).

ByteBlt(DstAdr, DstByte, SrcAdr, SrcByte, ByteCount)
Transfers the block of bytes described by the arguments. Bytes are packed two per word, with the left
byte considered to be the first. DstAdr and DstByte specify the destination address of the first byte,
with DstAdr providing a base word address and DstByte specifying the offset of the first byte relative
to that word (0 means the left byte in DstAdr, 1 means the right byte in DstAdr, 2 means the left byte
in DstAdr+1, etc). Similarly, SrcAdr and SrcByte specify the source address of the first byte.
ByteCount is the number of bytes to be transferred (must be less than 2^15; zero is legal).

No bytes outside of the specified destination block are affected; in particular, if the destination block
begins on a right-hand byte or ends on a left-hand byte, the other byte in the same word is not
clobbered. However, the source and destination blocks must not overlap.

ByteBlt achieves its efficiency by checking for three special cases. If the block is very small (4 bytes or
less), it is transferred by means of a relatively slow byte-at-a-time routine, since the overhead of setting up
for the other, faster cases outweighs this inefficiency. (However, this case is still much faster than moving
bytes using a BCPL "for" loop and structure references).

If the source and destination blocks are in phase (i.e., they both start with the left byte or both with the
right), then the entire block, possibly excepting the first and last bytes, is transferred by means of a single
"blt" instruction. Leftover bytes at either end are handled specially.

If the source and destination blocks are out of phase, then the bytes are transferred by means of a 16-
instruction inner loop which reads and writes data in memory two full words at a time, swapping and
masking bytes as required.

ByteBlt March 9, 1976 12

Cleared version of May 24, 1981

Command Scanner Package

This package consists of an interactive command scanner and a collection of command interpretation
procedures. Among the important features of this package are:

1. The editing facilities are fairly sophisticated. One can provide defaults and modify the break
and echo sets on a per-phrase basis. The user is permitted to backspace over phrases that have
already been parsed. Phrases may be interspersed with "noise" text that is retained with the
command line while not logically a part of it.

2. Error recovery and retry facilities are provided by means of some rather tricky BCPL control
structure.

3. The package is modular, and not all modules necessarily need be loaded. Also, specialized
knowledge about the Alto display is confined to one module, which may be replaced by a
different module that deals with other media such as hardcopy terminals or network streams.

The Command Scanner Package is intended for use in programs with relatively sophisticated needs, and is
fairly large (just the basic command editor and Alto display handling modules together amount to about
1500 words of code). Programmers with simpler needs or tight memory constraints might be better off
using Bruce Parsley’s Simple Dialoging Package.

1. Organization

The package is distributed as a dump-format file CmdScan.dm, which contains the following files:

CmdScan.decl Declarations that may be needed in order to use the package.

CmdScan.br The main control module. This must always be loaded.

CmdScanEdit.br Editing operations invoked from the main control module. This also
must always be loaded.

CmdScanDisplay.br Operations specific to the Alto environment (display and keyboard).
This or some equivalent module must always be loaded.

CmdScanTty.br Equivalent operations oriented toward a minimal terminal stream
interface.

CmdScanAux.br Higher-level command interpretation procedures for dealing with such
things as numbers, strings, filenames, and keywords. This module is
required only if its facilities are desired.

Keyword.br Primitives to look up and enumerate keywords in a keyword table.
Procedures in this module are called from the CmdScanAux module.

KeywordInit.br Procedures to construct and manipulate keyword tables. This module
may be discarded after all desired keyword tables have been created.

CmdScanOEP.br Declarations of Overlay Entry Points (OEPs) in the CmdScan modules.
This module is needed only if the CmdScan modules are loaded into
overlays.

KeywordOEP.br OEP declarations for the Keyword modules.

Command Scanner Package July 14, 1977 13

Cleared version of May 24, 1981

The CmdScanAux module requires that the Timer and Context packages also be loaded. If one is not
using contexts, one may omit the Context package and instead define an external procedure Block() that
just returns immediately.

2. Basic Command Scanner

Command scanning is done within the confines of a Command State (cs) object, which accumulates the
text of a command and maintains state from one phrase to the next. A command consists of a sequence of
phrases, possibly interspersed with "noise" text not part of any phrase. Each phrase consists of zero or
more non-terminating characters followed by a terminating character.

Editing is done on a phrase-by-phrase basis. For each phrase, the GetPhrase procedure is called to input a
new phrase from the keyboard (terminated by a break character) and append it to the command line.
GetPhrase returns when the terminating character is typed. At this point, the caller may call Gets(cs) to
read the characters of the phrase (using Endofs(cs) to test for end of phrase).

While control is inside GetPhrase, if the user backspaces past the beginning of the current phrase, control
is sent back to an earlier point of interpretation so as to reparse the previous phrase now being editted.
There exists a facility for regaining control when this happens so as to release resources acquired during
command interpretation.

Between phrases, one may output "noise" text by means of Puts(cs). This text is displayed and maintained
in the command line but does not participate in editing operations. That is, if one is positioned at the end
of a "noise" string and backspaces one character, the entire "noise" string is erased along with the real
command character preceding it.

2.1. Getting Phrases

The following procedures are defined in CmdScan.br and CmdScanEdit.br:

InitCmd(maxChars, maxPhrases, WordBreak [DefBreak], PhraseTerminator [DefBreak], Echo [DefEcho],
keyS [keys], dspS [dsp], Erase [DefErase], Error [DefError], zone [sysZone]) = cs or 0
Creates and returns a Command State (cs) structure capable of holding at most maxChars characters
grouped into at most maxPhrases phrases. keyS and dspS are the keyboard and display streams for
the command scanner. The structure is allocated from zone. The remaining arguments (all of which
are procedures) control the command scanner in various ways. These procedures are described below
under "Edit Control Procedures".

When InitCmd is called, it always returns a cs. However, if the command is deleted (by the user
striking the Delete character) during later command typein, the cs is destroyed and InitCmd returns
again with zero as its result. This is discussed below under "Backing Up and Catch Phrases".

Closes(cs)
Destroys the Command State structure cs, returning it to the zone from which it was allocated.

GetPhrase(cs, WordBreak [default], PhraseTerminator [default], Echo [default], Help [], helpArg []) =
numChars
Readies the next phrase to be interpreted, inputting one from the keyboard if necessary. Returns the
number of characters in the phrase, not including the terminating character.

The WordBreak, PhraseTerminator, and Echo procedures, if provided, override the ones declared to
InitCmd for this phrase only. If Help is provided then upon typein of a question mark the call
Help(dspS, helpArg) is executed; this is expected to output a helpful message to the stream dspS, not
preceded or followed by a carriage return. (Typically the message is just a string, which may most
easily be output by providing a Help procedure of Wss and a helpArg of the string itself.)

Command Scanner Package July 14, 1977 14

Cleared version of May 24, 1981

Gets(cs) = char
Returns the next character of the current phrase, i.e., the one most recently input by means of
GetPhrase. If the phrase is exhausted (i.e., the next character would be the phrase terminator),
Errors(cs, ecEndOfPhrase) is called.

Endofs(cs) = true|false
Returns true if the current phrase is exhausted.

Puts(cs, char)
Appends the "noise" character to the command line and outputs it to the command’s display stream.
Puts should be called only between phrases, i.e., after reading all characters of one phrase and before
calling GetPhrase for the next.

Resets(cs)
Resets the command scanner to the beginning of the current phrase, such that the next call to
GetPhrase will return the same phrase again.

TerminatingChar(cs) = char
Returns the character that terminated the current phrase.

2.2. Default Phrases

DefaultPhrase(cs, string, char [])
Supplies a default value (the string) for the next phrase; that is, the next call to GetPhrase will cause
the text from that string to be returned. The string is appended to the command line and output to
the command display stream. The string should not contain a terminating character.

If char is supplied, it is used as the terminating character and the next call to GetPhrase will return
without giving the user any opportunity to edit the phrase. If char is omitted, the next GetPhrase will
wait for the user to either type a terminating character (in which case the default phrase will be
returned) or provide a replacement phrase followed by a terminating character.

BeginDefaultPhrase(cs)
Begins a default phrase. All occurrences of Puts(cs, char) between calls to BeginDefaultPhrase and
EndDefaultPhrase are included in the default phrase rather than treated as "noise" characters. This
permits default phrases to be generated by arbitrary stream output.

EndDefaultPhrase(cs, char [])
Ends a default phrase started by BeginDefaultPhrase. If char is supplied, it is used as the terminating
character, as described above under DefaultPhrase. BeginDefaultPhrase and EndDefaultPhrase must
be paired and there must be no calls to GetPhrase between them.

2.3. Edit Control Procedures

These procedures control the operation of the command scanner in various ways. The procedures are
passed as arguments to InitCmd, and some of them to GetPhrase. The default procedures are all defined
in CmdScanDisplay.br, but the programmer is free to substitute other ones when appropriate.

The file CmdScanTty.br is an alternate to CmdScanDisplay.br, but oriented toward a minimal terminal
stream interface. The only operations required are Gets and Resets on the keyboard stream and Puts on
the display stream.

WordBreak(cs, char) = true|false
Returns true if char is a word break character and false otherwise. This controls the action of the
control-W editing character and has no other effect. The default WordBreak procedure returns true
only for space, escape, and carriage return.

PhraseTerminator(cs, char) = true|false

Command Scanner Package July 14, 1977 15

Cleared version of May 24, 1981

Returns true if char is a phrase terminating character and false otherwise. This controls the definition
of a phrase, which is zero or more non-terminating characters followed by a terminating character.
The default PhraseTerminator procedure returns true only for space, escape, and carriage return.

Echo(cs, char) = true|false
Returns true if char should be echoed when it is typed in and false otherwise. The default Echo
procedure returns true if char is not a phrase terminator and false if it is (using whatever definition of
phrase terminator is currently in effect).

Erase(cs, first, last, context)
Erases characters cs>>CS.buf>>Buf^first through cs>>CS.buf>>Buf^last (inclusive) from the output
stream in whatever manner is appropriate for the medium. This interval may include both real
phrase consituent characters and "noise" characters. Characters that were not echoed (i.e., not
actually sent to the output stream) have #200 added to them and should be ignored.

The context argument indicates the context in which the Erase procedure is being called; this may be
useful in determining the correct action.

eraseChar A single character is being erased. (It is the character
cs>>CS.buf>>Buf^first; any other characters are "noise".)

eraseWord A word (or phrase) is being erased.

eraseTerminator The terminating character of the current phrase is being erased to
permit additional editing on the phrase.

The default Erase procedure in the CmdScanDisplay module erases characters from the Alto display
by means of EraseBits. If it is necessary to erase past the left margin (i.e., past a carriage return or a
line wrap-around), the entire display window is erased and the command line is regenerated, thereby
losing any text displayed before the beginning of the current command line. (This is necessary
because the Operating System’s display streams package generally does not permit one to manipulate
other than the current display line.)

The default Erase procedure in the CmdScanTty module prints a backslash followed by the erased
character in the eraseChar case and a left arrow in the eraseWord case.

Error(cs, ec)
This is the stream error procedure for cs and is called under a variety of exceptional conditions. The
error codes (ec) are defined in CmdScan.decl. Most of them indicate a specific error condition.
However, a few simply request a certain action and are therefore generally useful in client command
parsing routines.

ecCmdDelete (called from GetPhrase) The Delete character has been typed. The Error
procedure should take appropriate action and should not return. The
default Error procedure types "XXX" and forces a return from the call to
InitCmd with value zero.

ecCmdTooLong The command line buffer is full and an attempt has been made to
append another character to it. The maximum length is the maxChars
argument to InitCmd. If the Error procedure returns the excess
character is thrown away. The default Error procedure blinks the
display, resets the keyboard, and returns. (The CmdScanTty module
outputs a bell to the display stream.)

ecTooManyPhrases Attempt to put more than maxPhrases phrases into the command line
(maxPhrases is passed to InitCmd). This is an unrecoverable error, and
the default Error procedure calls SysErr.

ecEndOfPhrase Attempt to read characters past the end of the current phrase (by

Command Scanner Package July 14, 1977 16

Cleared version of May 24, 1981

Gets(cs)). If the Error procedure returns, the result value is returned by
Gets. The default Error procedure calls SysErr.

ecKeyAmbiguous (called from GetKeyword, described later) An ambiguous keyword has
been typed in. The default Error procedure blinks the display, resets the
keyboard, and sends control back to an earlier point of interpretation so
as to permit the user to type in more characters.

ecBackupReplace This and the following error codes are not associated with specific errors
but simply request that a certain action be performed. This one requests
that control be sent back to the beginning of the current phrase to permit
typein of a replacement phrase.

ecBackupAppend Requests that control be sent back to the current phrase to permit the
user to append to or edit it.

ecCmdDestroy Requests that control be sent back to the InitCmd that began this
command, forcing it to return zero. This is the same as ecCmdDelete
except that "XXX" is not typed.

other Any error code not listed above is assumed to be some sort of syntax
error arising from a higher-level command interpreter (such as the ones
in the CmdScanAux module). The default Error procedure handles all
of them in the same way: it displays a question mark, blinks the display,
resets the keyboard, and sends control back to an earlier point of
interpretation so as to permit the user to replace or modify the current
phrase.

The following additional Alto display-specific procedures are defined in CmdScanDisplay.br:

CmdError(cs, string [])
If a string is supplied, outputs it to the command display stream. Then blinks the display window and
issues a Resets operation on the command keyboard stream. (This procedure is also defined in the
CmdScanTty module, but it outputs a bell to the display stream rather than blinking it.)

InvertWindow(ds)
Inverts the polarity of the display stream ds. That is, if it is now being displayed black on white,
changes it to white on black or vice versa.

2.4. Backing Up and Catch Phrases

When it becomes necessary to edit a phrase that has already been parsed (i.e., passed to the client program
via GetPhrase and Gets), it is necessary to back up the interpretation of the command line to an earlier
point so as to permit the modified phrase to be reparsed. This situation arises in several cases: the user
backspaces past the beginning of the current phrase or deletes the entire command, or a syntax error is
detected and the current phrase or a previous phrase must be replaced or modified.

Rather than requiring GetPhrase and every higher-level procedure that calls GetPhrase to provide a failure
indication (which the caller must then test after every call), the Command Scanner Package makes use of
some devious control transfer primitives to back up control to an earlier point of interpretation, usually
without the client program’s being aware of it.

In the simplest case, control is sent all the way back to the call to InitCmd that created the Command State
(cs). InitCmd returns again with the same cs as before, and the entire command line is reparsed by the
client program. Each call to GetPhrase (up to the phrase that is being modified) returns a phrase saved
away in the command state, just as if it had just been typed in. The effects of the command scanner
procedures during a reparse are indistinguishable from those during the initial parse.

Command Scanner Package July 14, 1977 17

Cleared version of May 24, 1981

This control structure does have certain consequences that the programmer must be aware of. The first is
that the context of the call to InitCmd must remain valid throughout the lifetime of the cs; that is, the
procedure that called InitCmd must not return until the cs has been destroyed.

Second, the interpretation of a given command line must have constant effects. That is, the result of
reparsing the command must be indistinguishable from the result of parsing it initially--there must be no
incremental or time-dependent variations in interpretation.

There are situations in which resources are allocated during the course of command interpretation, e.g.,
storage blocks or open files. In some cases, when control is sent to an earlier point of interpretation, it is
necessary to release such resources. The package provides a "catch phrase" mechanism by means of which
the program can regain control so as to perform such cleanup. (The name is borrowed from Mesa, but the
facility is not really very much like the Mesa "signal" and "catch phrase" machinery.)

The catch phrase mechanism is accessed through the following procedures:

EnableCatch(cs) = true|false
When this call is encountered during normal interpretation, EnableCatch saves away the current
frame and pc in storage associated with the next phrase (the phrase that will be read by the next call
to GetPhrase). In this context, EnableCatch always returns false.

While interpretation is being backed up, if a phrase is encountered for which an EnableCatch has
been done, control is sent to that point; i.e., EnableCatch returns, but with value true rather than
false. The programmer should write a statement of the form:

if EnableCatch(cs) then [<catch phrase>; EndCatch(cs)]

where <catch phrase> is code that performs the necessary cleanup.

EndCatch(cs)
Should be included at the end of every catch phrase. If control is being returned to a point of
interpretation at or after the current phrase, EndCatch simply returns, thereby starting the reparse of
succeeding phrases. However, if control is being sent back to a phrase before the current one,
EndParse resumes the reverse transfer of control. Hence catch phrases are executed in reverse order,
and the backing up of interpretation terminates at the latest catch phrase preceding the first phrase
that must be reparsed.

DisableCatch(cs)
Undoes the effect of a previous EnableCatch for the current phrase. It may be issued before or after
the GetPhrase that reads the current phrase. It is useful in situations where resources are allocated
temporarily, across only one call to GetPhrase. The typical context is something like:

if EnableCatch(cs) then [<release resources>; EndCatch(cs)]
<allocate resources>
GetPhrase(cs)
<release resources>
DisableCatch(cs)

CmdErrorCode(cs) = ec
If control is being backed up due to an error (including a command delete), this procedure returns
the error code. If the user backspaced past the beginning of a phrase, zero is returned. This
procedure returns a valid result only in the context of a catch phrase.

As is the case for InitCmd, the context of every call to EnableCatch must remain valid during subsequent
command interpretation. Effectively this means that calls to EnableCatch must be at the same or
successively increasing depths of procedure calls.

Also, only one catch phrase may be enabled per phrase in the command line. The call to EnableCatch
must precede the call to GetPhrase for the particular phrase, though it may either precede or follow a

Command Scanner Package July 14, 1977 18

Cleared version of May 24, 1981

DefaultPhrase providing a default value for that phrase. This restriction makes inclusion of catch phrases
within iterations somewhat tricky, though it is still possible.

A backup of interpretation is normally initiated only from within the Command Scanner Package itself, or
from within an Error procedure called due to a syntax error. However, one may explicitly back up control
by means of one of the following procedures:

BackupPhrase(cs, nPh [0], editControl [editReplace], char [])
Sends control backward nPh phrases relative to the current phrase (the default, zero, means restart
interpretation of the current phrase). Note that BackupPhrase never returns. editControl determines
the disposition of the current phrase, and may have one of the following values:

editNew Discard the phrase and start over. (This option is not usually meaningful in the
context of BackupPhrase, but is in ErasePhrase, described below.)

editAppend Discard the phrase terminator and permit the user to append more characters to
the phrase (or otherwise edit it).

editReplace Discard the phrase terminator. If the first character typed by the user is a non-
terminating, non-editing character, erase the entire phrase and start over
(treating that character as the first character of the phrase); if it is an editing
character, permit the user to edit the phrase as it stands; if it is a terminator,
attempt to parse the phrase again with that terminator.

If char is provided, it is effectively inserted at the front of the command keyboard stream and is used
the next time GetPhrase needs to input a character from the user.

ErasePhrase(cs, nPh [0], editControl [editReplace], char [])
Same as BackupPhrase, but first erases all intervening phrases (both from the command line buffer
and from the display). In this case, the editControl parameter applies to the target phrase rather than
to the current phrase. The target phrase is erased only if editControl is editNew.

3. Auxiliary Command Interpreters

The procedures in the CmdScanAux module each read a phrase (by calling GetPhrase) and interpret it in
some way. While they are useful in their own right, they also serve as a good model for additional
command interpretation procedures.

In general the procedures return only if successful and call Errors with an appropriate error code
otherwise. As previously explained, the default handling for these errors consists of backing up control to
the beginning of the current phrase and permitting the user to replace or modify the phrase. Also, these
procedures interpret only the phrase itself, not the terminating character. It is the caller’s reponsibility to
check the terminator if required.

GetNumber(cs, radix [10]) = number
Returns the next phrase as a number in the specified radix. If an error occurs, Errors(cs, ec) is called
with one of the following error codes:

ecEmptyNumber The phrase is empty.

ecNonNumericChar The phrase contains a character that is not a digit in the specified
radix.

ecNumberOverflow The number overflows 16 bits.

GetString(cs, PhraseTerminator [default], Help [], helpArg [], Echo [default]) = string

Command Scanner Package July 14, 1977 19

Cleared version of May 24, 1981

Returns the next phrase as a BCPL string. The optional arguments, if supplied, are passed to
GetPhrase. The string is allocated from the same zone used to create cs.

GetFile(cs, ksType, itemSize, versionControl, hintFp, errRtn, zone, logInfo, disk) = stream
Calls OpenFile on the file whose name is the next phrase. All the arguments after cs are optional and
are defaulted precisely as in OpenFile. If the file cannot be opened, calls Errors(cs, ecCantOpenFile).

Confirm(cs, string []) = true|false
Outputs the message "[Confirm]" preceded by the string if supplied. Then inputs a confirmation
character and returns true if it is "Y" or carriage return and false if it is "N". Any other (non-editing)
character causes Errors(cs, ecBadConfirmingChar) to be called. (Note that if Delete is typed,
Confirm will not return but rather the entire command will be aborted.)

GetKeyword(cs, kt, returnOnFail [false], PhraseTerminator [default]) = entry
Looks up the next phrase in the keyword table kt (described later) and returns a pointer to the
corresponding table entry. If the phrase is ambiguous, calls Errors(cs, ecKeyAmbiguous). If the
phrase is not found, normally calls Errors(cs, ecKeyNotFound); however, if returnOnFail is true then
returns zero in this case.

If a unique initial substring match occurs and the terminating character has not been echoed, appends
the remainder of the matching keyword to the command line and to the display as if it had been
typed in.

4. Keyword Package

This portion of the Command Scanner Package implements operations on an object called a Keyword
Table. It is independent of the rest of the package and does not make use of any of its facilities. However,
the CmdScanAux module does require the Keyword Package or some other package implementing
equivalent operations.

The Keyword Package consists of two principal modules. File KeywordInit.br contains procedures to
create and modify a keyword table, while Keyword.br contains procedures to look up keywords and to
enumerate and destroy the table. The reason for this division is to permit one to create all needed keyword
tables at program initialization time and then to discard the code (which accounts for more than half the
total size of the package).

This package requires the StringUtil module of the Strings package, which in turn requires the ByteBlt
package.

All keyword table operations except CreateKeywordTable are actually accessed through the Calls
mechanism (Call0, Call1, etc.), so alternate implementations of the same interface are possible. In
particular, the CmdScanAux module requires only that the LookupKeyword and
EnumerateKeywordTable operations be provided.

A keyword table is an ordered set of <key, entry> pairs. The keys are BCPL strings and are maintained in
alphabetical order for efficient lookup. The entries are fixed-length records whose interpretation is not
defined by the package. While the lookup operation is efficient, the insert and delete operations are not, so
this package is not suitable for maintaining large dictionaries or symbol tables. Its principal use is
maintaining tables of keywords for applications such as command interpreters.

Procedures contained in the KeywordInit module are:

CreateKeywordTable(maxEntries, lenEntry [1], zone [sysZone]) = kt
Creates and returns a keyword table (kt) capable of holding a maximum of maxEntries entries of
lenEntry words each. The keyword table is allocated from the supplied zone and is initialized to
empty.

Command Scanner Package July 14, 1977 20

Cleared version of May 24, 1981

InsertKeyword(kt, key) = entry
Inserts the supplied key (a BCPL string) into the keyword table kt and returns a pointer to the
corresponding entry, which is initialized to all zeroes. The key string is copied; storage for the copy is
obtained from the zone passed to CreateKeywordTable. It is the caller’s responsibility to
appropriately initialize the contents of the entry. If the keyword table is full or a duplicate entry is
inserted, SysErr is called.

DeleteKeyword(kt, key)
Deletes the specified key (and its corresponding entry) from the keyword table kt. It is the caller’s
responsibility to dispose of any allocated objects pointed to by the deleted entry. If the key is not
present in the table, SysErr is called.

Procedures contained in the Keyword module are:

LookupKeyword(kt, key, lvTableKey []) = entry
Looks up the supplied key in the keyword table kt, returning a pointer to the corresponding entry if
successful and zero if unsuccessful. For a successful lookup, the supplied key must either completely
match a key in the table or be an initial substring of exactly one key. Upper- and lower-case letters
are considered equivalent.

If lvTableKey is supplied, a pointer to the full text of the matching keyword is stored in
@lvTableKey if either a successful match or an ambiguous substring match occurs (zero is stored
otherwise). In the case of an ambiguous substring match, the key stored is the first one that matches.
This string is the one actually kept in the table (not a copy), so the caller must not modify it.

EnumerateKeywordTable(kt, Proc, arg)
Calls Proc(entry, kt, key, arg) for each entry in the keyword table kt. The called procedure may
modify the entry but must not insert or delete keys.

DestroyKeywordTable(kt)
Destroys the keyword table kt, returning the table object and all keys to the zone from which they
were allocated. It is the caller’s responsibility to dispose of any allocated objects pointed to by entries
in the table.

Additionally, the following procedure (defined in Keyword.br) may be of interest:

BinarySearch(key, tbl, lenTbl, Compare) = index
Searches for key in the sorted table tbl, which has entries numbered zero to lenTbl-1 (inclusive). The
comparison procedure Compare(key, tbl, i) is expected to compare key against entry i in the table and
return a negative number if the key is "less than" the entry, zero if "equal", or a positive number if
"greater than". All knowledge of the format of key and tbl is vested in the Compare procedure.

If the requested key is found, BinarySearch returns the index of the matching entry in the table. If
the key is not found, -i-1 (= not i) is returned, where i is the index of the first entry greater than the
requested one (i.e., the key before which the requested key should be inserted).

Command Scanner Package July 14, 1977 21

Cleared version of May 24, 1981

Bcpl Context Package

A tiny software package is available that provides facilities for managing multiple execution contexts for
Bcpl procedures. A "context", as used here, is a region in which some part of a Bcpl stack is stored,
including a "resume address" at which execution in the context can be resumed. Contexts may be strung
together on "context lists." Such a list is "called" with CallContextList, which resumes the first context on
the list until it "Block"s, then resumes the next context on the list, etc. Typically, each context that is
resumed will execute a test to see if it really has work to do, and if not immediately Block again. Because
running down the list resuming contexts is extremely rapid (the cost of switching between contexts is only
14 instructions), it is feasible to maintain rather large clouds of contexts in this way.

The package also includes an optional, very rudimentary time-slicing scheduler whose purpose is to reduce
the frequency (and hence the cost) of context switches among "active" contexts.

The relevant files are contained in Context.dm. The basic context package consists of files Context.br,
which contains about 50 instructions that must always be resident, and ContextInit.br, which contains
initialization code that may be discarded after all contexts have been initialized. The optional time-slicing
scheduler extension consists of ContextSched.br (resident, about 30 instructions), and ContextSchInit.br
(initialization). The sources for these may be found in ContextSource.dm, which also includes a set of
command files and Contextex.Bcpl, the example program given at the end of this writeup. A Nova version
of this package is available.

1. Basic Context Package

ctx=InitializeContext(region, length, proc, extraSpace [0])
This procedure initializes a context, using a block of storage starting at address "region," of length
"length" for the stack and sundry other information. The "proc" argument specifies a procedure to
call the first time the context is resumed. The optional parameter "extraSpace" allows the context to
contain other information of the user’s choosing.

The result of the procedure is a CTX structure:
 structure CTX:
 [
 Next word //Pointer to successor context
 Stack word //Current stack pointer
 StackMin word //Stack limit
 user word extraSpace //For user’s purposes
 stackArea word remaining //The stack area
]

The caller is expected to build context lists by chaining through the Next entries. InitializeContext
sets Next to zero. Note that this way of managing context lists is consistent with the conventions used
in the Alto Queue package.

The "caller’s frame" pointer in the first frame of the context is initialized to zero. This enables
programs that enumerate stacks (e.g., the Overlay package) to know when to stop.

CallContextList(ctx)
This function resumes each context on the list headed by ctx linked through CTX.Next entries. Each
context executes until it calls the procedure Block. When the list is exhausted (a zero Next value
terminates the list), CallContextList returns. CallContextList will never return if the list is linked into
a ring.

Context Package May 21, 1977 22

Cleared version of May 24, 1981

The first time a context is encountered by CallContextList, the procedure given by the "proc"
argument of InitializeContext is called, with the context itself as its argument. Any other parameters
required to distinguish instances of contexts may be passed as an "extraSpace" block, which begins at
ctx!3.

CallContextList is reentrant, and may be called from within an interrupt. This permits one to have
hierarchies of contexts (with preemptive priority) simply by running all contexts of a given priority at
an appropriate interrupt level (note that the interrupt necessary to cause execution of such contexts
may be either hardware- or software-initiated). This is accomplished most conveniently by means of
the Bcpl Interrupt Interface, described separately. Note that contexts running at different priority
levels must protect common data bases and critical sections, whereas contexts at the same level are
free from race conditions so long as they don’t call Block from within critical sections.

Block()
Ceases execution of the calling context. Execution resumes the next time the context is encountered
on some list by CallContextList.

If Block is called outside of any context (that is, no call of CallContextList is currently in progress), it
returns immediately.

For debugging purposes, two statics defined in Context.br are of interest: CtxRunning contains the address
of the context currently running, and CtxCaller points to the frame for the current invocation of
CallContextList.

2. Time-Slicing Scheduler Extension

While the cost of switching between contexts is very small, in a system with many contexts the effective
cost of a call to Block may be quite large due to the sheer number of other contexts that are resumed before
control returns from this call to Block. Typically, most contexts are "waiting" rather than "active"; i.e.,
they are calling Block from within a loop that is waiting for some "wakeup" condition to occur. On the
other hand, there are often one or two "active" processes that are performing some useful, long-running
computation. For proper operation of the context package, it is necessary that such processes give up
control reasonably often. But it is clearly wasteful to do so too often.

This extension to the basic context package introduces a new primitive called Yield, which is similar to
Block except that it does not always actually give up control (i.e., sometimes it just returns immediately).
Specifically, if the present context has been executing for less than one time slice, Yield returns
immediately. In this implementation, the time slice is between 17 and 34 milliseconds.

Thus, Block and Yield are both procedures for relinquishing control, but with slightly different
interpretations. Block should be called from within wait loops, whereas Yield should be called from within
code that is doing "useful" computation. In the latter case, if the present context’s time slice has not
expired, Yield returns immediately after executing only three instructions.

The time-slicing scheduler must be initialized by calling InitContextSched(), whose code may subsequently
be discarded. Yield behaves the same as Block until this initialization has been performed.

3. Example

The following trivial program initially establishes two contexts and chains them together into one list. One
context (running CommandProc) simply blocks until something is typed on the keyboard, then treats the
typein as a command. The second waits for an Ethernet message to arrive, and types out "Message
arrived."

Context Package May 21, 1977 23

Cleared version of May 24, 1981

When the letter "S" is typed to CommandProc, a new context is created to run TimerProc. Each instance
of a TimerProc context has associated with it an identifying integer N (stored in the extraSpace word
Ctx!3) which it prints out at intervals of N seconds.

external [InitializeContext; CallContextList; Block
 SerialNumber; Ws; Wns; Gets; Endofs; keys; dsp
 InitializeZone; Allocate]
manifest RTC=#430
manifest EPLoc=#600
manifest EICLoc=#604
manifest EIPLoc=#605
manifest ESLoc=#610
manifest SIO=#61004

static [CtxZn; CtxHead; NumTimeProcs=0]

let main() be
 [
 let z=vec 10000; CtxZn=z // Zone to allocate contexts from
 InitializeZone(CtxZn,10000)
 let s1=vec 200
 let s2=vec 200

 CtxHead=InitializeContext(s1, 200, CommandProc)
 let next=InitializeContext(s2, 200, EtherProc)
 @CtxHead=next

 CallContextList(CtxHead) repeat
]

and CommandProc() be
[
Ws("*n**")
while Endofs(keys) do Block() // Block until user types something
let Char=Gets(keys)
switchon Char into
 [
 case $S: case $s:
 [
 Ws("*nStart another TimeProc")
 let region=Allocate(CtxZn,200) // Create new context
 let ctx=InitializeContext(region,200,TimeProc,1)
 NumTimeProcs=NumTimeProcs+1
 ctx!3=NumTimeProcs // Parameter for this instance
 ctx!0=CtxHead; CtxHead=ctx // Link into context list
 endcase
]
 case $Q: case $q: [Ws("Quit"); finish]
 default: Ws("?")
]
] repeat

and TimeProc(Ctx) be
 [
 let interval=Ctx!3 // Get interval from context

Context Package May 21, 1977 24

Cleared version of May 24, 1981

 let f=@RTC+27*interval // That many seconds from now
 until (@RTC-f) gr 0 do Block()
 Wns(dsp,interval) // Type our interval
] repeat

and EtherProc() be
 [
 StartIO(3) //Reset Ether
 @ESLoc=SerialNumber
 let buf=vec 50
 @EICLoc=50
 @EIPLoc=buf
 @EPLoc=0
 StartIO(2) //Start input
 until @EPLoc ne 0 do Block()
 if (@EPLoc rshift 8) eq 0 then Ws("Message arrived")
] repeat

and StartIO(c) be (table [SIO; #1401])(c)

4. Revision History

November 17, 1976: Calling Block() when not in a context is now a no-op rather than giving rise to weird
crashes; InitializeContext sets the first frame’s "caller’s frame" pointer to zero.

May 21, 1977: Time-slicing extension added; CallContextList speeded up.

Context Package May 21, 1977 25

Cleared version of May 24, 1981

Diablo Printer Package

This package provides a standard stream interface to the Diablo Printer. The facilities provided are limited
to simulation of a conventional Ascii terminal using a fixed-pitch font. The software is derived from a
version of the Diablo primitives used in Bravo, courtesy of Greg Kusnick.

The package consists of a single binary file, DiabloPrinter.br. The source for this, DiabloPrinter.bcpl, is
included in DiabloPrinter.dm, which also contains a test program, DiabloType.bcpl, which types an
arbitrary text file on the Diablo printer.

Besides using standard operating system facilities, this package makes use of the Context and Timer
packages. If one desires not to include the Context package, it suffices to define an external procedure
Block() that returns immediately.

There is only one externally-callable procedure, which works as follows:

CreateDiabloStream(charWidth [6], charHeight [8], pageWidth [450], pageHeight [528], leftMargin [0],
zone [sysZone]) = dps
Creates a Diablo Printer Stream (dps) using the supplied parameters, all of which are optional.
Width and height arguments are in units of 1/60 and 1/48 inch respectively, and cannot be greater
than 1023. charWidth and charHeight define the width and height of each character, including inter-
character and inter-line spacing. The defaults are appropriate for standard typewheels such as Elite
12. pageWidth and pageHeight define the printing area on each page. The defaults are appropriate
for 7.5 inches wide (assuming half-inch margins) by 11 inches high (no margins). With the standard
font size, this permits 75 characters per line and 66 lines per page. leftMargin specifies the position of
the logical left margin relative to the extreme left limit of the carriage (note that leftMargin is not
included in pageWidth). The zone argument specifies the zone to be used to allocate the stream
structure.

The following operations are defined on a Diablo Printer Stream:

Puts(dps, char)
Prints the specified character. All printing characters (Ascii codes 40-177) are typed with whatever is
in the corresponding position on the typewheel, with the exception of "_" which is printed by
overstriking "-" and "<" (since typewheels tend to have the underline character in this position).

The following non-printing characters (Ascii 0-37) are interpreted to provide the specified functions.
All other non-printing characters are ignored.

15 (return) Returns the carriage to the logical left margin and advances the paper to
the next line.

11 (tab) Positions the carriage to the next multiple of 8 character positions.

10 (backspace) Backs up the carriage by one character position (ignored if already at the
logical left margin).

14 (form feed) Advances the paper to the beginning of the next page. (The beginning of
the first page is defined by where the paper was positioned when
CreateDiabloStream was called).

If the right margin is exceeded, an automatic carriage return is executed.

If a hardware problem is detected, Errors(dps, code) is called, where code is
ecDiabloPrinterNotReady if an operation did not complete within a reasonable time (one second)
and ecDiabloPrinterCheck if the printer reported a "check" error. The default Errors procedure is

Diablo Printer Package December 11, 1976 26

Cleared version of May 24, 1981

SysErr. If the Errors procedure returns, the operation is retried. Note that the printer must be reset
in order to proceed after a "check" error (see below).

Stateofs(dps) = true or false
Returns true if the hardware is reporting that it is ready to execute a new operation. Note that this is
not a guarantee that an attempt to print a character will succeed, since printing a character generally
involves several successive operations.

Resets(dps)
Resets the printer hardware and restores the carriage to the physical left margin. This operation must
be performed to recover from a "check" error.

Closes(dps)
Destroys the stream. This includes returning the stream structure to the zone from which it was
allocated.

Diablo Printer Package December 11, 1976 27

Cleared version of May 24, 1981

32-by-32-bit division routine

There is now an assembly code routine available to compute the quotient and remainder from the division
of one 32-bit 2’s complement number by another. This is not a trivial operation (see Knuth, vol. 2, pp. 237
ff.). The calling sequence is
 flag = DPDIVIDE(numerator, denominator, quotient, remainder)

where each of the four arguments is a pointer to a 2-word vector containing a 32-bit number (high-order
word first). If overflow would occur, which can happen only when the denominator is zero, DPDIVIDE
returns true and does not affect the quotient or remainder vectors. If no overflow occurs, DPDIVIDE
returns false and stores the appropriate results in the quotient and remainder vectors. The remainder
always has the same sign as the denominator, and its magnitude lies in [0, abs(denominator)); the quotient
is positive if the numerator and denominator have the same sign, negative (if not zero) if they have
different signs. DPDIVIDE takes about 5 to 10 times as long as an ordinary 32-by-16-bit division: it does
NOT use repeated subtraction and shifting.

DPDIVIDE May 15, 1975 28

Cleared version of May 24, 1981

Pup EFTP Package

The routines described here implement the EFTP protocol, a simple ack-per-packet protocol built on level
1 of Pup. It is capable of sending blocks of data reliably through a connection in one direction, with
modest performance and using substantially less code than the Byte Stream Protocol. The EFTP protocol
is used by the EFTP subsystem to send files among machines, by the PSpool system on Maxc and the Alto
programs Bravo and Empress to send files to Press printers, and by gateways to send boot files and update
internal data bases.

The EFTP protocol is documented in <Pup>EFTPSpec.press. The EFTP package is contained in a dump
file <Alto>EFTPPackage.dm, which contains the following files:

PupEFTP.decl: a "get" file containing definitions used within the package and sometimes also
needed by clients.

PupEFTPSend.br: procedures for sending data (SendEFTPBlock, SendEFTPEnd).

PupEFTPReceive.br: procedures for receiving data (ReceiveEFTPBlock).

PupEFTPCommon.br: procedures needed for both sending and receiving (InitEFTPPackage,
OpenEFTPSoc, CloseEFTPSoc, GetEFTPAbort, SendEFTPAbort).

The source file for these routines are contained in <AltoSource>EFTPSources.dm (along with the sources
for the EFTP subsystem). This documentation assumes you are familiar with the Pup package, and its
supporting environment. All timeouts are in units of 10 milliseconds; a timeout of -1 means infinity.

1. The Routines

InitEFTPPackage(zone)
This procedure is currently a no-op, but may be used in the future, should it become necessary to
initialize and allocate free storage within the package.

OpenEFTPSoc(soc, lclPort [defaulted], frnPort [zeros])
Opens a Pup level 1 socket and creates an EFTPSoc. "soc" should point to a block of size
lenEFTPSoc. (The package defines an external static, lEFTPSoc, whose value is lenEFTPSoc.)

CloseEFTPSoc(soc)
Releases any PBIs held in the EFTP part of soc, and then closes the Pup level 1 socket.

SendEFTPBlock(soc, addr, count, timeout) = byte count or error code
Constructs an EFTP data packet from the information in soc, copys count bytes beginning at addr
into the data part of the Pup, and transmits it. This routine manages retransmissions, returning
count if the packet is acknowledged within the timeout, or a negative error code if some abnormal
condition occured.

ReceiveEFTPBlock(soc, addr, timeout) = byte count or error code
Copies the data from the next in-sequence data packet into memory beginning at addr and returns
the number of bytes received (532 max), or a negative error code if some abnormal condition
occured. If timeout is -1, ReceiveEFTPBlock will wait indefinitely until the next packet is available,
otherwise it will return an error if no packet becomes available within the timeout. If the next in-
sequence packet is an EFTP End, this routine will perform the end sequence and return a byte
count of zero. If the next in-sequence packet is a data packet containing zero data bytes, the routine
discards the packet and waits for the next one (to avoid returning a spurious EFTP End indication.)

Pup EFTP Package June 3, 1979 29

Cleared version of May 24, 1981

ReceiveEFTPPacket(soc, timeout, lvPbi) = byte count or error code
This routine is used in the implementation of ReceiveEFTPBlock, but it may also be called directly.
It waits for the next valid EFTP packet. If the packet is a valid in-sequence data packet,
ReceiveEFTPPacket returns its byte count (as above), and places the pbi containing the packet in
@lvPbi. It is the responsibility of the caller to release this pbi (using ReleasePBI) after digesting its
contents. In all other cases, the return code is the same as for ReceiveEFTPBlock, except that one
more error code, EFTPNotFirstSynch, is possible. In these non-data cases, @lvPbi is not changed.
A zero-length data packet is indicated by a zero result, and a non-zero @lvPbi (caller should zero
this cell first.)

SendEFTPEnd(soc,timeout) = true/false
Initiates an end sequence with the EFTP receiver, managing retransmissions, and returns true if the
sequence is completed correctly within the timeout.

GetEFTPAbort(soc) = PBI
Returns a pointer to the most recently received EFTPAbort, should the user want to look at it. If no
abort has been recieved, zero is returned. The pointer remains valid until the next call of any
procedure in the EFTP package.

SendEFTPAbort(soc, abortCode, abortString)
Builds and transmits an EFTP Abort packet with abortCode and abortString as data.

2. Error Codes

EFTPTimeout = -1
The requested operation did not complete within the timeout specified in the call. Returned by
SendEFTPBlock, ReceiveEFTPBlock, ReceiveEFTPPacket and SendEFTPEnd.

EFTPAbortReceived = -2
An EFTP Abort was received while performing the requested operation. GetEFTPAbort(soc) will
return a pointer to the abort packet. Returned by SendEFTPBlock, ReceiveEFTPPacket and
ReceiveEFTPBlock.

EFTPAbortSent = -3
A serious protocol violation was noticed while performing the requested operation. There is no
hope of continuing. An EFTP Abort was sent to the other end. Returned by SendEFTPBlock,
ReceiveEFTPBlock, ReceiveEFTPPacket and SendEFTPEnd.

EFTPResetReceived = -4
While waiting for the next in-sequence data packet in an ongoing transfer, a data packet with
sequence number zero was received from the other end. Returned by ReceiveEFTPBlock and
ReceiveEFTPPacket.

EFTPNotFirstSynch = -5
While waiting for the first in-sequence data packet to begin a transfer, a data packet with a non-zero
sequence number, or an otherwise invalid packet, was received instead. Returned by
ReceiveEFTPPacket only -- ReceiveEFTPBlock continues to wait for a good packet upon receipt of
this code.

3. Revision history

June 3, 1979

Pup EFTP Package June 3, 1979 30

Cleared version of May 24, 1981

PupEFTP module broken into three parts: PupEFTPSend, PupEFTPReceive, and PupEFTPCommon; get
"Streams.d" removed from PupEFTP.decl; lEFTPSoc static added.

Pup EFTP Package June 3, 1979 31

Cleared version of May 24, 1981

Alto Ethernet Boot Package

The EtherBoot package (file EtherBoot.br) consists of an Alto Ethernet boot loader and a small amount of
additional code enabling a program to terminate execution of itself and boot-load a new program from the
Ethernet.

EtherBoot(bfn, returnOnFail [false], host [0])
Copies a small (256 word) Ethernet boot loader into low memory and transfers control to it with
’bfn’ (boot file number) as an argument. The loader begins broadcasting "Mayday" messages with
bfn as data, on the local Ethernet. A server that hears this message and has a copy of the boot file
matching bfn will connect to the Alto and send the file by means of the EFTP protocol.

If returnOnFail is false or omitted, failure to establish contact with a boot server within about 45
seconds will cause EtherBoot to stop trying and to jump into an infinite loop. A manual boot is
required to recover from this. However, if returnOnFail is true, EtherBoot will return in this case.
At the time of the return, pages 0 through 2 will have been clobbered and interrupts will be
disabled, so the caller must save and restore this state. The following slice of code accomplishes
this:

let saveMem = vec #1400
let MyMoveBlock = MoveBlock
MyMoveBlock(saveMem, 0, #1400)

EtherBoot(bfn, true)

MyMoveBlock(0, saveMem, #427)
MyMoveBlock(#431, saveMem+#431, #570-#431)
MyMoveBlock(#600, saveMem+#600, #1400-#600)
EnableInterrupts()

This code is careful not to overwrite the page 1 cells used to maintain the real time clock (430 and
570-577). The reason for making a local copy of the MoveBlock static is that statics are usually
allocated in page 2, which is clobbered by EtherBoot.

If host is supplied and nonzero, EtherBoot will send its boot file request to the specified host (which
must be in the range 1 to #377) rather than broadcasting it.

The boot loader contained in this package is identical to the one invoked when the Alto’s boot button is
pressed with the <bs> key and zero or more other keys down. However, note that calling EtherBoot differs
from actually booting the Alto in one way: tasks are not reinitialized to run in the Rom, since no hardware
reset is performed.

Mayday servers keep copies of a number of useful programs in boot format (see BuildBoot.tty for how to
create a bootable file). For example, the Executive boots DMT from the Ethernet when the Alto disk is
turned off. The association between boot file numbers and boot files may be determined by means of the
NetExec’s ’Keys’ command (see the NetExec documentation).

Ether Boot January 2, 1978 32

Cleared version of May 24, 1981

Ethernet Receiver Exerciser

Diagnostic programs (such as MadTest, DiEx, TriEx, and TFU) often wish to run as many other tasks as
possible to provoke failures caused by inter-task interference. This package runs the Ethernet receiver in
promiscuous mode and copies every packet it hears into an internal buffer. The package consists of one
file, EtherRcvr.br with one external procedure:

EtherRcvr(on) = true or false
If ’on’ is true the Ethernet receiver is setup to receive every packet on the Ether. It returns
true if the receiver was not on and false if a previous call to EtherRcvr has already started the
receiver. If ’on’ is false the receiver is shut down. It returns true if the receiver was on and
false if it was already off. Packets are read into an internal buffer and discarded. Note that it
is harmless to turn the receiver on when it is already on, or off when it is already off. To
minimize overhead, EtherRcvr is written in Nova assembly language and uses interrupts.
The static etherStatVec points to a 4 word statistics vector with the following format:

structure ESV:
 [
 good word 2 //# of packets rcvd with good status
 bad word 2 //# of packets rcvd with bad status
]

EtherRcvr June 21, 1978 33

Cleared version of May 24, 1981

Pup Event Report Server

This package (file PupERPServ.br) implements a Pup Event Report Server -- a process that listens for
Event Report packets and writes them to a file. It will run on Altos and Novas, and uses the Pup package
through level 1 (plus the packages that the Pup package uses, in particular the Context package). The
server runs as a context (in the sense of the Context package), and you can start up as many instances of the
server as you wish, each listening on a different socket and writing to a different file. To instantiate a
server call

CreateERPServer(zone, ctxQ, port, diskStream)
which will create a server and queue it on ’ctxQ’, getting space from ’zone’ (approximately 1000
words). The server will listen on ’port’ for event reports and append them to ’diskStream’ (that is, it
will positon diskStream to the end and then start writing event entries). The stream’s item size
should be a byte (ie open the file charItem).

Stopping a cloud of these servers is accomplished by two statics which the user must define:
quitCount which is incremented for each server started
quitFlag which all servers watch

The idea is to initialize quitFlag to false and quitCount to zero. When finishing, set quitFlag to true and
Block until quitCount goes to zero, then finish. Each server closes its own stream when finishing.

The event file is a sequence of entries with the following format:
entry length in bytes 2 bytes - including these two
event Pup source port 6 bytes
event Pup ID 4 bytes
event Pup contents remaining bytes

Event Report Server December 26, 1978 34

Cleared version of May 24, 1981

Event Report

The EventReport package provides a convenient interface to the Pup Event Report protocol (see relevant
Pup documentation elsewhere for details). This protocol is used for logging errors of various kinds (e.g.,
parity errors) and for keeping records of resource utilization (e.g., number of pages in a printer run).

EventReport(eventV, eventVLength[0], eventPort[ErrorLogAddress], retryCount[3], timeOut[3*27])
This subroutine reports an event recorded in the vector eventV. The remaining arguments (with
defaults shown in brackets are): eventVLength, the number of words in the event recorded in
eventV; eventPort, a pointer to a Port (Pup terminology and format) to which the event should be
sent; retryCount, the number of times the transmission will be attempted; and timeOut, the time to
await a response from each retry before giving up (in units of 1/27 second).

EventReport returns "true" if the event was successfully logged, or "false" if it was unable to log the
event (perhaps because the Alto has no Ethernet).

Event Report February 7, 1977 35

Cleared version of May 24, 1981

FancyTemplate Package

The FancyTemplate package is a glorified, expanded, and slowed-down version of the Template package
by Taft, which in turn was a tightened-up and speeded up version of the Format package by your humble
servant. I hope the iteration has converged.

There are three externally-callable procedures: PutTemplate, PutTemplateWithHelp, and
PutTempStrmWithHelp. It also has two procedures of interest to a user-supplied "Oracle" procedure:
TemplateGetArg and PutNum. The externally-callable procedures are special cases of
PutTempStrmWithHelp, so we’ll begin there.

PutTempStrmWithHelp(Oracle, stream, templateStream, par1, par2, ..., parN)

Copies "templateStream" to "stream". Each of these must be a Bcpl character stream. Within the
template stream may appear zero or more escape sequences of the form:

$ modifiers command

For each of these, the next parameter (starting at "par1") is substituted, with conversion as specified
by the escape sequence. There can be up to 20 parameters.

An escape sequence consists of a dollar sign, followed by an optional modifier sequence, followed by
a one- or two-letter command (upper and lower case are equivalent). There should not be any spaces
or other extraneous characters within the escape sequence. A dollar sign may be included literally in
the template by writing "$$".

The defined escape sequences are as follows. "#" stands for the optional modifier sequence (to be
explained shortly).

$S Treat the parameter as a Bcpl string.

$US Treat the parameter as an unpacked string. This is a vector consisting of a
character count in the first word followed by that number of characters right-
justified in succeeding words.

$C Treat the parameter as a single right-justified character.

$#D Output the parameter as a decimal integer.

$#O Output the parameter as an octal integer.

$#X Output the parameter as a hexadecimal integer.

$#B Output the parameter as a binary integer.

$P Treat the parameter as a procedure, passing it the stream and the next parameter
as arguments (hence a $P uses up two of PutTempStrmWithHelp’s parameters).

In the case of numeric output commands (namely $D, $O, and $B), a modifier sequence may be
included between the dollar sign and the command. These modifiers further control the
interpretation and formatting of the output.

One kind of modifier is a decimal number (of one or more digits). If present, it specifies the
minimum field width to be used in outputting the number. If the number contains fewer digits than
specified for the field width, then leading fill characters (normally spaces; see below) are supplied.
However, if the number contains more digits than will fit in the field, the width specification is
ignored and as many digits as necessary are printed. The default field width is one.

FancyTemplate Package January 24, 1978 36

Cleared version of May 24, 1981

Other modifiers consist of single letters and are as follows:

U Treat the parameter as an unsigned rather than a signed integer. (Generally one
should invoke this modifier when outputting numbers in octal or binary.)

E Treat the parameter as a double-precision (32-bit) integer (mnemonic
"Extended"). In this case, the argument is a pointer to a two-word vector
containing the integer to be printed, with the high-order 16 bits in the first word
and the low-order 16 bits in the second. Double-precision numbers may be
treated as either signed or unsigned.

Fx Use the character "x" for leading fill, when necessary, rather than space.

For example, the escape sequence "$12UEF0O" will output an unsigned, double-precision octal
number, right-justified in a 12-digit field, with leading zeroes printed as zeroes rather than spaces.

PutTempStrmWithHelp will call Oracle(aS) if it encounters an escape sequence it doesn’t understand.
aS is a structure containing the current state, constructed as follows:

structure AS: // argument structure

[

resultStream word

args word // pointer to argument vector

nArgs word // number of arguments in argument vector

templStream word // stream containing rest of template

argIndex word // args!argIndex is next arg

char word // last escape character, the one that caused confusion

radix word // numeric field (in range [2...16])

width word // minimum field width

justifyLeft word // true if left-justified, false otherwise

signed word // true if signed or packed, false if unsigned or unpacked

double word // true if double precision, false otherwise

fill word // fill character to replace leading spaces

]

PutTempStrmWithHelp expects Oracle to handle the escape sequence. Toward this end Oracle can
read characters from templStream and write characters to resultStream. It can also call
PutTempStrmWithHelp recursively, or it can call TemplateGetArg(aS) to get the next arg, or
PutNum(aS) to get the next arg and write it as a number according to the parameters in aS.

If Oracle returns true, then all is well and template processing continues. If not, or if there aren’t
enough parameters to fill all the escape sequences in the template, then SysErr is called.

PutTemplateWithHelp is like PutTempStrmWithHelp, except that it uses a Bcpl string for a template
instead of a stream. PutTemplate is like PutTemplateWithHelp but it omits Oracle, internally supplying
FalsePredicate for an Oracle.

FancyTemplate Package January 24, 1978 37

Cleared version of May 24, 1981

FindPkg - a fast file searching package

This package uses the Alto microinstruction RAM, if available, to search standard Alto files for certain
simple kinds of patterns at very high speed (it normally keeps up with the disk). It is written in Bcpl.

Note: this release is incompatible with the previous one in an important way: it uses the Alto Operating
System’s ScanStream facility for scanning the file, rather than the (now defunct) ScanFile package. This
required a change to the way you initialize a search (FindInit, now called FindInitScan) and the way you
clean up afterwards.

To use FindPkg, one first "compiles" the pattern into specialized microcode which is loaded into the
RAM, or into tables which are interpreted by software if no RAM exists, and then scans as many files as
desired using this microcode. To compile the pattern, call
 FindCompile(pattern, chartab[, wildchar, fuzz, outstream, storeproc, regtable, lvTables, zone])
where all the arguments beyond chartab are optional (may be omitted, or supplied as 0). The arguments
have the following significance.

Pattern is a Bcpl string, the pattern being searched for. The search ignores the high-order bit of
characters in both the file and the pattern. In addition, the following 3 arguments affect how the
pattern is interpreted. The maximum length of the pattern is the number of R and S registers
available (see below), rounded down to an even number if necessary.

Chartab is a 200b-word array which specifies how characters in the file are to be interpreted.
Chartab!j specifies how occurrences of the character whose code is j are to be treated. The possible
contents of each chartab entry are: classSkip, meaning ignore the character completely; classOther,
meaning that the character is to be taken literally; or a code between 0 and 177b inclusive, meaning
that the character is to be treated as though it were that character (which, in turn, must be of
classOther in the table). For example, to cause lower case letters in the file to be treated as though
they were the corresponding upper case letter, set chartab!$a = $A, etc.

Wildchar is a character whose appearance in the pattern string means "match any character in the
file". For example, if the pattern string is "A?B" and wildchar is $?, any occurrence of A followed
by any character followed by B in the file will be considered an occurrence of the pattern. If
wildchar is not a character code, it is ignored, and all characters in the pattern are taken literally.
Wildchar defaults to -1 (take the pattern literally).

Fuzz is the number of mismatches between the pattern and the corresponding string in the file that
will be tolerated. For example, if the pattern is ABCD, then with fuzz=0, only the string ABCD
in the file (after interpretation through chartab) will match; with fuzz=1, the strings ABCX,
ABXD, AZCD, or ZBCD would match, and so on. Note that fuzz only applies to replacement
mismatches, not insertions (e.g. ABXCD), deletions (e.g. ABD), or transpositions (e.g. ABDC).
Fuzz defaults to 0 (exact match required).

Outstream, if non-zero, is a character stream on which FindCompile will write a listing of the
microcode it generates. This is only useful for debugging. Outstream defaults to 0 (no listing).

Storeproc determines what will be done with the microcode. Storeproc=false means discard it
(although a listing will still be produced if outstream is non-zero). Storeproc=true means store it
in the RAM for execution. Otherwise, FindCompile calls storeproc(location, insvec) for each
instruction it generates, where insvec is a 2-word vector containing the microinstruction. Storeproc
defaults to true (store for execution).

Regtable is a 4-word bit table that specifies what R and S registers are available for use by the
microcode. These registers must not be used by other tasks, or by the Nova instruction set,
although they may be used by BitBlt or other Alto-specific instructions. Also, registers 14b
through 16b are assumed usable, and should not appear in the bit table. Regtable defaults to a
table that lets the microcode use register 17b and registers 41b through 76b, which will
accommodate a 30-character pattern.

File searching package October 29, 1980 38

Cleared version of May 24, 1981

LvTables is the address of a cell in which FindCompile will store the address of the table space it
allocates, or 0 if it did not need table space. After the search, your program should do something
like
 if tables ne 0 then Free(zone, tables)
where lvTables is lv tables and zone is the zone argument to FindCompile. If lvTables is
defaulted, your program is responsible for finding and freeing the table space some other way (e.g.
by providing special Allocate code for the zone, or by reinitializing the zone, neither of which is
applicable to sysZone).

Zone is a zone in which FindCompile will allocate table space if no RAM is available. This space
must remain allocated while doing the actual file search, but can (should) be freed after the search
is finished. Zone defaults to sysZone.

Note that the outstream, storeproc, and regtable arguments have rather specialized purposes; the usual call
on FindCompile will only supply pat, chartab, lvTables, and possibly wildchar, fuzz, and zone. The
awkward order of the arguments results from backward compatibility requirements.

FindCompile normally returns zero. If it encounters any difficulties, it returns a string which describes the
difficulty. This string is meant to be printed for the user, not interpreted by the calling program.

After calling FindCompile to load the RAM or set up the tables, one scans files as follows. First, create an
ordinary OS disk stream for the file to be searched, using OpenFile, CreateDiskStream, etc. To start
searching the file, call
 FindInitScan(stream, buf, bufsize, fa)
where st is the stream, buf is the address of a buffer of bufsize words, and fa is a file address (FA) structure
into which FindPkg will store each time it finds a match. FindInitScan returns an object called a scan
stream descriptor (SSD), which you need to save for cleaning up. Then to find each match in turn, call
 FindNext()
FindNext either finds the next match or scans to the end of the file. In the former case, it returns a non-
negative number that says how many characters of the pattern had been examined before it decided it had
a match, and stores the disk address, page number, and character position at that time into the fa given to
FindInit. For example, if the pattern is "ABCD" and fuzz=1, then if the file contains ABXD, FindNext
will stop after the D and return 4, while if it contains ABCX, it will stop after the C and return 3, since it
knows it has a match at that point regardless of the next character. If FindNext runs off the end of the file,
it returns -n-1 where n is the number of pages in the file. Your program should then call
FinishScanStream(ssd) to clean up the ScanStream data structures, where ssd is the SSD returned by
FindInitScan; close the disk stream; and call Free (as described above) to release any tables allocated by
FindCompile.

FindPkg consists of 5 files:
 FindNext.BR, containing the procedures FindInit and FindNext;
 FindNextAsm.BR, containing some assembly language procedures needed by FindNext;
 FindCompile.BR, containing the procedure FindCompile;
 FindCompMu.BR, containing some Alto microcode needed by FindCompile;
 FindPkgDefs.D, a Bcpl source file containing the definitions for the character classes.

File searching package October 29, 1980 39

Cleared version of May 24, 1981

FLOAT

FLOAT is a floating-point package for the Alto, intended for use with BCPL. (It uses standard Alto
microcode -- no special instructions are needed.) A microcoded version is also available, and is
documented in the last section. There are 32 floating-point accumulators, numbered 0-31. These
accumulators may be loaded, stored, operated on, and tested with the operations provided in this package.
’Storing’ an accumulator means converting it to a 2-word packed format (described below) and storing the
packed form.

In the discussion below, ’ARG’ means: if the 16-bit value is less than the number of accumulators, then use
the contents of the accumulator of that number. Otherwise, the 16-bit value is assumed to be a pointer to a
packed floating-point number.

All of the functions listed below that do not have "==>" after them return their first argument as their
value.

1. Floating point routines

FLD (acnum,arg) Load the specified accumulator from source specified by arg. See
above for a definition of ’arg’.

FST (acnum, ptr-to-num) Store the contents of the accumulator into a 2-word packed
floating point format. Error if exponent is too large or small to
fit into the packed representation.

FTR (acnum) ==> integer Truncate the floating point number in the accumulator and
return the integer value. FTR applied to an accumulator
containing 1.5 is 1; to one containing -1.5 is -1. Error if number
in ac cannot fit in an integer representation.

FLDI (acnum,integer) Load-immediate of an accumulator with the integer contents
(signed 2’s complement).

FNEG (acnum) Negate the contents of the accumulator.

FAD (acnum,arg) Add the number in the accumulator to the number specified by
arg and leave the result in the accumulator. See above for a
definition of ’arg’.

FSB (acnum,arg) Subtract the number specified by ’arg’ from the number in the
accumulator, and leave the result in the accumulator.

FML (acnum,arg) [also FMP] Multiply the number specified by ’arg’ by the number in the
accumulator, and leave the result in the ac.

FDV (acnum,arg) Divide the contents of the accumulator by the number specified
by arg, and leave the result in the ac. Error if attempt to divide
by zero.

FCM (acnum,arg) ==> integer Compare the number in the ac with the number specified by ’arg’.
Return

 -1 IF ARG1 < ARG2
 0 IF ARG1 = ARG2
 1 IF ARG1 > ARG2

FLOAT December 26, 1977 40

Cleared version of May 24, 1981

FSN (acnum) ==> integer Return the sign of the floating point number.
 -1 if sign negative
 0 if value is exactly 0 (quick test!)
 1 if sign positive and number non-zero

FEXP(acnum,increment) Adds ’increment’ to the exponent of the specified accumulator.
The exponent is a binary power. Thus
FTR(FEXP(FLDI(1,1),4))=16.

FLDV (acnum,ptr-to-vec) Read the 4-element vector into the internal representation of a
floating point number.

FSTV (acnum,ptr-to-vector) Write the accumulator into the 4-element vector in internal
representation.

2. Double precision fixed point

There are also some functions for dealing with 2-word fixed point numbers. The functions are chosen to
be helpful to DDA scan-converters and the like.

FSTDP(ac,ptr-to-num) Truncates the contents of the floating point ac and stores it into
the specified double-precision number. First word of the
number is the integer part, second is fraction. Two’s
complement. Error if exponent too large.

FLDDP(ac,ptr-to-num) Loads floating point ac from dp number. Same conventions for
integer and fractional part as FSTDP.

DPAD(a,b) => ip a and b are both pointers to dp numbers. The dp sum is formed,
and stored in a. Result is the integer part of the number.

DPSB(a,b) => ip Same as DPAD, but subtraction.

DPSHR(a) => ip Shift a double-precision number right one bit, and return the
integer part.

3. Format of a packed floating point number

 structure FP: [
 sign bit 1 //1 if negative.
 expon bit 8 //excess 128 format (complemented if number <0)
 mantissa1 bit 7 //High order 7 bits of mantissa
 mantissa2 bit 16 //Low order 16 bits of mantissa
]

Note this format permits packed numbers to be tested for sign, to be compared (by comparing first words
first), to be tested for zero (first word zero is sufficient), and (with some care) to be complemented.

4. Saving and Restoring Work Area

FLOAT has a compiled-in work area for storing contents of floating accumulators, etc. The static FPwork

FLOAT December 26, 1977 41

Cleared version of May 24, 1981

points to this area. The first word of the area (i.e. FPwork!0) is its length and the second word is the
number of floating point accumulators provided in the area. The routines use whatever pointer is currently
in FPwork for the storage area. Thus, the accumulators may be "saved" and "restored" simply by:
 let old=FPwork
 let new=vec enough; new!1=old!1 //Copy AC count
 FPwork=new
 ...routines use "new" work area; will not affect "old"
 FPwork=old
This mechanism also lets you set up your own area, with any number of accumulators. The length of work
area required is 4*(number of accumulators)+constant. (The constant may change when bugs are fixed in
the floating point routines. As a result, you should calculate it from the compiled-in work area as follows:
constant_FPwork!0-4*FPwork!1.) It is not essential that the length word (FPwork!0) be exact for the
routines to work.

5. Errors

If you wish to capture errors, put the address of a BCPL subroutine in the static FPerrprint. The routine
will be called with one parameter:
 0 Exponent too large -- FTR
 1 Exponent too large -- FST
 2 Dividing by zero -- FDV
 3 Ac number out of range (any routine)
 4 Exponent too large -- FSTDP
The result of the error routine is returned as the result of the offending call to the floating point package.

6. Floating point microcode

A microcoded version of the FLOAT package is also available. The microcode is from four to six times
faster than the assembly code. Execution times are about 80 microseconds for multiply and divide, and 40
microseconds for addition and subtraction. The file MicroFloat.DM is a dump-format file containing
MicroFloat.BR and MicroFloatMC.BR. These modules should be loaded with your program, along with
the LoadRam procedure, available separately as LoadRam.BR. The microcode RAM must be loaded with
the appropriate microcode. This is accomplished by calling LoadRam(MicroFloatRamImage) After this
call, the memory space used for MicroFloatMC.BR and LoadRam.BR can be released. Microfloat.BR
must remain resident, but it only takes up about 60 words. The floating point routines can also be invoked
as single assembly code instructrions, with op codes 70001 through 70021. The correspondence between
op codes and floating point operations is documented in MicroFloat.ASM.

In contrast to the assembly coded version, the microcode does not allocate any memory work space, and
any number of accumulators may be used. Four words of memory are needed for each accumulator, and
this memory space MUST be provided by the user by calling FPSetup(workArea), where workArea is the
block of memory to be used for mainintaining the ACS, and workArea!0 is the number of accumulators to
be used. The length of workArea must be at least (4*numACs)+1 words long. The contents of workArea
are not re-iitialized, so that reusing a previously used work area will have the effect of restoring the values
of the ACs to their previous state. The static FPwork will be set to the current workArea. So, "save" and
"restore" the accumulators by:
 let old=FPwork
 let new=vec (4*numACs)+1; new!0=numACs
 FPSetup(new)
 ...routines use "new" work area; will not affect "old"
 FPSetup(old)

Loading the RAM, calling FPSetup, and the (shorter) work area format are the only changes from the
assembly coded routines.

FLOAT December 26, 1977 42

Cleared version of May 24, 1981

FORMAT -- An Output Formatting Package

The file FORMAT (.SR for BCPL source, .BR for relocatable binary) contains a set of subroutines which
implement a reasonably nice set of output formatting primitives and a reasonably nice protocol for
invoking them. A call of the form

 FORMAT(S, F, V1, V2, ..., Vn)

will copy the BCPL string F into the BCPL string S, except that items in F delimited by angle brackets (<>)
will be interpreted as format specifications. For those, the format specification and the next input variable
Vi will determine what will be put into S. The current format specifications are:

<S> The variable is a BCPL string and is to be copied into S.
<UPS> The variable is an unpacked string (V!0 is the number of characters and V!1 through

V!(V!0) are the characters) to be copied into S.
<C> The variable contains a single ASCII character, right-justified.
<D> The variable is numeric, and should be represented as signed decimal.
<UD>unsigned decimal.
unsigned octal.
<OCT>unsigned octal.
<SB>signed octal.
<SOCT>signed octal.
<BIN>unsigned binary.

In addition, the format specifiers take two optional numeric parameters (numbers represented using BCPL
conventions) which give the minimum length and fill character to be used in the conversion. For example,
<OCT #20 $0> will produce an octal number at least 16 (and, in fact, at most 16) characters long, right-
justified and padded to the left with zeros.

FORMATN is exactly like FORMAT except that by a small subterfuge it supplies its own local string,
whose address it returns. This string will not change from one call of FORMATN to the next, so that
something like WS(FORMATN("It is <D>.", 1975)) will work perfectly.

Finally, the package includes a concatenation routine. After a call of the form

 CONCATENATE(D, S1, S2, ..., Sn)

D will be a BCPL string which is the concatenation of the BCPL strings S1, S2, ..., Sn, in that order.

FORMAT March 31, 1975 43

Cleared version of May 24, 1981

Pup File Transfer Protocol Package

This package is a collection of modules implementing the Pup File and Mail Transfer Protocols. The
package is used by the FTP subsystem and the Interim File System.

1. Overview

This document is organized as a general overview followed by descriptions of each of the modules in the
package. A history of revisions to the package is included at the end.

Before beginning the main documentation, some general comments are in order.

a. The File Transfer Protocol is (alas) complex; this package requires the Pup package and all of its
supporting packages plus some other packages not specific to Pup. This documentation is less
tutorial than normal Alto package descriptions so you should be prepared to consult its author.

b. This document describes the external program interfaces for a particular implementation of the
File Transfer Protocol, and does not deal with the internal implementation nor the reasons for
design choices in the protocol or the implementation. Before considering the details of this package,
you should read [Maxc]<Pup>FtpSpec.press to get the flavor of how the File Transfer Protocol
works. The <Pup> directory also contains descriptions of the lower level protocols on which FTP is
based. Detailed knowledge of these protocols is not necessary to use this package, but you must be
familiar with the operation of the Pup package.

c. This package and the protocol are under active development so users should expect modifications
and extensions.

d. This package is designed to run under several operating systems and with several file systems.
Functions are carefuly split into protocol-specific and environment-specific modules. This package
provides the protocol modules; you must write the matching environment-specific modules.

1.1. Organization

The FTP package comes in four modules: Server, User, Utilities, and Property lists. The utility and
property list modules are shared by the User and Server.

The User and Server modules implement their respective halves of the protocol exchanges.

The Property List module generates and parses property lists, filesystem-independent descriptions of files.
When passed between User and Server FTPs through the network byte stream, their form is defined by
protocol as a parenthesized list. When passed between these protocol modules and the user-supplied
modules in a program, they take the form of a data structure defined by this package.

The Utility module contains protocol routines shared by the User and Server modules and some efficient
routines for transferring data between a network stream and a disk stream.

1.2. File Conventions

The FTP package is distributed as file FTPPackage.dm, and contains the following files:

Pup FTP Package December 25, 1980 44

Cleared version of May 24, 1981

Cleared version of May 24, 1981

Pup FTP Package December 25, 1980 45

User
FtpUserProt.br User protocol common to file and mail
FtpUserProtFile.br User file commands
FtpUserProtMail.br User mail commands

Server
FtpServProt.br Server protocol common to file and mail
FtpServProtFile.br Server file commands
FtpServProtMail.br Server mail commands

Property lists
FtpPListProt.br Property list protocol
FtpPListImpl.br Implements a ’standard’ property list
FtpPListInit.br Initialization

Utility
FtpUtilB.br Common protocol
FtpUtilXfer.br Unformatted data transfer
FtpUtilDmpLd.br Dump/Load data transfer
FtpUtilCompB.br Binary compare data transfer
FtpUtilCompA.br Binary compare data transfer
FtpUtilA.br Assembly-language utility code
FtpUtilInit.br Initialization

Definitions
FtpProt.decl Protocol parameters and structures

Command files
CompileFtpPackage.cm Compiles all files
DumpFtpPackage.cm A list of all binary files
FtpPackage.cm A list of all source files

All of these modules are swappable, and are broken up into pieces no larger than 1024 words. Modules
whose names end in "init" are initialization code which should be executed once and thrown away.

The source files are kept with the subsystem sources in FTP.dm and are formatted for printing in a small
fixed-pitch font such as Gacha8 (use the command ’Empress @FtpPackage.cm@’).

1.3. Other Packages

FTP is a level 3 Pup protocol and this package uses a number of other Alto software packages. As always,
files whose names end in "init" may be discarded after initialization (except ContextInit.br).

Pup Package
PupBSPOpenClose PupBSPStreams.br PupBSPProt.br

PupBSPa.br PupBSPBlock.br
PupRTP.br PupRTPOpenClose PupDummyGate.br PupRoute.br
Pup1b.br Pup1OpenClose PupAl1a.br Pup1Init.br
PupAlEthb.br PupAlEtha.br PupAlEthInit.br

Context Package
Context.br ContextInit.br

Interrupt Package
Interrupt.br InterruptInit.br

Queue, Timer, and ByteBLT Packages
AltoQueue.br AltoTimer.br AltoByteBLT.br

Time Package
TimeConvB.br TimeConvA.br TimeIO.br

CmdScan Package
Keyword.br KeywordInit.br

Strings and Template Packages
StringUtil.br Template.br

1.4. Principal Data Structures

The following data structures are of interest to users, and together with the procedures described later,
constitute the package interface.

PL Property List, is this implementation’s internal representation of the protocol-specified
property list.

FTPI File Transfer Package Interface, contains pointers to the network byte stream, user disk stream,
log stream, the file buffer, and various flags.

FTPSI FTP Server Interface, is a vector of user-supplied procedures constituting the interface
between the protocol and environment-specific Server modules.

FtpCtx FTP Context, is the process-private storage for an instance of a User or Server FTP. It consists
of an FTPI, and if the process is a Server, an FTPSI. This is a convenient place for the user-
supplied modules to keep process-private data. You can do this by adding items to the FtpCtx
definition and then recompiling everything.

The entire FtpCtx need not be filled in all of the time. For each group of procedures, the items they
require will be specified. A general description of the contents of the FTPI part of an FtpCtx is in order
here.

bspSoc a pointer to a BSP socket open to a remote FTP process.

bspStream a pointer to the stream in the above BSP socket. Pup package experts will
recognize that this is redundant, but it is often convenient and makes the code
clearer.

dspStream a pointer to a stream to which this package will output generally useful
information, including copious amounts of debugging information if debugFlag
is true. The only operation that need be defined is ’Puts’.

debugFlag a boolean. If true, the protocol exchanges for this context are output to
dspStream as text, along with some other useful information. Use this! It will
save you much head-scratching.

connFlag a boolean. This should be true if bspSoc is open. The package will cooperate in
maintaining this flag, which is valuble when finishing.

Pup FTP Package December 25, 1980 46

Cleared version of May 24, 1981

serverFlag a boolean. This flag is tested by procedures in the shared modules to determine
whether the caller is a User or Server.

getCmdString a pointer to the last string read by the GetCommand procedure in the Utility
module. Commands with string arguments are No, Yes, Version,
MailBoxException, and Comment.

The following items are used by the data transfer routines in the Utility module. The routines are Alto-
specific and in some cases Ftp subsystem-specific, so these items need not be filled in if you do not use the
routines.

diskStream a pointer to a disk stream. It should always be opened in byte mode.

buffer a pointer to a block of memory which can be used for block transfer I/O
operations. The bigger this is the faster things will go.

bufferLength the length in words of the above buffer.

byteCnt the number of bytes transferred is left here by the transfer routine.

bitsPerSec the speed of a tranfer is left here by the transfer routine.

1.5. Programming Conventions

This package can be used with the Bcpl Overlay package. File FtpOEPInit.br contains a procedure which
will help do this, but you should consult with the author.

This package does a lot of string manipulation, and uses the following conventions:

a. All strings are allocated from ’sysZone’.

b. Strings are represented in data structures (such as property lists) as addresses. Zero means no
string is present.

All of the procedures in this package expect to execute in contexts (in the sense of the Context package),
and expect CtxRunning (defined by the Context package) to point to an appropriately filled in FtpCtx.

1.6. Property Lists

In most contexts, there are two property lists: one generated by the client of the package, and one
generated by the package. A client-generated property list is referred to as a ’localPL’, and it is the client’s
responsibility to free it when it is no longer needed. Property lists created by this package are referred to as
’remotePLs’ since they are copies of property lists generated remotely; they should never be freed by the
client.

2. Server

The FTP Server module consists of three files: FtpServProt.br, routines common to the file and mail
servers, FtpServProtFile.br, file commands, and FtpServProtMail.br, mail commands. The server module
has one public procedure:

FtpServProt(timeout)
which carrys out protocol commands received over bspStream by calling the user-supplied
procedures in FTPSI. When the BSP connection is closed by the remote User process, this

Pup FTP Package December 25, 1980 47

Cleared version of May 24, 1981

procedure returns. FtpServProt passes ’timeout’ to GetCommand (in the utility module) when
waiting for top-level commands (retrieve, store, delete, etc.). This permits the server to break
connections that don’t seem to be doing anything.

This module uses the following fields in FtpCtx: dspStream, bspStream, bspSoc, and FTPSI. The manifest
constant MTP in FtpProt.decl conditionally compiles calls on the MTP commands. The package is
released with this switch false, since I expect only IFS will need it. All of the FTP commands (Version,
Store, Retrieve, etc.) must contain procedures (except the MTP ones if the MTP switch is false). If you do
not wish to implement a command, it is sufficient to point the command at:

and NYI(nil, nil) = valof
 [
 FTPM(markNo, 1, "Unimplemented Command")
 resultis false
]

in which case any subsidiary procedures for that command (such as StoreFile and StoreCleanup for the
Store command) need not be filled in. FTPM is described in more detail below.

2.1. Version Command

By convention, Version is the first command exchanged over a newly opened FTP connection. The User
sends its protocol version number and a string such as "Maxc Pup Ftp User 1.04 19-Mar-77". When
FtpServProt receives this command, it replys with its protocol version number and then calls

(CtxRunning>>FtpCtx.Version)(bspStream, nil)

which should generate some herald text:

Wss(CtxRunning>>FtpCtx.bspStream, "Alto Pup FTP Server 1.13 14-May-77")

2.2. Retrieve Command

When the remote FTP User process sends the command ’Retrieve’ and a property list describing the files it
wants to retrieve, FtpServProt parses the property list and calls

(CtxRunning>>FtpCtx.Retrieve)(remotePL, localPL)

which should decide whether to accept the command. Retrieve’s decision may involve checking
passwords, looking up files, and other actions using the information in remotePL plus other environment-
specific information, such as whether the requester has the correct capabilities, etc. To refuse the request,
Retrieve should call

FTPM(markNo, code, string)

and return false. To accept the command, it should return a new property list, localPL, describing a file
matching remotePL which Retrieve is willing to send. FtpServProt returns this PL to you as ’localPL’ in
the next call to Retrieve, so that you can free it. On the first call, localPL will be zero. Some FTP
implementations require a minimum set of properties here, but the whole subject of who should specify
what properties is rather involved and beyond the scope of this description. For more information, consult
the FTP specification. This package provides a fast procedure (in the Utility module) for deciding the
’type’ of a file (text or binary) which you may find useful.

Property lists in retrieve requests may specify multiple files, so FtpServProt will continue to call Retrieve
until it returns false (no more files). On each call, remotePL will be the same original PL sent from the
remote User, and localPL will be the last PL returned by Retrieve. If Retrieve supports multiple file

Pup FTP Package December 25, 1980 48

Cleared version of May 24, 1981

requests then it must save some information so that the next time FtpServProt calls it, it can generate the
next file. If Retrieve does not support multiple file requests then it should do its thing during the first call
and remember that it is finished. The next time it is called it should return false having only deallocated
localPL (it should not call FTPM).

If Retrieve returns a PL, FtpServProt sends it back to the User to more fully describe the file. At this point
the User may back out of the transfer, in which case the next procedure will be skipped, and
RetrieveCleanup will be called immediately. If the User indicates a willingness to proceed, FtpServProt
then calls

(CtxRunning>>FtpCtx.RetrieveFile)(localPL, remotePL)

to transfer the file data. This package provides a procedure (in the Utility module) for transferring data
from a disk Stream to a BSP Stream, but you are free write your own. When RetrieveFile has finished the
transfer, it should return true if everything went OK. If something bad happened, it should call

FTPM(markNo, code, string)

and return false. In any case, FtpServProt calls

(CtxRunning>>FtpCtx.RetrieveCleanup)(localPL, ok, remotePL)

where ’ok’ is false if RetrieveFile returned false or the User backed out of the command. Note that if
Retrieve returned true, RetrieveCleanup will always be called, but RetrieveFile may not. If Retrieve
allocates any resources (such as opening a file) they should be deallocated here.

Finally, FtpServProt calls Retrieve again, and the process repeats until Retrieve returns false.

2.3. Store Command

When the remote FTP User process sends the command ’newStore’ followed by a property list describing
the file, FtpServProt parses the property list and calls

(CtxRunning>>FtpCtx.Store)(remotePL)

which should decide whether to accept the command. To accept, Store should return a property list
(referred to as localPL below) specifying the destination file (localPL will be passed to StoreCleanup so
you can free it). To refuse the command Store should call FTPM(markNo, code, string) and return false,
in which case the next procedure (StoreFile) is not called.

If Store returns true, FtpServProt sends the PL to the User and then calls

(CtxRunning>>FtpCtx.StoreFile)(remotePL, localPL)

to transfer the file data. This package provides a procedure (in the Utility module) for transferring data
from a BSP Stream to a disk Stream, but you may write your own. When StoreFile has finished the
transfer, it should return true if everything went OK. If something bad happened, it should call

FTPM(markNo, code, string)

and return false. Finally, FtpServProt calls

(CtxRunning>>FtpCtx.StoreCleanup)(remotePL, ok, localPL)

where ’ok’ is true if StoreFile returned true and the User indicated that everything went ok. If ’ok’ is false,
StoreCleanup should delete the file, since it is almost certainly damaged. Note that if Store returned true,
StoreCleanup will always be called, but StoreFile may not. If Store allocates any resources (such as
opening a file) they should be deallocated here.

Pup FTP Package December 25, 1980 49

Cleared version of May 24, 1981

2.4. Delete Command

When the remote FTP User process sends the command ’Delete’ followed by a property list describing the
files which it wants to delete, FtpServProt parses the property list and calls

(CtxRunning>>FtpCtx.Delete)(remotePL, localPL)

which should decide whether to accept the command. Don’t delete anything yet! The User may still back
out. To refuse the delete request, Delete should call FTPM(markNo, code, string) and return false. To
accept the command, it should return a new PL with every property it can find, so that the User can be sure
of the identity of file to be deleted. FtpServProt will return this PL as ’localPL’ in the next call to Delete,
so that it can be deallocted.

Property lists in delete requests may specify multiple files, so FtpServProt will continue to call Delete until
it returns false. On each call, remotePL will be the same original PL sent from the remote User, and
localPL will be the last PL returned by Delete. If Delete supports multiple file requests then it must save
some information so that the next time FtpServProt calls it, it can generate the PL for the next file. If
Delete does not support multiple file requests then it should do its thing during the first call and remember
that it is finished. The next time it is called it should return false having only deallocated localPL (it should
not call FTPM).

If Delete returns a PL, FtpServProt sends it back to the User and waits for confirmation. If the User still
wants to delete the file, FtpServProt calls

(CtxRunning>>FtpCtx.DeleteFile)(localPL, remotePL)

which should delete the file and return true. If something goes wrong, it should call

FTPM(markNo, code, string)

and return false. Finally, FtpServProtFile calls Delete again, and the process repeats until Delete returns
false.

2.5. Directory Command

When the remote FTP User process sends the command ’Directory’ followed by a property list naming the
files about which it wants information, FtpServProt parses the property lists and calls

(CtxRunning>>FtpCtx.Directory)(remotePL, localPL)

which should decide whether to accept the command. To refuse the request (because for example the
requestor does not have the correct access capabilities) Directory should call FTPM(markNo, code, string)
and return false. To accept the command it should return a PL describing a file.

Property lists in directory requests may specify multiple files, so FtpServProt will continue to call Directory
until it returns false. If Directory supports multiple file requests then it must save some information so that
the next time FtpServProt calls it, it can generate the PL for the next file. If Directory does not support
multiple file requests then it should do its thing during the first call and remember that it is finished. The
next time it is called it should return false having only deallocated localPL (it should not call FTPM).

2.6. Rename Command

When the remote FTP User process sends the command ’Rename’ followed by two property lists
describing the old and new files, FtpServProt parses the property lists and calls

(CtxRunning>>FtpCtx.Rename)(oldPL, newPL)

Pup FTP Package December 25, 1980 50

Cleared version of May 24, 1981

which should decide whether to accept the command. The FTP protocol does not require that user access
information be present in newPL, so access checking should be done on oldPl only. To refuse the rename
request, Rename should call FTPM(markNo, code, string) and return false. Otherwise it should rename
the file returning true if successful. If the rename operation fails, Rename should call

FTPM(markNo, code, string)

and return false.

2.7. Mail Protocol

File FtpServProtMail.br implements the server part of the Mail Transfer Protocol. This description
ignores various critical sections and other vital considerations which must be handled by the user-supplied
routines in order to provide a reliable mail service. For the semantics of the protocol see
[Maxc]<Pup>MailTransfer.press.

2.8. StoreMail Command

When the remote FTP User process sends the command ’StoreMail’, FtpServProt parses the property lists
which follow and for each one calls

(CtxRunning>>FtpCtx.StoreMail)(remotePL)

which should return true or false. Returning true has nothing to do with whether the mailbox is valid, it
just indicates that the command exchange may continue. If the mailbox is invalid, StoreMail should call
FTPM(markMailboxException, code, string) and return true. Returning false terminates the exchange:
StoreMailFile is skipped and StoreMailCleanup is called. StoreMail is called with a zero PL the last time
so that it may reply No and return false if none of the mailboxes are valid.

If StoreMail always returns true, FtpServProt tells the User process to go ahead and send the mail, and
then calls

(CtxRunning>>FtpCtx.StoreMailMessage)()

to transfer the file data. When StoreMaiMessage has finished the transfer, it should return true if
everything went OK. If something went wrong, it should call

FTPM(markNo, code, string)

and return false. Finally, FtpServProt calls

(CtxRunning>>FtpCtx.StoreMailCleanup)(ok)

where ’ok’ is true if StoreMailMessage returned true and the remote User indicated that everything went
ok. If ’ok’ is false, StoreMailCleanup should not deliver the mail. Note that if StoreMail is ever called,
StoreMailCleanup is always called, but StoreMailMessage may not be. If StoreMail allocates any resources
(such as opening a file) they should be deallocated here.

2.9. RetrieveMail Command

When the remote FTP User process sends the command RetrieveMail followed by a property list
describing the mailbox, FtpServProt parses the property list into ’remotePList’ and then enters a loop:

First FtpServProt calls

(CtxRunning>>FtpCtx.RetrieveMail)(remotePL, localPL)

Pup FTP Package December 25, 1980 51

Cleared version of May 24, 1981

which should return a PL describing the next message in the mailbox. If there are no more
unread messages in the mailbox, RetrieveMail should return zero. On each call, remotePL is
the same original PL sent from the remote User, and localPL is the last PL returned by
RetrieveMail, which should be freed by the client. On the first call localPL is zero. If
RetrieveMail returns a PL, FtpServProt calls.

(CtxRunning>>FtpCtx.RetrieveMailMessage)(remotePL, localPL)

which should transfer the file and return true. If something goes wrong, it should call
FTPM(markNo, code string) and return false.

Finally, FtpServProt calls

(CtxRunning>>FtpCtx.RetrieveMailCleanup)(remotePL, ok).

If ’ok’ is true, then RetrieveMailCleanup should flush the mailbox. If this operation fails,
RetrieveMailCleanup should call FTPM(markNo, code, string) and return false, otherwise it should return
true. If any resouces were allocated during the command, they should be deallocated here.

3. User

The FTP User module (files FtpUserProt.br, FtpUserProtFile.br, and FtpUserProtMail.br) implements
the User protocol exchanges.

Many of the procedures in this module report results by returning a word containing an FTP mark code in
the right byte and a subcode in the left byte (referred to below as ’subcode,,mark’). Marks and subcodes
are the first two arguments to the FTPM procedure which is described in more detail in the Utility section.
If the mark type is ’markNo’, the subcode describes the reason why the Server refused; your modules may
be able to fix the problem and retry the command. The package will output to dspStream text
accompanying No, Version, and Comment marks.

3.1. Common User Protocol

File FtpUserProt.bcpl contains routines shared by FtpUserProtFile.br and FtpUserProtMail.br. It uses the
bspStream, bspSoc, and dspStream fields in its FtpCtx and contains the following external procedures:

UserOpen(Version) = true|false
UserOpen should be called after the BSP Connection is open. It sends a version command and aborts
the connection returning false if the Server’s protocol is incompatible. Otherwise it calls

Version(stream, nil)

which should generate some herald text:

Wss(stream, "Alto Pup FTP User 1.13, 4 June 78").

The herald string received from the Server is output to dspStream.

UserClose(abortIt)
UserClose closes the FTP connection, aborting it if ’abortIt’ is true.

UserFlushEOC() = true|false
flushes bspStream up to the next command, and returns true if it is EndOfCommand. If the stream
closes or times out, it returns false. It calls UserProtocolError if it encounters anything except an
EOC.

Pup FTP Package December 25, 1980 52

Cleared version of May 24, 1981

UserGetYesNo(flushEOC) = subcode,,mark
flushes bspStream up to the next command, which must be ’Yes’ or ’No’. If flushEOC is true, it then
calls UserFlushEOC and returns the Yes or No mark and accompanying subCode. If the stream
closes or times out, it returns false. UserGetYesNo calls UserProtocolError if it encounters anything
except Yes or No followed by EOC.

UserProtocolError()
Writes an error message to dspStream and then calls UserClose to abort the connection.

3.2. User File Operations

File FtpUserProtFile.br implements the User protocol for standard file operations. It uses the bspStream,
bspSoc, and dspStream fields in its FtpCtx and contains the following external procedures:

UserStore(localL, StoreFile) = subcode,,mark
Attempts to send the file described by ’localL’ to the remote Server, calling the user-supplied
procedure ’StoreFile’ to transfer the data. It returns zero if something catastrophic happens (such as
the Server aborts the connection), in which case retrying is probably futile.

UserStore sends PL to the Server for approval. The Server can refuse the command at this point, in
which case UserStore returns subcode,,markNo. If the Server accepts the command, it returns a PL
(remotePL) specifying the destination file, and UserStore calls

StoreFile(localL, remotePL)

which should transfer the file data. This package provides procedures for transferring data from a
disk stream to a network stream, but you are free to write your own. StoreFile should return true if
the transfer went successfully. If some environment-specific thing goes wrong (such as an
unrecoverable disk error), StoreFile should call FTPM(markNo, code, string, true) and return false.
UserStore then asks the Server if the transfer went successfully and returns subcode,,mark. If mark is
’markYes’, the file arrived at the Server safely.

UserRetrieve(localPL, Retrieve) = subcode,,mark
Attempts to retrieve the file described by localPL from the remote Server, calling the user-supplied
procedure ’RetrieveFile’ to transfer the data. UserRetrieve returns zero if some catastrophic error
occurs, markNo if the Server refuses the command, and markEndOfCommand if the everything goes
OK.

UserRetrieve sends localPL to the Server and waits for approval. The Server can refuse the
command at this point, in which case UserRetieve returns subcode,,markNo. If the Server can
handle property lists that specify multiple files, then the following steps are taken for each file:

If the Server has no more files matching localPL, UserRetrieve returns
subcode,,markEndOfCommand (subcode is undefined in this case). Otherwise the Server
sends a fully-specified property list describing a file which it is willing to send. UserRetrieve
parses this into remotePL and calls

Retrieve(remotePL, localPL)

which should decide whether to accept the file. To skip the file, Retrieve should return false.
UserRetrieve so informs the Server and then loops. To accept the file, Retrieve should return
a procedure which UserRetrieve can call to transfer the data. Don’t open the file yet, because
the Server can still back out, in which case UserRetrieve skips the next step and just loops. If
Retrieve returns true, UserRetrieve tells the Server to send the file and then calls

RetrieveFile(remotePL, localPL)

which should open the file, transfer the data, and close the file. This package contains

Pup FTP Package December 25, 1980 53

Cleared version of May 24, 1981

procedures for transferring data from a network stream to a disk stream, but you are free to
write your own. When RetrieveFile is done, it should return true if everything went OK, or
false after calling FTPM(markNo, code, string) if something went wrong. UserRetrieve then
loops.

UserDelete(localPL, Delete) = subcode,,mark
Requests the remote Server to delete the files described by localPL, calling the user-supplied
procedure DeleteFile before allowing the server to actually delete anything. UserDelete returns zero
if some catastrophic error occurs, markNo if the Server refuses the command, and
markEndOfCommand if the everything goes OK.

UserDelete sends localPL to the Server and waits for approval. The Server can refuse the command
at this point, in which case UserDelete returns subcode,,markNo. If the Server can handle property
lists that specify multiple files, then the following steps are taken for each file:

If the Server has no more files matching the original pList, UserDelete returns
subcode,,markEndOfCommand. Otherwise the Server sends a fully-specified property list
describing a file which it is willing to delete. UserDelete parses this into remotePL and calls

Delete(remotePL, localPL)

which should return true to confirm deleting the file described by remotePL. UserDelete
passes this answer on to the Server and then loops.

UserDirectory(localPL, Directory) = subcode,,mark
Requests the remote Server to describe in as much detail as it can files matching localPL, and then
calls the user-supplied procedure Directory when the answers come back.

UserDirectory sends localPL to the Server and waits for an answer. The Server can refuse the
command at this point, in which case UserDirectory returns subcode,,markNo. If the Server can
handle property lists that specify multiple files, then the following steps are taken for each file:

If the Server has no more files matching localPL, UserDirectory returns
subcode,,markEndOfCommand. Otherwise the Server sends a property list which
UserDirectory parses into remotePL and calls

Directory(remotePL, localPL)

and then loops.

3.3. User Mail Operations

File FtpUserProtMail.br implements the user part of the Mail Transfer Protocol. This description ignores
various critical sections and other vital considerations which must be handled by the user-supplied routines
in order to provide a reliable mail service. For the semantics of the protocol see <Pup>MailTransfer.ears.

UserStoreMail(pListGen, ExcpHandler, Xfer)
Attempts to send mail to the mailboxes described by the pLists generated by pListGen. It returns
zero if something catastrophic happens (such as the Server aborts the connection), in which case
retrying is probably futile.

UserStoreMail repeatedly calls the client-supplied procedure pListGen which should supply a pList
describing a recipient of the message. When the last recipient has been generated, pListGen should
return zero. The Server can refuse the command at this point, in which case UserStoreMail returns
subcode,,markNo. If the Server accepts the command, it may still object to some of the mailboxes, in
which case UserStoreMail calls the client-supplied procedure

ExcpHandler(subcode, index)

Pup FTP Package December 25, 1980 54

Cleared version of May 24, 1981

which should record the recipient as rejected. Recipients are numbered from one, in the order in
which they were generated by pListGen. Index is the number of the rejected recipient. A string
describing why the recipient was rejected is in FtpCtx.getCmdString.

If after rejecting any recipients, there are still some valid ones, UserStoreMail calls the client-supplied
procedure

Xfer()

which should transfer the message text. Xfer should return true if the transfer went successfully. If
some environment-specific thing goes wrong (such as an unrecoverable disk error), Xfer should call
FTPM(markNo, code, string, true) before returning false. UserStoreMail then asks the Server if the
transfer went successfully. The server can reject some more recipients at this point, in which case
UserStoreMail calls the client-supplied procedure ExcpHandler again. Finally UserStoreMail returns
subcode,,mark. If mark is ’markYes’, the mail arrived at the Server safely.

UserRetrieveMail(pList, RetrieveMail) = subCode,,mark
Attempts to retrieve the contents of the mailbox described by ’pList’ from the remote Server, calling
the user-supplied procedure ’RetrieveMail’ to transfer the data. UserRetrieveMail returns zero if
some catastrophic error occurs, markNo if the Server refuses the command, and
markEndOfCommand if the everything goes OK.

UserRetrieveMail sends pList to the Server and waits for approval. The Server can refuse the
command at this point, in which case UserRetieveMail returns subcode,,markNo. Otherwise
UserRetrieveMail calls

RetrieveMail(pList)

which should transfer the file data. When RetrieveMail is done, it should return true if everything
went OK.

4. Utility Routines

The utility module (files FtpUtilB.br, FtpUtilA.br, FtpUtilXfer, FtpUtilDmpLd, and FtpUtilInit.br)
contains protocol routines shared by the User and Server modules, and some routines for efficiently
manipulating disk streams.

InitFtpUtil()
builds some internal tables and streams, getting space from sysZone. You must call this procedure
before starting a Server or issuing any User commands.

FTPM(mark, subCode [0], string [], eoc [false], par0, par1, par2, par3, par4)
sends the FTP command ’mark’ to the remote FTP process, including ’subCode’ if the command
requires one, and ’string’ if one is present. Then, if ’eoc’ is true, an EOC command is sent. ’String’ is
written to bspStream using the Template package, and may contain imbedded format information.
’Par0’ through ’par4’ are passed as arguments to the PutTemplate call. The subcode and string
arguments further explain certain commands. For markNo, subCode is a machine-readable
explanation of why a request was refused, and ’String’ is human-readable text such as "UserName
and Password required". Codes are tabulated in an appendix to <Pup>FtpSpec.ears. New codes may
be registered on request.

GetCommand(timeout [-1]) = subCode,,mark
flushes bspStream up to the next command and returns the mark and subcode (if any). Returns false
if the stream closes or it hangs for ’timeout’ miliseconds while waiting for a byte (the default, -1, waits
forever). Comment commands are ignored. GetCommand writes the strings accompanying Version,
No, and Comment commands to dspStream and stores a pointer to them in FtpCtx.getCmdString.

Pup FTP Package December 25, 1980 55

Cleared version of May 24, 1981

The utility module makes three ’process-relative streams’ for use by the rest of the package. The only
operation defined is ’Puts’.

lst writes to dspStream
dls writes to dspStream if debugFlag is true
dbls writes to bspStream and if debugFlag to dspStream

For example, Wss(dls,string) writes ’string’ to the running process’ dspStream if the process’ debugFlag is
set.

4.1. Unformatted Data Transfer

File FtpUtilXfer.br contains procedures for performing efficient operations on Alto OS disk Streams.
They use the following fields in FtpCtx: bspSoc, bspStream, dspStream, diskStream, buffer, bufferLength,
byteCnt, and bitsPerSec.

DiskToNet(remotePL, localPL) = true|false
Transfers bytes from diskStream to bspStream up to end-of-file, and returns true if everything went
OK. Calls PrintBegin and PrintEnd, below.

NetToDisk(remotePL, localPL) = true|false
Transfers bytes from bspStream to diskStream until it encounters another FTP command returning
true if everything went OK. Calls PrintBegin and PrintEnd, below.

FileType() = Text|Binary
Resets diskStream, scans it looking for high order bits on, and then Resets it again. As soon as it
encounters a byte with the high order bit on, it returns ’Binary’, otherwise (having read the entire file)
it returns ’Text’.

PrintBegin(remotePL, localPL)
Outputs the server filename in remotePL and the type and byte size from localPL to dspStream.

PrintEnd(remotePL, localPL) Outputs the byteCnt and bitsPerSec fields from the FtpCtx.

4.2. Dump Format Data Transfer

File FtpUtilDmpLd.br contains procedures for transferring data between a disk and an FTP connection in
dump format. They may be used as the inner loops of user-supplied data transfer procedures passed to
UserStore and UserRetrieve and will create and unbundle dump-format files on the fly. If you don’t want
to handle dump format, you don’t need this file. Dump-file format is described in an appendix to the Alto
Executive documentation.

These procedures use the same fields in FtpCtx and the same Alto OS routines as the unformatted transfer
routines. Buffer must be at least 130 words long. Making it longer does not speed up the transfer.

DumpToNet(remotePL, localPL) = true|false
Moves a file from diskStream to bspStream converting it to dump format, returning true if things go
OK. The filename is taken from the name-body field of localPL, and the creation date from the
creation date field. To terminate a dump file, call DumpToNet with remotePL = 0. Calls PrintEnd,
above.

LoadFromNet(remotePL, localPL) = true|false
Moves a file from bspStream to diskStream converting it from dump format, returning false when it
encounters an ’end block’. When it encounters a file, it returns true with the filename and creation
date in remotePL. If the client wants the file, he should call LoadFromNet again with
FtpCtx.diskStream non zero; to skip a file set diskStream to zero.

Pup FTP Package December 25, 1980 56

Cleared version of May 24, 1981

4.3. Binary Compare Data Transfer

Files FtpUtilCompB.br and FtpUtilCompA.br implement a binary compare of a network stream and a
disk stream. If you don’t want to do this (not many people will, I suspect), then you don’t need these files.
FtpUtilCompA contains two Block comparison procedures: one uses a fast machine code loop and the
other uses special microcode which you must load into the Alto’s ram.

CompareNetWithDisk(remotePL, localPL) = true|false
Compares diskStream with bspStream byte-by-byte and reports the results to dspStream. If the two
streams are identical (and the same length), then a string of the form "xxx identical bytes" is output,
otherwise a string of the form "difference near byte pos xxx" is output. Returns true if everything
went OK, false if something catastrophic happened to the network connection (note in particular that
a result of true implies nothing about whether the two streams were identical).

The following fields in the FtpCtx must be set up: bspStream, dspStream, diskStream, buffer, and
bufferLength. An additonal buffer of bufferLength words is temporarily allocated.

5. Property Lists

The property list module (files FtpPListProt.br, FtpPList1.br, and FtpPListInit.br) translates between this
package’s internal representation of a property list and the protocol-specified network representation.

The FTP protocol specifies the syntax of a property list and the syntax of a set of properties sufficient for
standard file operations, but states that property lists are extensible. Therefore the property list module
comes in two parts: a part that knows the syntax of property lists, and a part which knows the syntax of
individual properties. To add new properties you need only modify the latter.

The principal data structure in this module is the Property List Keyword Table, or pListKT. This table,
built by InitFtpPlist, contains (propertyName, propertyObject) pairs. PropertyNames are strings such as
"Byte-size". PropertyObjects know how to Scan (parse) properties into pLists, Generate properties from
pLists, Initialize properties from a pList full of default values, and Free properties stored in pLists.

5.1. Property List Protocol

File FtpPlistProt.br implements four operations on property lists. This is the module that knows the syntax
of a property list, but not the syntax of individual properties. Procedures in this file use the bspStream,
bspSoc, and dspStream fields of the FtpCtx and contain the following external procedures:

InitPList(defaultPL []) = PL
Creates an empty pList, and initializes it to be a copy of ’defaultPL’ if one was supplied.

FreePList(PL)
Destroys PL and returns 0 to facilite writing PL = FreePList(PL). If PL is zero, FreePList returns
zero without doing anything.

ScanPList() = PL|false
Expects to find a property list in bspStream. ScanPList parses this property list and returns a PL if it
had proper syntax. If the property list is malformed, ScanPList calls FTPM(markNo, code, string)
and returns false. If ScanPList encounters a mark before starting a PL or the connection closes or
Gets times out, it returns false.

GenPList(PL)
Generates a property list in network format from PL and sends it to bspStream.

Pup FTP Package December 25, 1980 57

Cleared version of May 24, 1981

5.2. The ’Standard’ Properties

Files FtpPlist1.br and FtpPlistInit.br implement the standard properties. These files know the syntax of
individual properties; they contain the operation procedures for the standard property objects. These files
are used by the FTP subsystem and IFS and are sufficient for performing ’standard’ file operations. If you
wish to add properties, these are the modules which you must change. In addition to the property
operations which are rather specialized to their task, there are a few generally useful procedures which are
made external:

InitFtpPList()
which makes the standard property objects and builds fplKT, getting space from sysZone. This
procedure must be called before calling any of the procedures in FtpPlist.br (which typically means
before starting a server or calling any procedures in the User module).

Nin(string, lvDest) = true|false
Interprets ’string’ as a decimal number and leaves the result in ’lvDest’, ignoring leading blanks and
terminating on end of string. A null string results in lvDest getting 0. Returns false if the string
contains any characters other than 0-9 and <space>.

ParseDate(string, lvRes) = true|false
Parses the string format date into an Alto format date which it puts into the two word vector at
’lvRes’. Returns true if it could parse the date. ParseDate expects the format of the string to bear
some similarity to "day-month-year hour:minute:second".

WriteDT(stream, dt)
converts ’dt’ from 32 bit Alto date format to a string of the form "dd-mmm-yy hh:mm:ss" and writes
it to ’stream’.

6. Example

The following example program makes use of most of the facilities in the User part of the Ftp Package. I
have run it and it works. It is a rock-bottom minimal User Ftp with no redeeming features whatsoever.
More extensive and realistic examples can be found by looking at the sources for the Ftp subsystem.

The main procedure FtpUserExample performs initialization, which consists of augmenting SysZone,
initializing the Ftp and Pup packages, and creating and starting a context running the procedure ’User’.

User opens a BSP connection to Maxc, sets up its FtpCtx, gets and fills a blank pList, and calls
UserRetrieve. When UserRetrieve returns, User closes the connection, releases its resources and commits
suicide.
//FtpUserExample.bcpl - Example Ftp User

//last modified April 9, 1978 4:24 PM

// The load command file is:
// Bldr/l/v 600/W FtpUserExample ^
// ^
// FtpUserProt FtpUserProtFile ^
// FtpPListProt FtpPList1 ^
// FtpUtilb FtpUtila FtpUtilXfer ^
// ^
// PupBspOpenClose PupBspStreams PupBspProt PupBspBlock PupBspA ^
// PupRtpOpenClose PupRtp PupNameLookup ^
// Pup1OpenClose Pup1B PupAl1A PupRoute PupDummyGate ^
// PupAlEthB PupAlEthA ^
// ^
// Context ContextInit Interrupt ^

Pup FTP Package December 25, 1980 58

Cleared version of May 24, 1981

// AltoQueue AltoTimer AltoByteBlt ^
// Template CTime StringUtil Keyword ^
// ^
// FtpPlistInit FtpUtilInit KeywordInit ^
// Pup1Init PupAlEthInit InterruptInit

get "FtpProt.decl"
get "Pup.decl"

external
[
//incoming procedures
InitFtpUtil; InitFtpPList; InitPupLevel1
GetFixed; CallSwat; AddToZone; Allocate; Free
InitializeContext; CallContextList; Enqueue
GetPartner; OpenLevel1Socket; OpenRTPSocket; CreateBSPStream
InitPList; FreePList; NetToDisk
UserRetrieve; UserOpen; UserClose; NetToDisk
ExtractSubstring; OpenFile; Closes; Wss

//incoming statics
sysZone; dsp; CtxRunning; UserName; UserPassword
]

let FtpUserExample() be
[
let v = GetFixed(10000)
if v eq 0 then CallSwat("GetFixed failed")
AddToZone(sysZone, v, 10000)
let ctxQ = vec 1; ctxQ!0 = 0
InitFtpUtil()
InitFtpPList()
InitPupLevel1(sysZone, ctxQ, 10)
Enqueue(ctxQ, InitializeContext(Allocate(sysZone, 1000), 1000,
 User, lenExtraCtx))
CallContextList(ctxQ!0) repeat
]

and User(ctx) be //a context
[
let soc = Allocate(sysZone, lenBSPSoc)
let maxcPort = vec lenPort
unless GetPartner("Maxc", dsp, maxcPort, 0, socketFTP) do
 CallSwat("GetPartner failed")
OpenLevel1Socket(soc, 0, maxcPort)
unless OpenRTPSocket(soc) do
 CallSwat("OpenRTPSocket failed")

CtxRunning>>FtpCtx.bspStream = CreateBSPStream(soc)
CtxRunning>>FtpCtx.bspSoc = soc
CtxRunning>>FtpCtx.dspStream = dsp
CtxRunning>>FtpCtx.buffer = Allocate(sysZone, 256)
CtxRunning>>FtpCtx.bufferLength = 256
CtxRunning>>FtpCtx.debugFlag = true
unless UserOpen(Version) do
 CallSwat("UserOpen failed")

let localPL = InitPList()
localPL>>PL.UNAM = ExtractSubstring(UserName)
localPL>>PL.UPSW = ExtractSubstring(UserPassword)

Pup FTP Package December 25, 1980 59

Cleared version of May 24, 1981

localPL>>PL.SFIL = ExtractSubstring("<system>Pup-Network.txt")

let mark = UserRetrieve(localPL, Retrieve)
if mark ne markEndOfCommand then
 CallSwat("UserRetrieve failed")
FreePList(localPL)
UserClose()
Free(sysZone, soc)
Free(sysZone, CtxRunning>>FtpCtx.buffer)
finish
]

and Version(stream, nil) be Wss(stream, "Example FTP User")

and Retrieve(remotePL, localPL) = RetrieveFile

and RetrieveFile(remotePL, localPL) = valof
[
let s = OpenFile(remotePL>>PL.NAMB, ksTypeWriteOnly, charItem)
CtxRunning>>FtpCtx.diskStream = s
unless NetToDisk(remotePL, localPL) do CallSwat("NetToDisk failed")
Closes(s)
resultis true
]

7. Revision History

March 30, 1977

First release.

May 15, 1977

Added Directory and Rename commands. Server now handles property lists which specify multiple files.
Added User and Server mail operations.

June 8, 1977

Overlay machinery was changed and some bugs were fixed. Some structure definitions changed, so
recompilation of user programs is necessary.

July 17, 1977

DiskToNet and NetToDisk moved out of FtpUtilb into a new file FtpUtilXfer. Property lists reorganized,
causing changes to the calling interface in FTPSI. Plist module now uses the Keyword routines in the
CmdScan package. Recompilation of user programs is necessary. FtpUserDmpLd renamed
FtpUtilDmpLd. Timeouts cleaned up.

October 24, 1977

Example program added.

February 14, 1978

Files FtpUtilCompB and FtpUtilCompA, implementing a byte-by-byte compare of the net stream with a
disk stream added.

Pup FTP Package December 25, 1980 60

Cleared version of May 24, 1981

April 9, 1978

Implemented the new form of Store in which the Server returns a property list specifying the destination
file. The old form is still supported, but no longer documented.

June 1, 1978

FtpServProt.bcpl split out of FtpServProtFile.bcpl. FtpServProtMail.bcpl updated to the current MTP.
Many data structures changed so recompiliation of user programs is necessary.

September 20, 1980

Parameters passed to client routines changed. Both property lists are passed now. Recompilation is
necessary.

December 16, 1980

Timeouts reworked. Statics ’getCmdTimeout’ and ’getPutTimeout’, and their default values, manifests
’defGetCmdTimeout’ and ’defGetPutTimeout’ were removed, since Pup byte stream activity timeouts,
added about a year ago, do the same job. FtpServProt now takes a timeout which it uses while waiting for
top level commands.

Pup FTP Package December 25, 1980 61

Cleared version of May 24, 1981

Get and set bit fields

This package makes it easy to extract and replace strings of up to 16 bits in a vector of bits. It has no
virtues except convenience -- it is neither fast nor compact.

 GetBits(Base, BitDisp, Count) -> Value
extracts Count bits starting at bit number BitDisp of the bit vector beginning at word address Base and
returns them right-justified as Value. Bit numbering begins with the high-order bit of the first word and
continues through the low-order, and then continues in the second word, etc. Here are two examples:
GetBits(x, 16, 8) is equivalent to x!1 rshift 8; GetBits(x, 13, 1) is equivalent to (x!0 rshift 2) & 1.

 SetBits(Base, BitDisp, Count, Value)
replaces Count bits starting at bit number BitDisp relative to Base with the low-order Count bits of the
value Value. (Extraneous high-order bits in Value will be ignored.)

GetBits and SetBits perform no error checks -- if BitDisp is negative, or Count is negative or greater than
16, they will do the wrong thing. Count=0 and Count=16 are OK.

Get and set bits June 1, 1977 62

Cleared version of May 24, 1981

GP: Routines for parsing command lines

The routines described here are a convenient package for parsing command lines and doing a few related
functions. They may be found in GP.Bcpl (source) and GP.Br (binary). No external routines are called
except those supplied by the operating system.

An "unpacked string" is a vector v such that v!1, v!2, ..., v!(v!0) contain the characters of the string, one per
word, right justified.

A "parameter" in a command line is a maximal sequence of characters not containing $*S or $*N. All the
characters before the first $/ are the "body"; the remaining characters, with any $/ characters ignored, are
the "switches". Thus

BCPL/F FOO.Bcpl

contains two parameters. The first has body "BCPL" and switches "F". The second has body "FOO.Bcpl"
and no switches.

SetupReadParam (stringVec, switchVec, stream, comSwitchVec)

. stringVec is a vector whose length in words should be greater than the number of characters
in the longest body in the command line. A 0 defaults it to a 256-word vector inacessible to
the user; this may be useful if all the parameters of the command are files or numbers (see
the discussion of ReadParam below).

. switchVec is a vector whose length in words should be greater than the largest number of
switches on any unit in the command line. A 0 defaults it to a 128-word vector inaccessible to
the user.

. stream is an OS character stream from which the command line will be read. It will not be
Reset or Closed. A 0 defaults it to the disk file "Com.Cm". The stream is left in the external
static ReadParamStream.

. comSwitchVec is a vector whose length in words should be greater than the number of
switches on the first unit in the command line. A 0 defaults it to switchVec.

Missing parameters are defaulted.

This routine initializes the parameter-reading machinery. It then does a ReadParam() which will pick off
the first parameter (i.e., the name of the program) and leave the name and switches as unpacked strings in
stringVec and comSwitchVec. If either of these was defaulted to an inaccessible vector, the corresponding
information is lost.

GP: parse command lines January 2, 1978 63

Cleared version of May 24, 1981

ReadParam (type, prompt, resultVec, switchVec, returnOnNull)

. type is an integer or Bcpl string representing the expected type of the parameter. If type < 256,
it is interpreted as a character which must select a defined type from the list described below.
If type > 256 it is treated as a Bcpl string. If the string is one character long, it is interpreted as
though that character had been used. If it is longer, the first two characters must select a
defined type from the list below.

. prompt is a Bcpl string which is used to prompt the user for another try at the parameter if a
syntax error is discovered. A 0 defaults it to "Try again: ".

. resultVec is a vector used to return the result for types which need more than one word to
represent their result. A 0 defaults it to the stringVec passed to SetupReadParam (in which
case there must have been one or else ReadParam will call Swat).

. switchVec is a vector used to return the switches as an unpacked string. A 0 defaults it to the
switchVec passed to SetupReadParam.

. returnOnNull is a boolean which decides what to do if the parameter body is null. It defaults
to false.

Missing parameters are defaulted. If type is missing, it is defaulted to 0.

One parameter is read from the stream passed to SetupReadParam. The switches are separated off and left
in switchVec. Any $/ characters among the switches are stripped off. If there are no switches, switchVec!0
will be 0.

Then the body is handled in a way which depends on the type:

0: (the integer 0, not the character $0 or the string "0"!) It is returned in resultVec as an
unpacked string. Result is resultVec.

P: It is returned in resultVec as a packed (Bcpl) string. Result is resultVec.

I or IC: It is treated as the name of an input character file, to be opened with OpenFile(body,
ksTypeReadOnly, charItem). If the open fails, prompt for another name. Result is the stream
returned by OpenFile. In addition, the file name is returned in resultvec as a Bcpl string.

IW: Like I, but a word stream is created.

O or OC: Like I, but OpenFile(body, ksTypeWriteOnly, charItem) is called.

OW: Like O, but a word stream is created.

F or EF: Like I, but OpenFile(body, ksTypeReadWrite, wordItem) is called.

B: An octal number is collected and returned. Numbers may start with #, which forces them
octal, and may end with B, b, O, or o (which forces them octal) or with D or d, which forces
them decimal. Anything else is a syntax error and causes a prompt for another number.
Result is the number.

D: Like B, but for decimal number.

Any undefined type results in a call on Swat.

GP: parse command lines January 2, 1978 64

Cleared version of May 24, 1981

If the body is empty, ReadParam immediately prompts, without generating an error message from the null
body, unless returnOnNull is true or prompt eq -1, in which case it returns -1 when it sees a null body.
When prompting for new input, DEL cancels whatever has been typed and allows another try, and BS and
control-A backspace one character.

EvalParam (body, type, prompt, resultVec)

. body is an unpacked string

. the other arguments are like the corresponding ones for ReadParam. resultVec defaults to
body.

body and type may not be omitted.

Works exactly like ReadParam, using body as the parameter body. Does nothing about switches. This
routine is useful for programs whose interpretation of parameters depends on the switches attached to
them.

ReadString (result, breaks, inStream, editFlag, prompt)

. result is a vector in which the string read will be returned, unpacked. May not be defaulted.

. breaks is a Bcpl string containing the characters which will cause reading to terminate.
Defaults to "*N".

. inStream is the stream to read from. Defaults to keys.

. editFlag says whether DEL, BS and control-A should be interpreted as editing characters. If it
is false, they are not. Otherwise they are, and furthermore, editFlag is taken as the stream on
which echoing of the input should be done. It defaults to false unless inStream is keys, in
which case it defaults to dsp.

. prompt is echoed after a DEL. It defaults to "".

Reads characters from inStream until one of the characters in breaks is encountered, leaving the characters
read in result as an unpacked string. Returns the break character. Allows editing of the input as described
under editFlag above.

AddItem (vek, value)

. vek is a vector whose current size is given by vek!0.

. value is an uninterpreted 16-bit quantity.

Increments vek!0 and stores value at the new vek!(vek!0).

GP: parse command lines January 2, 1978 65

Cleared version of May 24, 1981

Bcpl Interrupt Interface

A tiny software package is available that permits Bcpl procedures to be called as a result of hardware
interrupts on the Alto. The relevant files are contained in Interrupt.Dm. There are two files, Interrupt.br,
which contains code that must always be resident (75 instructions), and InterruptInit.br, which contains
code that is required only during initialization of interrupt channels (namely FindInterruptMask and
InitializeInterrupt) and may be thrown away after initialization is complete (200 instructions). The sources
are contained in InterruptSource.dm, which also includes various command files and InterruptEx.bcpl, the
example program given at the end of this writeup. A Nova version of this package is available.

The specification of an interrupt channel is uniformly accomplished with a "mask" that has a one bit for
the (Alto) interrupt channel to use. Thus mask=1 is the highest priority channel, mask=#40000 the
lowest. (The Alto itself assigns no priorities to channels, but conventions followed both in this package and
in the operating system define the priorities as given here.)

mask=FindInterruptMask(trialMask)
This function returns a mask for an ununsed interrupt channel of equal or lower priority than
trialMask. It is wise always to use this function to assign interrupt channels, as your channel
assignments are then relatively decoupled from ones in software packages you use or in the operating
system.

mask=InitializeInterrupt(region, length, mask, proc)
This function initializes and arms the interrupt channel specified by "mask." The "region" parameter
points to a block of storage that will be used as stack space for the procedure that is called whenever
an interrupt goes off; "length" is the number of usable words in that block of storage. Finally, "proc"
is the address of the procedure to call on each interrupt.

The "region" is set up in the following way: the first 15 words hold code and context for saving and
restoring state when interrupts occur, the last 4 words are a minimal stack frame from which "proc" is
called, and the remaining words in between (a block of size "length"-19) are available for stack
frames needed by "proc" and any procedures called by "proc".

The result of the call to InitializeInterrupt is the value of the "mask" argument so as to facilitate use
of an actual parameter such as "FindInterruptMask(trialMask)", where "trialMask" is the mask of all
channels whose priority is to be higher than the one being initialized.

DestroyInterrupt(mask).
Turns off any interrupt channels represented by one bits in "mask." The interrupt package keeps
track of all interrupt channels that the user program has enabled, and sets UserFinishProc in the
operating system to execute DestroyInterrupt(userInterruptsEnabled) whenever a finish or abort is
done. This cleans up the interrupt system before returning to the operating system (note that the
previous value of UserFinishProc is properly saved and restored by this package).

CauseInterrupt(mask)
Initiates an interrupt request on any interrupt channels with one bits on in "mask".

DisableInterrupts(); EnableInterrupts()
These procedures disable and enable the interrupt system. DisableInterrupts returns true if
interrupts were really on and false if they were already off. The Alto operating system provides
procedures of the same name for the same purpose; the copies in the file Interrupt.Asm are provided
in case you Junta the operating system. Note that it is legal for interrupt routines to include calls to
DisableInterrupts and EnableInterrupts (or to call procedures that do so), since the interrupt system is
turned back on (with lower-priority channels masked out) before the user’s Bcpl interrupt procedure
is executed.

Example:

Bcpl Interrupt Interface July 30, 1978 66

Cleared version of May 24, 1981

The following somewhat senseless example illustrates the use of the interrupt package. It enables two
interrupt channels; the high priority one is activitated 60 times a second by vertical interval interrupts; the
low priority one is activated every second by the high priority one.

external [Ws; InitializeInterrupt; FindInterruptMask; CauseInterrupt]

static [lowChannel; tickCount]

manifest verticalInterval = #421

let Main() be
[
let stack1, stack2 = vec 40, vec 200

// Initialize two interrupt channels
let high = InitializeInterrupt(stack1, 40,
 FindInterruptMask(1), HighProc)
lowChannel = InitializeInterrupt(stack2, 200,
 FindInterruptMask(high), LowProc)
tickCount = 0
// Arrange vertical interval to cause interrupts on channel "high"
@verticalInterval = @verticalInterval % high
while true loop
]

and HighProc() be
[
if tickCount eq 0 then
 [
 tickCount = -60
 CauseInterrupt(lowChannel)
]
tickCount = tickCount +1
]

and LowProc() be Ws("Tick ")

Bcpl Interrupt Interface July 30, 1978 67

Cleared version of May 24, 1981

ISF - pseudo random file access package

 A package is now available which provides direct access to any page of an Alto disk file by
maintaining a run-coded table in core of the disk addresses of the pages. Any number of files, stored on
any of the disks which the Alto can accommodate, may be accessed simultaneously. This package was
designed for use with the virtual memory (VMEM) package, but is useful in its own right. The ISF
package does not call any other packages other than the Alto Operating System.

1. Initialization

InitFmap(MAP, LMAP, FP[, CHECKFLAG, INCREMENT, ZONE, DSK])

 Initializes the page table for a file. MAP must point to a block of storage of length LMAP. FP is the
file pointer (see the O.S. manual) for the file. InitFmap returns false if LMAP is not large enough to
accommodate the page table structure, otherwise true.

 If the optional CHECKFLAG argument is supplied and is true, then InitFmap will read the page
table from page 1 of the file (if it exists) and check it for validity; also, each time IndexedPageIO extends
the page table in core, it will write it back on page 1 of the file. This considerably speeds up subsequent
uses of the file through ISF. If CHECKFLAG is omitted or false, no special meaning is attached to page 1
of the file.

 If the INCREMENT argument is supplied, it determines the number of pages IndexedPageIO will
"read ahead" in the file to augment the page table when this becomes necessary. INCREMENT defaults
to 10.

 InitFmap and IndexedPageIO require a working buffer capable of holding one disk page; the optional
ZONE argument to InitFmap specifies how they will acquire the space for this buffer. ZONE=-1 (the
default) causes them to allocate the buffer on the Bcpl stack. Otherwise, ZONE must be a standard
allocation zone as described in the Alto O.S. manual. ZONE=0 is equivalent to ZONE=sysZone.

 The optional DSK argument points to the DSK structure on which the file resides (see the "Disks and
Bfs" section of the O.S. manual for details). DSK defaults to sysDisk, the disk on which files are normally
stored.

2. Data transfer

IndexedPageIO(MAP, FIRSTREC, CORE, NUMRECS, WFLAG[, LASTNC])

 Transfers NUMRECS pages between the file and core, starting at page FIRSTREC in the file and
core address CORE, using MAP to obtain the disk addresses, and extending MAP by scanning the file
when necessary. WFLAG=0 means read into core, calling Swat if the requested pages do not exist;
WFLAG=-1 means write onto the file, extending the file if necessary; WFLAG=1 means read into core,
extending the file if necessary. If LASTNC is supplied with WFLAG=-1 (write), LASTNC will be written
into the numChars field of the last page transferred, and if it is less than 2 * the page size, the file will be
truncated. IndexedPageIO returns the numChars field of the last page transferred.

 Note that the page size is determined by the DSK structure supplied to InitFmap. This means, for
example, that NUMRECS=1 will transfer 400b words on a Diablo Model 31 or 44 disk (the usual Alto
disk), but 2000b words on a Trident disk.

WriteFmap(MAP)

 Writes the page table on page 1 of the file. As mentioned above, this happens automatically if the
CHECKFLAG argument to InitFmap was true.

Pseudo random access files November 9, 1976 68

Cleared version of May 24, 1981

3. Packaging

 The ISF package consists of two binary files: ISFINIT.BR which contains InitFmap, and ISF.BR
which contains the other two procedures. ISFINIT.BR may be discarded after use.

Pseudo random access files November 9, 1976 69

Cleared version of May 24, 1981

KBD - a simple keyboard driver

 For programs which do not wish to use the keyboard driver provided by the Alto Operating System, a
package is now available which provides a basic keyboard input stream capability. In addition to a
character stream for keyboard characters, this package also optionally places mouse button and keyset
transitions in the stream, and also provides for calling a user-supplied function at interrupt time when any
of a user-selected set of characters appears in the input stream.

 The KBD package is written entirely in Bcpl and uses only a few basic facilities of the O.S. (such as
MoveBlock) and the Interrupt package.

1. Initialization

KBDinit(Zone [sysZone], extraSpace [0]) -> keystream

 Initializes the keyboard handler. The necessary working space (about 150 words, plus extraSpace if
any) will be allocated from Zone. KBDinit uses the Interrupt package to allocate an interrupt level for
sampling the keyboard, buttons, and keyset on every vertical field interrupt. The extraSpace argument
specifies how much extra stack space to allocate for use by the interrupt routine beyond the amount
actually needed by routines in the package: this extra space is only needed for trap or overflow procedures
(see below). KBDinit returns the new keyboard stream, so a typical use might be
 keys = KBDinit(Zone)

 The package assumes the static location OsBuffer points to a ring buffer structure as described in the
O.S. manual.

2. Stream operations

Gets(keystream) -> char

 Returns the next character from the stream, waiting until a character is present if necessary.

Endofs(keystream) -> empty

 Returns true if there are no characters in the stream’s buffer.

Resets(keystream)

 Clears the stream’s buffer.

Puts(keystream, char) -> notFull

 If the stream’s buffer is not full, adds char at the end of the buffer just as if it had been typed, and
returns true. If the buffer is full, does not add char, and returns false.

3. Other facilities

 The KBD package provides a number of other facilities through statics defined in the package. Note
that even the procedures mentioned below are defined in this way: for example, if you want to supply a
trap procedure, you must do something like
 external [kbdTrapProc]
 kbdTrapProc = MyKbdTrapProc

kbdButtonsOn

Simple keyboard driver April 19, 1976 70

Cleared version of May 24, 1981

 This static is initially false. If set to true, mouse button and keyset transitions will be placed in the
input stream (unless trapped: see below) just like typed characters. The encoding of these events is as
follows:
 200b bottom (right) mouse button DOWN
 201b middle mouse button DOWN
 202b top (left) mouse button DOWN
 203b rightmost keyset key DOWN
 ...
 207b leftmost keyset key DOWN
 210b bottom (right) mouse button UP
 ...
 217b leftmost keyset key UP

kbdTrapTable
kbdTrapProc(char) -> keepIt

 The static kbdTrapTable points to a table of 16 words (allocated from Zone by KBDinit) which is
interpreted as a table of 256 bits, one for each possible 8-bit character. When the interrupt routine sees a
character whose bit in kbdTrapTable is set, instead of placing the character in the buffer it calls
kbdTrapProc(char). If kbdTrapProc returns true, the character is placed in the buffer as usual; if
kbdTrapProc returns false, the interrupt procedure assumes that kbdTrapProc has done all the necessary
processing. This facility is intended for programs which want to detect interrupt characters even if
characters are queued ahead of them in the input buffer. kbdTrapProc is initialized to TruePredicate,
which causes all characters to be placed in the buffer regardless of the setting of kbdTrapTable.

kbdOverflowProc(char)

 If the interrupt routine finds the ring buffer full, it calls kbdOverflowProc(char). kbdOverflowProc is
initialized to Noop, which simply discards the character.

4. Packaging

 The KBD package consists of two files, KBDINIT.BR and KBD.BR. KBDINIT.BR contains only the
KBDinit procedure, and may be discarded after calling KBDinit. KBD.BR contains all the other facilities
described in this memo.

Simple keyboard driver April 19, 1976 71

Cleared version of May 24, 1981

KPM Pattern Matcher

This package implements a simple but efficient Knuth-Pratt-Morris pattern match of a name against a
template that may contain one or more wildcard ("*") characters. Its intended use is to aid searching a data
base containing many names (e.g., a file directory) for those names matching a given pattern such as
"*.bcpl".

The package consists of two files, KPMTemplateb.br and KPMTemplatea.br. The source dump file
contains KPMTemplateb.bcpl and KPMTemplatea.asm, plus a test program KPM.bcpl and a collection of
command files.

There are two procedures. The first, MakeKPMTemplate, takes a pattern string, does some preprocessing,
and returns a data structure called a template. The second, MatchKPMTemplate, takes a string and a
template and determines whether or not they match. MatchKPMTemplate is implemented very
efficiently, since it is expected to be called many times with different names but the same template.

The procedures are called as follows:

MakeKPMTemplate(pattern) = template
Constructs and returns a template for the pattern, which is supplied as a BCPL string. The template
is allocated from sysZone. "*"s in the pattern are interpreted as wildcard characters, i.e., characters
that will match zero or more real characters. An initial or final "*" will match an arbitrary prefix or
suffix. The pattern must not contain characters whose ASCII codes are in the range 0 to 3.

MatchKPMTemplate(string, template) = 0 or fail index
Compares the BCPL string against the template and returns zero if they match. Otherwise, returns
the index of the first character in the string that could not be matched in the template. Upper- and
lower-case letters are considered to be equivalent.

KPM Pattern Matcher May 11, 1977 72

Cleared version of May 24, 1981

LoadRam

The LoadRam procedure loads a ’packed RAM image’ from main memory into the Ram, and optionally
performs a ’silent boot’ to force one or more tasks into the Ram. LoadRam is derived from the
LoadPackedRAM procedure described under ’Packed RAM Images’ in the Alto Subsystems manual, and
it uses packed RAM images produced by the PackMu program also described therein.

1. Initialization

LoadRam is called in the following manner:

res = LoadRam(RamImage, boot [false], bank [0])

This procedure loads the RAM (if one exists) with a packed RAM image pointed to by RamImage. If the
boot argument is true (default = false), the Alto is booted as well. If the Alto has a 3K RAM board, the
bank argument may be 0, 1, or 2 to refer to RAM0, RAM1, or RAM2 respectively.

LoadRam returns res<0 if there is no RAM or if booting is impossible because there is no Ethernet
interface. Res>0 means that the constant memory in the Alto differs from the constants mentioned in
RamImage (the value of res is the number of disagreements). Res=0 indicates that all is well. Once
LoadRam has been called, the space occupied by LoadRam and the packed RAM image may be
reclaimed.

The format of the RamImage vector is as follows:

RamImage!0: Boot locus vector
RamImage!1 to !#377: Constants in locations 1 to #377
RamImage!#400 to !#2377: Instructions in locations 0 to #1777

A RAM image in this form is constructed by the PackMu program, which converts a .MB-format file
(produced by Mu) into a .BR file that may be loaded with your program. The word described in the
PackMu documentation as being used for a version number is actually used to set the boot locus vector (if
the boot argument is true).

For example, the Trident controller microcode (TriConMc.Mu) is converted into a RAM image
(TriConMc.Br) in the following manner:

Mu TriConMc.Mu
PackMu TriConMc.Mb TriConMc.Br 77766 DiskRamImage

The boot locus vector 77766 specifies that tasks 0, 3, and 17 (Emulator and two Trident disk tasks) be
started in the RAM and the rest in the ROM. The optional parameter DiskRamImage specifies that the
static pointing to the packed RAM image be named DiskRamImage rather than the default RamImage.

The ’silent boot’ is achieved by arranging that the starting location of the emulator task in the RAM
(location 0) contain the first instruction of the following sequence:

LOC0: SWMODE;
:START;

where START is defined to be location 20 (the beginning of the Nova emulator’s main loop). These
instructions must be contained in the packed RAM image. Then, when the machine is software-booted by
LoadRam, the emulator task is started in the RAM (because of the setting of the boot locus vector; see

LoadRam February 9, 1980 73

Cleared version of May 24, 1981

below). The two instructions above merely return control to the main Nova emulation loop in the ROM,
thereby bypassing the usual disk boot load sequence.

Note: the LoadRam package uses the RAM utility area (774B through 1003B) for scratch purposes.
LoadRam saves and restores microinstructions that it uses, but the programmer must take care that non-
emulator microcode does not occupy this region. See section 9.2.5 of the Alto Hardware Manual.

Wnen making use of the multiple RAM banks of the 3K RAM configuration, you must assemble and load
independent RAM images for each one, and load them into the RAM by separate calls to LoadRam.

The LoadRam package contains two additional procedures of interest to clients:

res = SetBLV(blv)

Sets the Alto’s Boot Locus Vector to the value blv. This determines the microinstruction bank in which
each task will start at the next boot, as follows: bit 0 corresponds to task 15 and bit 15 corresponds to task
0; a zero bit means the task will start in RAM0, and a one means it will start in ROM0. SetBLV returns 0
normally and -1 if no RAM is present.

res = RamConfiguration()

Returns a value indicating the RAM/ROM configuration of the machine:

0 No RAM (most likely the machine is not really an Alto)
1 1K RAM, 1K ROM
2 1K RAM, 2K ROM
3 3K RAM, 1K ROM

2. Cleanup

When exiting a program that has micro-tasks active in the RAM, it is considered polite to perform a ’silent
boot’ to force all tasks back into the ROM. If this is not done, subsequent use of the RAM by another
program may cause some running task to run awry.

To do this, simply set the boot locus vector to start only the emulator task in the RAM; then use StartIO to
boot the machine. This is accomplished by the statements:

SetBLV(#177776)
StartIO(#100000)

SetBLV is defined in the LoadRam module, and StartIO in the Operating System.

If you throw away the LoadRam package at initialization time, performing this cleanup presents a slight
problem. One way to solve it is simply to issue the SetBLV call immediately after the LoadRam. The boot
locus vector will remain set to this value until the StartIO is issued at cleanup time. The disadvantage of
this method is that if the user attempts to boot the Alto manually during execution of the program, the first
depression of the boot button will have no effect (a potential source of confusion).

Alternatively, you may include in the microcode the following instruction, located at a fixed place (e.g.,
22):

LOC22: RMR_AC0, :LOC0;

This code may be invoked at cleanup time by a JMPRAM instruction, as follows:

(table [#61010; #1401])(#177776, #22) //JMPRAM(22) sets BLV_AC0
StartIO(#100000)

LoadRam February 9, 1980 74

Cleared version of May 24, 1981

MDI: Multiple Directory Lookups

This package allows a program to look up a group of file names in a directory in a single pass, and return
the directory entries without actually opening the files. This may be useful for programs (such as Bldr)
which wish to avoid time-consuming multiple scans of a directory.

The code is written in Bcpl. It declares one entry procedure LookupEntries, and only uses standard
procedures from the operating system.

LookupEntries(S, NAMEVEC, PRVEC, CNT, FILESONLY,Buffer,BufferLength)

S is a directory: it must be a disk stream. LookupEntries resets S and then reads through it. NAMEVEC is
a vector of CNT strings, the file names. A zero entry in NAMEVEC is simply skipped. PRVEC is a vector
of lDV*CNT words, where LookupEntries stores the directory preambles corresponding to NAMEVEC.
If a given name is not found, its block in PRVEC will be zeros: since the first word of a directory entry can
never be zero, one can test the first word of the PRVEC block to determine if a name was found. If
FILESONLY is true, LookupEntries will only check directory entries that designate real files; if false,
LookupEntries will check all entries (including links, or any other types that may be defined eventually).

The optional arguments "Buffer" and "BufferLength" give a core buffer that can be used to buffer the disk
stream more efficiently. If these arguments are absent, LookupEntries will obtain a small buffer from the
stack.

LookupEntries returns the number of names not found. Thus if all names were found, LookupEntries
returns zero.

LookupEntries will always find the "most recent" version of all files given in NAMEVEC. The first word
of the preamble is smashed with the version number of the file found (zero still implies the file was not
found).

MDI May 26, 1977 75

Cleared version of May 24, 1981

Bcpl overlay package

 This package enables Bcpl programmers to split up their programs almost painlessly into a core-
resident portion and any number of type B overlays (see the Bcpl documentation for the exact meaning of
this term), any number of which may be in core at one time. In general no changes whatever are required
to the programs themselves: all that need be changed is the loading process (Bldr command to the
Executive). The package uses the Alto OS only at the Bfs level and below.

 Since this package is designed mostly for people with sophisticated needs, this documentation is
somewhat less tutorial than usual for Alto Bcpl software packages. People intending to use the package
should be prepared to consult its author.

 In the descriptions below, Bcpl procedure descriptions are set off by ** so they will stand out better
from the surrounding text.

(5/18/77)

 This release adds "special entries" -- overlaid procedures accessed through an extra level of code so
that the procedure static doesn’t change (see below for details).

(12/8/76)

 The only changes in this release are the addition of a new static (OverlayCoreOffset) and an increase
in the amount of space required for the overlay descriptor table (odvec argument to OverlayScan).

1. How to load your program

 Suppose your program comes in the following pieces: .BR files res1, res2, ..., resn are the permanently
resident part; ov1-1, ..., ov1-m are the first overlay (order of overlays, or pieces within an overlay, is
unimportant); ov2-1, etc. are the second overlay, and so on. The Bldr command should look roughly as
follows:
 >Bldr/B res1 ... resn x1/B 0/P ov1-1 ... ov1-m x2/B 0/P ov2-1 ...
The names x1, x2, etc. are purely arbitrary names: the presence of the /B is what informs Bldr that a new
overlay is beginning.

2. Initializing the overlay package

 Before you attempt to call any procedure in an overlay, you must initialize the overlay package. The
normal way to do this is to call
** OverlayScan(fptr, odvec, odvsize[, fa, buf, bufsize, fixvec, fixsize, disk, epvec, epsize])
Arguments beyond the third are optional. The arguments have the following significance:
 Fptr is the FP for the .Run file which contains the overlays. The Alto OS passes a CFA to your entry
procedure (see sec. 3.11 of the Alto OS manual), and this CFA contains as its FP the FP of this .Run file:
this is the normal way to get hold of this FP.
 Odvec is a table area for the overlay package. OverlayScan initializes this area, and it must stay around
and not move during the execution of the program. The space required is 5 words per overlay, plus 3
words per special entry (i.e. 3*epsize), plus 25 words of fixed overhead.
 Odvsize is the amount of space you have supplied for odvec.
 Fa, if present, is a FA at which OverlayScan should start scanning the .Run file. Normally this will be
the FA from the CFA mentioned above.
 Buf, if present, is a buffer which OverlayScan will use for reading in the .Run file. The bigger the
buffer, the faster OverlayScan will be able to read through the file.
 Bufsize is the amount of space you have supplied for the buffer.
 Fixvec, if present, is a table area into which the overlay package will store information about the
addresses of statics which refer to procedures in overlays. If you supply a fixvec and save somewhere the
contents which OverlayScan writes into it, you will be able to bypass OverlayScan entirely on subsequent

Bcpl overlay package May 24, 1977 76

Cleared version of May 24, 1981

runs of the program (provided you know somehow that the .Run file hasn’t changed or moved on the disk)
and use the OverlayInit procedure instead, which doesn’t scan the .Run file. The space required for fixvec
is 1 word per overlay, plus 1 word per special entry, plus 1 word for each procedure in each overlay, plus 1
word of overhead.
 Fixsize is the amount of space you have supplied for fixvec.
 Disk is the DSK structure on which the .Run file is stored (see sec. 2 of the "Disks & Bfs" section of the
Alto OS manual). It defaults to sysDisk, the disk on which the OS normally stores files.
 Epvec, if present, is a vector of addresses (lv’s) of procedure statics. Normally, the static for a non-
resident procedure contains a trap value when its overlay is not in core, or the entry address when the
overlay is in core. This makes it impossible to copy the contents of the static freely into other statics or data
structures. However, if the address of the static appears in epvec, the package creates a tiny piece of
intermediate code in odvec and sets the procedure static to point permanently to this piece of code. For
such procedures, you can pass the contents of the static around at will after calling OverlayScan (or
OverlayInit).
 Epsize is the number of entries in epvec.

 OverlayScan returns -1 if odvsize was too small, or -2 if you supplied a fixvec argument and fixsize
was too small. Otherwise, OverlayScan returns the number of words of fixvec actually used, or an arbitrary
positive number if there was no fixvec argument.

 If you supplied a fixvec and saved the contents of both odvec and fixvec, then you can use the
following initialization call in the future:
** OverlayInit(odvec, fixvec[, disk])
which simply initializes all the non-resident procedure statics to their appropriate values and sets up a few
internal variables. In this case disk defaults to the value of the disk parameter you gave to OverlayScan, or
to the (current) sysDisk if that was defaulted.

3. Operation of the package

 The overlay package makes no assumptions about how you wish to allocate core space for overlays.
Consequently, you must supply (and declare external) a procedure with the following name and
arguments:
** UserReadOverlay(od) -> base
This procedure is called on an "overlay fault", which occurs whenever you attempt to call a procedure in
an overlay that is not in core. Od is an "overlay descriptor" which you may pass to various procedures
described just below. Your UserReadOverlay procedure is responsible for deciding what overlays or other
information to discard from core if necessary, calling ReleaseOverlay if necessary to notify the package of
overlays being discarded, reading in the new overlay using ReadOverlay, and finally returning base, the
address at which you have read in the new overlay.

 UserReadOverlay should first call the procedure
** LockPendingCode()
which scans the Bcpl stack and determines which overlays are currently in the process of execution and
hence are not eligible for being discarded. Then, in the course of deciding which overlay to discard,
UserReadOverlay may call
** ReleaseOverlay(od, false) -> ok
which returns true if it is OK to discard the overlay whose descriptor is od. To notify the package that an
overlay is actually being discarded, call
** ReleaseOverlay(od, true)
In order to discover which overlays are present in core, UserReadOverlay may call
** GeneratePresentOverlays(proc)
which calls proc(od) for each overlay currently in core.

 UserReadOverlay may use the following procedures to discover various useful parameters of a given
overlay:
** OverlayFirstPn(od) -> pn
returns the page number in the .Run file at which a given overlay begins (the first argument to
ReadOverlay, below).
** OverlayNpages(od) -> npages

Bcpl overlay package May 24, 1977 77

Cleared version of May 24, 1981

returns the number of pages required for the overlay on the .Run file and in core (the third argument to
ReadOverlay).
** OverlayDiskAddr(od) -> da
returns the disk address of the first page of the overlay.
** OverlayCoreAddr(od) -> base
returns the current core address of an overlay, or 0 if the overlay is not currently in core.

 When UserReadOverlay has finished making any necessary decisions, it should call
** ReadOverlay(pn, base, npages)
which actually calls the Bfs to read the overlay into core.

 The overlay package supplies three other procedures which likely to be of lesser interest:
** GenerateOverlays(proc)
calls proc(od) for every overlay regardless of whether it is in core or not. This may be useful during
initialization when deciding how much space to allocate in core for reading in overlays.
** FindOverlayFromPn(pn) -> od
finds an od given the first page number in the .Run file, or calls Swat if pn is not such a page number.
** DeclareOverlayPresent(od, base)
tells the package to believe that the given overlay is present in core at the given address. (The package
automatically calls DeclareOverlayPresent(od, UserReadOverlay(od)) in the course of processing an
overlay fault.)

 The overlay package also supplies a static which is useful if you are using it in conjunction with the
VMEM package. This static is called
 OverlayCoreOffset
and is the displacement within the overlay descriptor of the word which holds the core address of the
overlay (returned by OverlayCoreAddr). This makes it possible to say things like
LockCell(od+OverlayCoreOffset).

4. Restrictions and caveats

 There are two known restrictions on use of this package. One is that a procedure in an overlay which
is called from outside that overlay must not have more than 20 arguments. The other is a little subtler.
Because the package operates by placing a trap value in the static cells of procedures in overlays not
present in core, and re-executes the procedure call instruction after bringing in the overlay, the following
kind of code will not work:
 .
 .
 SavedProcAddr = NonResidentProc
 .
 .
 SavedProcAddr(args)
because the package has no way of fixing up SavedProcAddr to point to the core address of the procedure.
Because of the way the Bcpl compiler chooses to do things, the same is unfortunately true of the following
code sequence:
 .
 .
 SavedLvProcAddr = lv NonResidentProc
 .
 .
 (@SavedLvProcAddr)(args)
If you need to do this kind of thing (e.g. in a command processor which saves addresses of command
procedures, some of which may be non-resident, in a data structure), you should use the epvec and epsize
arguments to OverlayScan to declare which procedures need to be accessible this way.

You may also run into trouble if you have a non-resident procedure which uses strings or tables: since
these are stored in the code itself, non-resident procedures will have to copy such strings or tables into
resident storage if they may be used when the procedure is not in core.

5. Multiple contexts

Bcpl overlay package May 24, 1977 78

Cleared version of May 24, 1981

 If you have multiple contexts (in the sense of the Bcpl Context package), it is all right for context
switching to occur while control is inside the overlay package itself; in particular, since ReadOverlay calls
the Bfs, it is all right for this call on the Bfs to call Block while waiting for the disk. However, the overlay
package does assume it will not be pre-empted, i.e. it only allows for context switching during calls on the
user-supplied procedure UserReadOverlay and during the Bfs call in ReadOverlay.

 If you have more than one context which uses overlays, then when an overlay fault occcurs you must
call
** LockPendingCode()
to lock any overlays on the current stack, and then
** LockPendingCode(topframe)
with the topmost stack frame of each context that might use overlays. LockPendingCode assumes that
each stack is allocated downward in core: if you have a stack that violates this assumption, you must
sequence through the stack yourself and call
** LockPendingPc(pc)
with each saved return address.

6. Use of the package with Trident disks

 All page numbers (the page number in the fa argument to OverlayScan, the result of OverlayFirstPn,
and the pn argument to ReadOverlay and FindOverlayFromPn) and all page counts (the result of
OverlayNpages and the npages argument to ReadOverlay) refer to the sector size of the disk on which the
overlay file is stored, i.e. 400b words for the Diablo disks but 2000b words for Tridents. This is consistent
with the meaning of "page" for the Bfs and Tfs.

 Type B overlays are carefully arranged in .Run files so that they start at page boundaries. You cannot
simply copy a .Run file to a Trident and have this property be true with respect to the larger sectors size --
you must insert blank pages in the file as necessary. However, since OverlayScan doesn’t look at any part
of the file before the fa you give it, you don’t need to copy the resident part of the .Run file, only the
overlay part; then you can tell OverlayScan to start scanning at page 1 (the first data page).

7. Files

 The overlay package consists of the following files:
 OverlaysInit.BR - the initialization procedures of section 2 above.
 Overlays.BR - the procedures of section 3 above.
 OverlaysVmem.BR - some routines for interfacing to the software virtual memory package (VMEM),
not described here.
You may discard OverlaysInit after calling the initialization procedures. Needless to say, neither of these
files may itself be loaded as part of an overlay.

Bcpl overlay package May 24, 1977 79

Cleared version of May 24, 1981

Paper Tape Package

No computer is complete without paper tape equipment. This package provides standard stream interfaces
to a DG Nova High Speed Reader and Punch via the Diablo printer interface. The hardware only works
on Alto Is, and only with the particular paper tape equipment we have at Parc.

The package consists of a single binary file, PaperTape.br. The source for this, PaperTape.bcpl, is included
in PaperTape.dm, which also contains a test program, PaperTapeTest.bcpl, which generates various test
patterns for tuning the punch. Since the punch is mechanical, it must be oiled, and have its levers bent
now and then or it stops working.

Besides using standard operating system facilities, this package makes use of the Context and Timer
packages. If you don’t want to include the Context package, define an external procedure Block() that
returns immediately.

There is one externally-callable procedure for the punch stream, which works as follows:

CreatePunchStream(zone [sysZone], leaderLength [50.]) = ptps
Creates a Paper Tape Punch Stream (ptps) using the supplied parameters, both of which are optional.
LeaderLength is the length in inches of leader/trailer (blank tape with only sprocket holes punched)
that will be generated when the stream is created, closed or reset. The zone argument specifies the
zone from which the stream structure will be allocated (about 15 words). CreatePunchStream turns on
the punch, waits 2 seconds for the motor to come up to speed and then punches some leader.

The following operations are defined on a Paper Tape Punch Stream:

Puts(ptps, char)
Punches the specified 8-bit character (ignoring bits 0-7). Puts does some rather critical timing while
punching the character, and so it turns off interrupts for about 4.5 ms. If the punch does not supply a
sync signal within a reasonable time, Errors(ptps, ecPunchNotReady) is called.

Resets(ptps)
Punches some leader. The amount is 50 inches (the default), or the amount specified in the optional
second argument to CreatePunchStream.

Closes(ptps)
Punches some leader, waits 1 second, turns off the punch motor, and then destroys the stream. This
includes returning the stream structure to the zone from which it was allocated.

There is one externally-callable procedure for the reader stream, which works as follows:

CreateReaderStream(zone [sysZone]) = ptrs
Creates a Paper Tape Reader Stream (ptrs). The zone argument specifies the zone from which the
stream structure will be allocated (about 15 words). CreateReaderStream releases the brake and
capstan so that you can load the tape.

The following operations are defined on a Paper Tape Reader Stream:

Gets(ptps, stop [false]) = char or -1
Reads the next 8-bit character from the tape, returning -1 if the tape runs out. Gets does some rather
critical timing while reading the character, and so it turns off interrupts for a while. Unless stop is true,
the capstan will be left engaged, and you must call gets before the next character arrives or it will be
lost. Resetting the stream will also stop the tape.

Resets(ptps)
Stops the tape and then releases the brake.

Paper Tape Package September 24, 1977 80

Cleared version of May 24, 1981

Closes(ptps)
Stops the tape, releases the brake, and then destroys the stream. This includes returning the stream
structure to the zone from which it was allocated.

WARNING: until the paper tape reader stream is created, the reader is in rip-tape mode: capstan and
brake are both engaged!

Paper Tape Package September 24, 1977 81

Cleared version of May 24, 1981

Pup Package

The Pup package consists of a large body of Alto software that implements communication by means of
Pups (Parc Universal Packets) and Pup-based protocols. This software is broken into a number of
independent modules implementing various "levels" of protocol in a hierarchical fashion. Each level
depends on primitives defined at lower levels, and defines new primitives (e.g, inter-network addressing,
process-to-process connections, byte streams) available to levels above it. A program making use of the
Pup package need include only those components implementing primitives utilized by that program.

1. Overview

This document is organized as a general overview followed by descriptions of each of the components of
the package, with the lowest levels described first. A history of revisions to the package may be found at
the end.

Before beginning the real documentation, we should like to mention a number of points worth bearing in
mind throughout, as well as various caveats and suggestions for use.

a. This document concerns itself only with external program interfaces and not with protocol
specifications, internal implementation, motivations for design choices, etc. The Pup package implements
the protocols described in the memo "Pup Specifications" (Maxc file <Pup>PupSpec.Press) and in other
documents also to be found in the <Pup> directory. A higher-level overview of the Pup protocols may be
found in the report "Pup: An Internetwork Architecture", file <Pup>PupPaper.press. Users interested in
protocol information are referred to those documents. Knowledge of these protocols is not required when
writing programs making use of the higher-level primitives provided by the Pup package (specifically,
connections and byte streams), but is essential when dealing directly with the lower-level primitives.

b. Since both the software and the protocols are still under active development, users are requested to
avoid making changes to the package, if at all possible. This is so that subsequent releases of the package
may be incorporated into existing programs with minimum fuss. We have attempted to provide as general-
purpose a package as is reasonable (consistent with clean programming practices and considering Alto
memory limitations), so if you come up with an application that simply can’t be accomodated without
modifying the package, we would like to know about it. There are a small number of parameters that we
have designated as "user-adjustable" and separated out into a special declaration file (PupParams.decl).
The intention is that users be able to change these parameters and recompile the package; however, one
should be aware that the software has not been tested with parameters set to values other than the ones in
the released version.

c. One of the design goals has been to implement software that will also run on a Nova. All Alto-specific
code has been carefully separated out into modules containing "Al" in their names (e.g., PupAlEthb.bcpl
for the Alto Ethernet driver). The Nova equivalents of the Alto-specific modules (released as a separate
package) contain "Nv" in their names. Source files not containing "Al" or "Nv" in their names may be
recompiled on the Nova (with BCPL or the Nova version of Asm) and run without change; either they are
completely free of machine dependencies or (in a few cases) they enclose machine-dependent code in
conditional compilation. People writing general-purpose subsystems making use of this package are
encouraged to adopt the same approach.

d. The Pup package makes extensive use of primitives provided in four other software packages: Context,
Interrupt, Queue, and Timer. The dependence on the Context package means that calling programs must
operate in a manner compatible with contexts. In particular, the Pup package initiates a number of
independent background processes that must be given an opportunity to run fairly frequently. Hence, the
user’s "main program" must run within a context, and wait loops and very long computations in the main
program should be interspersed with calls to Block. For example, a call such as "Gets(keys)" (which causes

Pup Package January 25, 1981 82

Cleared version of May 24, 1981

busy-waiting inside the operating system) might be replaced by something like "GetKeys()", where the
latter function is defined as:

 let GetKeys() = valof
 [
 while Endofs(keys) do Block()
 resultis Gets(keys)
]

Alternatively, you may change the Operating System’s "Idle" procedure to call Block, if you understand
what you are doing. Consult the the Context Package writeup for further information.

1.1. Organization

The Pup software is divided into three major levels, corresponding to levels 0 through 2 of the Pup
protocol hierarchy. Software at a given level depends on primitives provided at all levels below it.

At level 0 is the "transport mechanism" software necessary for an Alto to send and receive Pups on an
Ethernet. This consists of a small Ethernet interrupt handler that appends received Pups to an input queue
and transmits Pups taken from an output queue. It is the only portion of the Pup package specific to the
Ethernet or to the Alto-Ethernet interface. Corresponding drivers are included for the XEOS EIA
interface and the ASD Communication Processor, for use in Altos that have those special interfaces
installed.

Level 1 defines a number of important and generally useful primitives. A program desiring to send and
receive "raw Pups" (without sequencing, retransmissions, flow control, etc.) would interface to the Pup
package at this level. The level 1 module includes the following:

a. Procedures for creating, maintaining, and destroying a "socket", a process’s logical connection to
the Pup inter-network.

b. Procedures for managing "Packet Buffer Items" (PBIs), each of which holds a Pup and some
associated information while the Pup resides in Alto memory.

c. A background process that distributes received Pups to the correct sockets. This includes checking
port address fields and optionally verifying the Pup checksum.

d. Procedures for allocating PBIs, building Pups, and queueing them for transmission.

e. A background process that dynamically maintains a routing table for transmission of Pups to
arbitrary inter-network addresses.

f. Optional procedures permitting the local host to be a gateway (not ordinarly used).

At level 2 are modules implementing three higher-level protocols: the Rendezvous/Termination Protocol
(RTP), the Byte Stream Protocol (BSP), and the Name Lookup Protocol. These are independent, parallel
protocols, each built on top of the primitives defined at level 1; however, the RTP and the BSP interact in a
way such that, in this implementation, BSP depends on the existence of RTP.

The RTP module contains procedures for opening and closing a "connection" with a foreign process.
These have options permitting the local process to operate in the role of either "initiator" or "listener".

The BSP module contains mechanisms for sending and receiving data by means of error-free, flow-
controlled "byte streams" between a local and a foreign process. These are true "streams" in the sense
defined by the Alto operating system. Additionally, means are provided for sending and receiving Marks
and Interrupts, which are special in-sequence and out-of-sequence signals defined by the Byte Stream
Protocol. A separate, optional module permits sending and receiving blocks of data in memory an order of
magnitude more efficiently than by use of the basic "Puts" and "Gets" operations.

Pup Package January 25, 1981 83

Cleared version of May 24, 1981

The Name Lookup module contains a procedure for parsing an inter-network "name" (e.g., a host name)
and converting it to an address. When necessary, it finds and interacts with some name lookup server on
the directly connected network.

1.2. File Conventions

The Pup package is distributed as file PupPackage.dm, which contains the following binary files:

Level 0
PupAlEthb.br Alto Ethernet driver (BCPL portion)
PupAlEtha.br Assembly code for Ethernet driver
PupAlEthInit.br Alto Ethernet initialization
PupAlEIAb.br Driver for EIA interface
PupAlEIAa.br
PupAlEIAInit.br
PupAlComProcb.br Driver for Communication Processor
PupAlComProca.br
PupAlComProcInit.br

Level 1
Pup1b.br Main level 1 code (BCPL portion)
PupAl1a.br Assembly-language code for level 1
Pup1OpenClose.br Opening and closing Pup sockets
PupRoute.br Routing table maintenance and access
PupDummyGate.br Dummy substitute for gateway code
Pup1Init.br Level 1 initialization

Level 2
PupRTP.br Rendezvous/Termination Protocol
PupRTPOpenClose.br Opening and closing RTP sockets
PupBSPStreams.br Byte Stream Protocol (BCPL portion)
PupBSPProt.br Additional BSP code
PupBSPOpenClose.br Opening and closing BSP sockets
PupBSPa.br Assembly-language code for BSP
PupBSPBlock.br Fast BSP block transfer procedures
PupNameLookup.br Name lookup module

The files with "Init" in their names, as well as PupDummyGate.br, contain initialization code that need be
executed only once and may then be thrown away. (Note, however, that the level 1 and level 0 "Destroy"
procedures are included in the "Init" modules.)

File PupNameLookup.br and the files with "OpenClose" in their names contain code that is infrequently
executed (i.e., only when particular types of sockets are opened or closed) and may therefore be loaded
into overlays (to be managed by the Overlay package) without significant performance penalties. All other
modules must remain resident while any part of the Pup package is active, since they contain main-line
code or code that is executed by continually-running contexts.

Additionally, the following "get" files are included. They contain declarations of all structures and other
parameters likely to be of interest to calling programs (as well as some others of no interest to callers). We
suggest that the user make listings of these files to accompany this documentation.

Pup Package January 25, 1981 84

Cleared version of May 24, 1981

Cleared version of May 24, 1981

Pup Package January 25, 1981 85

Pup0.decl Level 0 definitions (network-independent)
Pup1.decl Level 1 definitions
PupRTP.decl Definitions for RTP
PupBSP.decl Definitions for BSP

Pup.decl Does "get" of all the above
PupParams.decl User-adjustable parameters
PupStats.decl Statistics definitions
PupAlEth.decl Definitions specific to Alto Ethernet
PupAlEIA.decl Definitions specific to EIA driver
PupAlComProc.decl Definitions specific to ComProc driver

A program that does a "get" of any of the first group of files must also "get" all files earlier on the list, and
in the same order. (We were not able to make this happen automatically because of a limit on the number
of simultaneous open files at compilation time). The file Pup.decl is provided for the convenience of
programs dealing with the package at the BSP level. A "get" of PupParams.decl is included in Pup0.decl,
and PupAlEth.decl and PupStats.decl are not ordinarily of interest to outside programs.

The following table shows, for each module (including external packages), what .br files constitute that
module and what other modules are also required.

Module Name Files Other Modules Required

BSP Block Transfer PupBSPBlock.br BSP
ByteBlt

ByteBlt (external) AltoByteBlt.br

BSP PupBSPStreams.br RTP
PupBSPProt.br
PupBSPOpenClose.br
PupBSPa.br

RTP PupRTP.br Level 1
PupRTPOpenClose.br

Name Lookup PupNameLookup.br Level 1

Level 1 Pup1b.br Level 0
Pup1OpenClose.br Timer
PupAl1a.br
PupRoute.br
PupDummyGate.br
Pup1Init.br

Level 0 PupAlEthb.br Context
PupAlEtha.br Interrupt
PupAlEthInit.br Queue

Context (external) Context.br
ContextInit.br

Interrupt (external) Interrupt.br
InterruptInit.br

Queue (external) AltoQueue.br

Timer (external) AltoTimer.br

There are a few global parameters that may be changed by modifying the PupParams.decl file and then
recompiling the entire Pup package. The most interesting parameter is "pupDebug", which, if true
(default is false) causes some additional consistency checking code to be compiled.

The sources for the Pup package are contained in file PupSources.dm, and consist of the following files:

PupAlEthb.bcpl PupAlEtha.asm PupAlEthInit.bcpl
PupAlEIAb.bcpl PupAlEIAa.asm PupAlEIAInit.bcpl
PupAlComProcb.bcpl PupAlComProca.asm PupAlComProcInit.bcpl
Pup1b.bcpl PupAl1a.asm Pup1OpenClose.bcpl
PupRoute.decl PupRoute.bcpl
Pup1Init.bcpl PupDummyGate.bcpl
PupRTPInternal.decl PupRTP.bcpl PupRTPOpenClose.bcpl
PupBSPStreams.bcpl PupBSPProt.bcpl PupBSPa.asm
PupBSPOpenClose.bcpl PupBSPBlock.bcpl
PupNameLookup.bcpl

Additionally, there are several command files:

CompilePup.cm Compiles all the source files
DumpPupPackage.cm Creates PupPackage.dm
DumpPupSources.cm Creates PupSources.dm
Pup.cm A list of all the source files

The source files are formatted for printing in a small fixed-pitch font such as Gacha8 (the normal default
for Empress).

1.3. Glossary of Data Types

Name Defined in Meaning

BSPSoc PupBSP.decl BSP-level Pup socket, consisting of an RTP socket (RTPSoc) followed by
additional information about a byte stream. This includes byte IDs
(sequence numbers), queues, and allocations for incoming and outgoing
data and interrupts, and a BSP stream block (BSPStr).

BSPStr PupBSP.decl BSP stream (part of a BSPSoc), for interfacing the BSPSoc to the Alto
operating system’s stream mechanism.

HTP Pup1.decl Hash Table Preamble, defining the publicly-accessible operations on a
dictionary object (specifically, the Pup routing table). These operations
are Lookup, Insert, Delete, and Enumerate. This object is misnamed in
that it need not actually be implemented by means of a hash table; at
present, the Pup routing table is not.

NDB Pup0.decl Network Data Block, containing information specific to each network
physically attached to the local host. (A standard Alto has only one of
these, for the directly-connected Ethernet.)

PBI Pup0.decl Packet Buffer Item, which holds a Pup and various associated information.

PF Pup0.decl Packet Filter, controlling acceptance of incoming packets on a given
network.

Port Pup0.decl An inter-network address, consisting of network, host, and socket
numbers, as defined by protocol.

PSIB Pup1.decl Pup Socket Info Block, contains data used for setting initial default values
when a PupSoc is created.

Pup Package January 25, 1981 86

Cleared version of May 24, 1981

Pup Pup0.decl An inter-network packet, as defined by protocol.

PupSoc Pup1.decl Level 1 Pup socket, defining a process’s logical connection to the inter-
network. It contains default local and foreign port addresses, PBI
allocation information, and an input queue header.

RT -- Routing Table, containing information necessary to route outgoing Pups
to destination hosts or to gateways. There is only one instance of an RT,
called pupRT. The structure of an RT is not public, but object procedures
(see HTP) are provided for accessing and enumerating individual Routing
Table Entries (RTEs), which are public structures.

RTE Pup1.decl Routing Table Entry (routing information for one network).

RTPSoc PupRTP.decl RTP-level Pup socket, consisting of a level 1 socket (PupSoc) followed by
additional information about a connection. This includes state,
connection ID, timers, and a higher-level Pup-handling procedure.

soc -- An instance of a PupSoc, RTPSoc, or BSPSoc, depending on context.
Note that a PupSoc may be the initial portion of an RTPSoc, which may
in turn be the initial portion of a BSPSoc; hence, a given soc may be an
instance of more than one of these structures.

str -- An instance of a stream (most likely, a BSPStr).

2. Level 0 Interface

Only the level 0 driver for the Ethernet is described here. There also exist drivers for the EIA and
ComProc interfaces, but they are somewhat specialized and are not documented here. Their function is
analogous to the Ethernet driver and their operation is quite similar.

The level 0 module (files PupAlEthb, PupAlEtha, and PupAlEthInit) serves only to interface the Alto
Ethernet to the network-independent Pup level 1 module. Assuming the level 1 code is being used, as is
normally the case, external programs will generally have no occasion to deal directly with the level 0
module. Provisions are also made for sending and receiving non-Pup Ethernet packets, for use in unusual
applications.

This module requires the existence of the following external statics (all of which are defined in level 1):

ndbQ A pointer to a two-word queue header (hereafter referred to as "a queue"; see Queue
Package documentation) upon which the Ethernet NDB (etherNDB) may be queued by
this module. In a machine with more than one network interface, this queue contains
an NDB for each network.

pbiFreeQ A queue from which free PBIs may be obtained, for buffering received Pups.

pbiIQ A queue to which PBIs are appended when Pups are received.

lenPup The maximum length of a Pup (in words).

The externally-callable procedures in this module are the following:

InitAltoEther(zone, ctxQ, device)
Initializes the Alto Ethernet interface and associated data structures. "zone" is a free-storage zone
from which space may be obtained for permanent data structures (currently less than 100 words).
"ctxQ" is a queue on which a context created by this procedure may be queued. This procedure

Pup Package January 25, 1981 87

Cleared version of May 24, 1981

allocates an NDB and appends it to ndbQ; allocates an interrupt context (see Interrupt Package
documentation) and sets it up to field Ethernet interrupts; and allocates and initiates an ordinary
context (see Context Package documentation) which runs forever and whose job it is to restart the
Ethernet interface if it is ever shut off due to running out of free PBIs for input. InitAltoEther
returns having done nothing if the Alto doesn’t have an Ethernet interface installed (the level 1
initialization detects the condition of ndbQ being empty after all interface initialization procedures
have been called).

"device" should normally be 0, referring to the standard Alto Ethernet interface. However, in Altos
with more than one Ethernet interface installed, the driver may be initialized multiple times, once for
each interface; in this case, device numbers 1 and 2 refer to the first and second additional interfaces.

EncapsulateEtherPup(pbi, pdh)
Encapsulates the Pup contained in "pbi" for transmission to physical destination host "pdh" on the
directly-connected Ethernet. The PBI should contain a completely well-formed Pup.
EncapsulateEtherPup sets the Ethernet destination, source, and type fields in the encapsulation
portion of the packet, and also sets the packetLength word in the PBI. SendEtherPup is the
procedure called from level 1 via the encapsulatePup entry in the Ethernet NDB.

SendEtherPacket(pbi)
Queues "pbi" for transmission on the directly-connected Ethernet, and initiates transmission if the
interface is idle. The PBI should contain a completely well-formed Ethernet packet (which need not
be a Pup), the packetLength word in the PBI must contain the physical length of the packet in words,
pbi>>PBI.queue must contain a pointer to a queue to which the PBI will be appended after it has
been transmitted, and pbi>>PBI.ndb must contain a pointer to the NDB associated with the Ethernet
interface through which the packet is to be sent. SendEtherPacket is the procedure called from level
1 via the level0Transmit entry in the Ethernet NDB.

SendEtherStats(pbi, ndb) = true or false
If the debugging version of PupAlEthb is loaded (pupDebug on), this procedure copies the statistics
accumulated by the Ethernet interface (described by ndb) into pbi and returns true. If the module
was not compiled with debugging on, SendEtherStats immediately returns false.

DestroyAltoEther(ndb)
Turns off the Ethernet interface designated by ndb, and releases all storage allocated by
InitAltoEther. This is the procedure called from level 1 via the NDB.destroy procedure. This
procedure is in the PupAlEthInit module, which must therefore be retained if the "destroy"
operation is actually to be utilized.

When a packet is received from the Ethernet, the input interrupt routine first verifies that the hardware
and microcode status are correct, and discards the packet without error indication if not. It then tests the
packet for acceptance by each Packet Filter (PF) on the Ethernet packet filter queue, as will be described
shortly. If some PF accepts the packet, the PBI is then enqueued on the queue designated in the PF;
otherwise it is discarded. A free PBI is then obtained from pbiFreeQ, and the receiver is restarted.
(Actually, an attempt is made to restart the receiver before any other processing so as to minimize the
interval during which a packet could be missed because the receiver isn’t listening to the Ethernet.)

When an output PBI is passed to SendEtherPacket, it is queued on a local Ethernet output queue (eOQ,
part of the NDB). If the interface is currently idle, transmission is initiated immediately; otherwise, the
PBI is simply left on the queue for action by the interrupt routine. When an output completion interrupt
occurs (or a fatal error indication such as a "load overflow", or a 100 millisecond software timeout), the
PBI is then enqueued on the queue specified in the PBI (typically pbiFreeQ or a level 1 queue called
pbiTQ).

Garden-variety errors (e.g., collisions, bad Ethernet CRCs, etc.) are handled automatically: input errors
cause the received packet simply to be discarded, while output errors cause retransmission. "Impossible"
errors (suggesting that the interface or the Alto is broken) result in a call to SysErr(@ePLoc,
ecBadEtherStatus).

Pup Package January 25, 1981 88

Cleared version of May 24, 1981

In the debugging version of this module (pupDebug on), a number of Ethernet performance statistics are
gathered. These are intended for experimental purposes and measurements. One should consult
PupStats.decl to see what is collected.

Though the primary purpose of the Pup level 0 module is to send and receive Pups on a particular directly-
connected network, means are also provided for sending and receiving arbitrary network-dependent
packets (i.e., Ethernet packets in an Alto).

Sending a non-Pup packet is straightforward: one simply calls SendEtherPacket after constructing the
desired Ethernet packet in the PBI, as described above.

Discrimination among received packets is accomplished by one or more objects called Packet Filters (PFs),
which reside on a Packet Filter Queue (pfQ) whose head is in the NDB. Each PF contains a predicate and
a pointer to a queue. When a packet is received, the predicate in each PF in turn is called with the PBI as
an argument. If the predicate returns true, the PBI is enqueued on the queue pointed to by the PF; if it
returns false, the next PF is tried. If no PF accepts the packet, the PBI is discarded.

The pfQ initially contains a single PF that accepts Pups and appends them to pbiIQ (the level 1 Pup input
queue). A program desiring to receive other kinds of Ethernet packets should construct its own PF and
enqueue it on the Ethernet pfQ.

3. Level 1 Interface

The level 1 module (files Pup1b, PupAl1a, PupRoute, Pup1OpenClose, PupDummyGate, and Pup1Init)
contains the mechanisms enabling a process to send and receive individual Pups to and from other
processes at arbitrary inter-network addresses. Concepts such as "connection" and "stream", however, are
not defined at this level, so it is the process’s responsibility to perform initial connection, sequencing,
retransmission, duplicate detection, etc., where required.

A process deals with the level 1 module through a PupSoc, a level 1 socket structure (see Pup1.decl), which
completely describes that process’s interface to the inter-network at the first level of protocol. The
information in the socket is as follows:

iQ Input queue. PBIs received for the socket are appended to this queue. The two-
word queue header is included in the socket structure itself, so to remove a
packet from the iQ one would write "Dequeue(lv soc>>PupSoc.iQ)".

lclPort Local port address (a Port structure). This serves two purposes. First, the
"socket number" in the port enables the level 1 Pup input handler to distribute
each incoming Pup to the correct PupSoc by comparing
pbi>>PBI.pup.dPort.socket (the Pup destination socket number) with
soc>>PupSoc.lclPort.socket of each active PupSoc until a match is found.
Second, the source port fields of each outgoing Pup generated by the process are
defaulted (if zero) to the values given in the local port address.

frnPort Foreign port address (a Port structure). This provides information for defaulting
the destination port fields of outgoing Pups, in the same manner as described for
lclPort.

psib Pup Socket Info Block (PSIB), which contains the information described below.
Since it is generally the same for all sockets, there is a "default PSIB" (dPSIB)
whose contents are copied into the psib for each socket when the socket is
created.

maxTPBI The maximum total number of PBIs that may be assigned to the socket. Since
free PBIs are taken from a common pool, some means is required for ensuring

Pup Package January 25, 1981 89

Cleared version of May 24, 1981

that no single socket can usurp more than a certain share of the total available
PBIs (which, aside from reducing performance for other sockets, could lead to
deadlocks in higher-level protocols if the free pool became exhausted). This is
discussed further in the descriptions of the GetPBI and ReleasePBI procedures.

numTPBI The total number of additional PBIs that may be assigned to the socket (i.e.,
maxTPBI minus the number of PBIs already assigned).

maxIPBI The maximum number of PBIs that may be assigned to the socket for input use.

numIPBI The number of additional PBIs that may be assigned for input (i.e., maxIPBI
minus the number of PBIs already assigned for input).

maxOPBI The maximum number of PBIs that may be assigned to the socket for output use.

numOPBI The number of additional PBIs that may be assigned for output (i.e., maxOPBI
minus the number of PBIs already assigned for output).

doChecksum If true, the Pup software checksum is checked by the level 1 software in incoming
Pups (before being given to the process) and generated in outgoing Pups. The
default value is true.

The following statics are defined within the level 1 module and may be referenced externally (though only
a few are likely to be of interest):

dPSIB Pointer to default socket info block, used to provide initial values in part of each
PupSoc when it is created.

gatewayIQ Pointer to queue on which received Pups not addressed to this host are placed. Unless
the Gateway package is loaded, gatewayIQ is initialized to pbiFreeQ.

lenPup The length of the largest possible Pup, in words (derived from maxPupDataBytes).

lenPBI The length of a PBI, in words (derived from lenPup). Note that all PBIs are of the same
size and can each contain a Pup of maximum length.

lPupSoc The length of a PupSoc, in words.

maxPupDataBytes The maximum number of data (content) bytes in a Pup. This is initialized to the
"pupDataBytes" argument to InitPupLevel1 and remains constant thereafter.

ndbQ Pointer to queue of NDBs for all the physically connected networks (see level 0
description). The first NDB on ndbQ is considered to be the "default" network, i.e., the
one sent to if a process specifies a Pup destination network of zero.

numNets The number of directly connected networks (always 1 in an Alto).

pbiFreeQ Pointer to queue of free PBIs.

pbiIQ Pointer to queue on which incoming Pups are placed by level 0 interrupt routines.

pbiTQ Pointer to queue on which outgoing Pups are ordinarily placed after transmission.

pupCtxQ Default context queue onto which new contexts created by the Pup package will be
appended. This is initialized to the "ctxQ" argument to InitPupLevel1.

pupRT Pointer to routing table (described later).

pupZone Default zone from which allocations will be made by the Pup package. This is
initialized to the "zone" argument to InitPupLevel1.

Pup Package January 25, 1981 90

Cleared version of May 24, 1981

socketQ Pointer to queue of all active PupSocs.

The level 1 module must be initialized by calling InitPupLevel1, as follows:

InitPupLevel1(zone, ctxQ, numPBI, pupDataBytes [defaultPupDataBytes], numRTE [9])
Initializes all the level 1 software, and also calls the appropriate level 0 initialization (InitAltoEther in
the Alto version). "zone" is a free-storage zone from which permanent allocations may be done.
"ctxQ" is a pointer to a queue of contexts to which the contexts created by this procedure may be
appended. "numPBI" is the number of PBIs to be allocated (from "zone") and appended to the
pbiFreeQ.

The optional argument "pupDataBytes" specifies the maximum number of data (content) bytes to be
permitted in any Pup; it must be even and by convention should not be greater than 532. A smaller
maximum Pup length is useful in some applications not requiring high throughput, since the PBIs are
thereby smaller and one can have more of them at the same cost in memory. The default value of this
parameter is 532.

The optional argument "numRTE" specifies the number of entries to allocate in the Pup routing
table. These are used as a cache for routing information, and there should be at least as many entries
as there are likely to be simultaneous conversations with hosts on different networks.

InitPupLevel1 does the following: it creates the queues pbiIQ, pbiTQ, pbiFreeQ, socketQ, and
ndbQ; allocates "numPBI" PBIs and appends them to pbiFreeQ; creates the routing table pupRT;
creates the default Pup socket info block dPSIB; calls the level 0 initialization procedure(s); creates
the PupLevel1 and GatewayListener background contexts (to be described later); and broadcasts
requests for gateway routing information. The total amount of storage taken from "zone" (in words)
is approximately numPBI*290 + lenPSIB + lenPupSoc + numRTE*5 + 250 + the amount needed
by level 0 initialization. InitPupLevel1 also calls the external procedure InitForwarder (ordinarily
defined in PupDummyGate.br), initializes the static pupZone to "zone" and pupCtxQ to "ctxQ", and
sets up the constants maxPupDataBytes, lenPup, and lenPBI on the basis of "pupDataBytes".

InitPupLevel1 does not call Block, so it is permissible to call it from initialization code that is not
running as a context.

DestroyPupLevel1()
Undoes the actions of InitPupLevel1. This includes calling all the level 0 "destroy" procedures (via
the NDB.destroy operations in all NDBs on ndbQ) and releasing all storage allocated from pupZone.
DestroyPupLevel1 is in the Pup1Init module, which must therefore be retained rather than discarded
if this procedure is to be used.

The following procedures are provided for creating and destroying sockets:

OpenLevel1Socket(soc, lclPort [defaulted], frnPort [zeroes])
Creates a PupSoc. "soc" should point to a block of size lenPupSoc. "lclPort", if specified and
nonzero, points to a Port structure describing the desired local port address. "frnPort", if specified
and nonzero, points to a Port structure describing the desired foreign port address. The "soc" is then
appended to socketQ, thereby enabling reception of Pups directed to it.

Each field in the local port address is subject to defaulting if either the "lclPort" is unspecified or the
field is zero, in the following manner. If the socket number is unspecified, one is chosen at random
(it is guaranteed unique). If both the network and host numbers are unspecified, they are filled in
with a reasonable local host address (perhaps based on the supplied "frnPort"). Ordinarily, one
should allow the socket number to be defaulted unless one intends the process to reside at a "well-
known socket" (as in a server), and one should always allow the network and host numbers to be
defaulted.

If "frnPort" is unspecified, the foreign port in the "soc" is set to zeroes. Then, if the foreign network
number is zero (generally for the purpose of designating the "directly connected" network), it is set to
the connected network’s actual number, if known. Note that the "lclPort" and "frnPort" fields in the

Pup Package January 25, 1981 91

Cleared version of May 24, 1981

"soc" are copied from the corresponding arguments to OpenLevel1Socket; the argument ports are
not modified and are not needed thereafter.

CloseLevel1Socket(soc)
Causes "soc" to be removed from socketQ. This procedure blocks until all PBIs assigned to the
socket have been recovered and released. If "soc" is not in fact on socketQ, this procedure calls
SysErr(soc, ecNoSuchSocket).

Control over assignment of PBIs to sockets is accomplished in a manner that is more complicated to
describe than to implement. Associated with each socket are three numbers that determine the maximum
number of PBIs that may be assigned to a socket simultaneously. The "total" (soc>>PupSoc.maxTPBI) is
the maximum total number of PBIs permitted, while the "input" and "output" values
(soc>>PupSoc.maxIPBI. soc>>PupSoc.maxOPBI) determine (independent of the overall total) the
maximum number of PBIs that may be assigned for those respective purposes. The "total" maximum
prevents a single socket from usurping more than a fixed share of the total PBIs in the system; within that,
the "input" and "output" limits, if properly set, prevent all of a socket’s allocation from being devoted to
packets going in one direction (with resultant potential deadlocks). The "total" allocation must be greater
than either "input" or "output", but need not be equal to their sum, since in most applications one expects
heavy demands on PBIs in only a single direction.

The actual number of PBIs assigned to a socket at a given moment is reflected in three other cells in the
socket: soc>>PupSoc.numTPBI, soc>>PupSoc.numIPBI, and soc>>PupSoc.numOPBI. These are initialized
to the corresponding "max" values, decremented whenever a PBI is assigned to the socket, and
incremented when the PBI is released. The code responsible for allocating and releasing PBIs (the
PupLevel1 background process for input PBIs and the GetPBI procedure for output PBIs) do not permit
any of these counts to go below zero; if allocating another PBI would cause a count to be decremented
below zero, PupLevel1 will simply discard the Pup and release the PBI, and GetPBI will either block or fail
(see below).

The allocations in the socket are also useful when destroying the socket. At the time CloseLevel1Socket is
called, there may be PBIs that are assigned to the socket but that cannot be located at the moment because
they reside on some other queue (such as the Ethernet output queue or the pbiTQ). CloseLevel1Socket
simply blocks until soc>>PupSoc.numTPBI equals soc>>PupSoc.maxTPBI, at which point it is known that
all PBIs have "returned" to the socket and been released.

PBIs may be added to the free pool simply by allocating blocks of size lenPBI and "Enqueue"ing them on
pbiFreeQ. One could also remove PBIs from the system by "Dequeue"ing them from pbiFreeQ and
freeing them, but of course one has no control over which PBIs are available for release. Note that such
changes in the total number of PBIs are not automatically reflected in any socket allocations or in the
default allocations contained in dPSIB.

SetAllocation(soc, total, input, output)
Changes the number of PBIs that may be assigned to the socket. "total", "input", and "output" are
the new maximum values. The "total" must be greater than either the "input" or "output".
SetAllocation need be called only if the desired allocations differ from the defaults in dPSIB.
Alternatively, one may manually change the contents of dPSIB; note that the "num" and "max"
values for a given allocation must be the same and that the "total" allocation must be greater than or
equal to the "input" and "output" allocations. Changing dPSIB does not affect allocations in sockets
that have already been opened. The initial "total" allocation in dPSIB is numPBI-numNets, where
numPBI is the argument to InitPupLevel1 that determines the number of PBIs initially created and
numNets is the number of directly-connected networks (normally one in an Alto). The initial
"input" and "output" allocations are each one less than the "total".

GetPBI(soc, returnOnFail [false]) = PBI
Assigns a PBI from pbiFreeQ and charges it to the socket, for output use (that is, it decrements
soc>>PupSoc.numTPBI (total) and soc>>PupSoc.numOPBI (output)). If the socket has exhausted its
total or output allocation or the pbiFreeQ is empty, then GetPBI blocks unless returnOnFail is true,
in which case it returns zero. The PBI returned has its Pup header zeroed so that if the caller later
transmits the Pup without setting up source and destination port addresses, the addresses will be

Pup Package January 25, 1981 92

Cleared version of May 24, 1981

correctly defaulted from the socket. The PBI’s "queue" pointer is set to pbiTQ, resulting in
automatic release of the PBI after it is transmitted. The PBI’s "socket" pointer is set to "soc", thereby
recording the socket to which it has been assigned.

ReleasePBI(pbi)
Releases the "pbi" and appropriately credits the allocations in the socket to which it was assigned.

CompletePup(pbi, type [], length [])
Causes "pbi" to be completed and transmitted. "Completion" consists of the following operations:
"type" and "length", if supplied, are stored in the Pup type and length fields; any zero fields in the
Pup source or destination ports are defaulted to the values given in the owning socket’s local and
foreign port addresses, respectively; the transport control byte (used by gateways) is zeroed; then, if
the socket’s doChecksum flag is on (the default unless changed explicitly), a software Pup checksum
is computed and stored in the Pup. The caller is expected to have set up the Pup’s ID, and contents
(if any) and its type and length if not supplied in the call. Finally, the PBI is routed to its destination
and queued for transmission.

After transmission, the PBI is appended to pbi>>PBI.queue, which (unless changed explicitly by the
caller) will be pbiTQ, resulting in automatic release of the PBI. If a different queue is specified for
disposal of the PBI (as is done in the BSP package, for example), then the caller is responsible for
keeping track of the PBI, and, in particular, for ensuring that all PBIs assigned to the socket have
been released before destroying the socket.

A special mechanism exists for broadcasting a Pup on all directly-connected networks. If the allNets
bit is set in the PBI status word, then instead of routing the Pup to the destination stated in the Pup
header, CompletePup sends the Pup out on each directly-connected network. For each network, the
local host address on that network is substituted for the network and host numbers in the Pup source
port, and the local network number is also substituted for the destination network field (the checksum
is recomputed each time this is done). The "queue" word in the PBI must be pbiTQ (the default) for
this feature to work properly.

The allNets mechanism ordinarily causes a Pup to be sent on each directly-connected network,
whether or not the network’s identity is known. However, if the bypassZeroNet bit is also set, the
Pup will not be sent on networks whose identity is not known.

Distribution of received Pups to the correct sockets is the responsibility of a background process called
PupLevel1. When a PBI appears on pbiIQ (where it was left by the level 0 input handler), PupLevel1 first
performs some checks on the Pup destination address, and discards the PBI if it is not destined for a
process in the local host (actually, it enqueues it on gatewayIQ, which, assuming the PupDummyGate
module has been loaded, is the same as pbiFreeQ). It then searches the socketQ for a socket whose local
socket number matches the Pup destination socket number. If no such socket is found, the PBI is passed to
SocketNotFound(pbi), which generates an Error Pup and discards the packet (but could be made to do
something else by clobbering the SocketNotFound procedure static with a different handling procedure).

Assuming the destination socket is found, PupLevel1 then checks the Pup checksum (assuming the socket’s
doChecksum flag is on), discarding the PBI if it is incorrect. Finally, the socket’s "total" and "input" PBI
allocations are checked. If either is exhausted, the PBI is discarded (causing an Error Pup to be returned to
the Pup’s source); otherwise, the allocations are updated and the PBI is appended to the socket’s iQ.

PupLevel1 is also responsible for releasing PBIs on the pbiTQ, which is the default queue to which
outgoing packets are appended after transmission.

Another process, GatewayListener, is responsible for dynamically maintaining the routing table pupRT
and updating it with information periodically received from gateways. While routing and routing table
maintenance are operations performed automatically (by CompletePup and GatewayListener), the format
of the routing table is of possible interest to callers in certain cases--for example, in deciding which of
several possible remote servers is the best choice in terms of network topology (see the PupNameLookup
module for an example of this). The following description is much more than most programmers will wish
to know about.

Pup Package January 25, 1981 93

Cleared version of May 24, 1981

The RT is a dictionary object consisting of routing table entries (RTEs) keyed by network number, each
containing information about a specific network. For a given RTE, if the "hops" field is zero, the network
is one to which the local host is directly connected; otherwise, the network may be reached via the gateway
whose host number is given in the "host" field (the "hops" field indicates the number of gateways believed
to lie along the route to the destination net). In either case, the "ndb" field points to the NDB for the
immediate destination network (see "Pup Specifications"). If the "hops" field is greater than "maxHops"
(currently 15), the network is known to be inaccessible, and the remainder of the RTE should not be
believed.

If no RTE exists for a particular network, then we know nothing about that network and can’t route Pups
to it. The routing table is treated as a cache of recently-used routing information. When an attempt is
made to transmit a Pup to a network not represented in the routing table, new routing information is
obtained from a nearby gateway and an RTE for that network is inserted into the routing table (possibly
displacing some other RTE that has not been used recently). Note, however, that RTEs for directly-
connected networks are never removed from the routing table.

Network number zero in the routing table is special. It refers to a network known to be directly connected
to the local host (but whose identity may or may not be known, i.e., we may or may not know its network
number). Pups handed to CompletePup for transmission to network zero will be sent over this network.
This facility is essential during initialization, before any gateways have been located and the remainder of
the RT filled out. It also permits communication among hosts on a network whose identity is unknown
due to there being no connected gateways.

The routing table as a whole is treated as an "object", with standard operations defined by a Hash Table
Preamble (HTP). This object is misnamed, since it need not be implemented by means of a hash table, and
is not in the present implementation of the Pup routing table. The procedures described below are merely
renamed versions of the Alto OS’s Call0, Call1, etc. The operations return pointers to RTEs, and the caller
may operate on the individual RTE by means of ordinary structure references. The defined operations
are:

HLookup(rt, net, dontPromote [...false]) = RTE or 0
Looks up "net" in the routing table "rt", returning a pointer to the RTE if it is found and zero if not.
Unless "dontPromote" is supplied and true, the RTE is marked as having been referenced most
recently.

HInsert(rt, net) = RTE
Inserts an RTE for "net" into "rt", setting the "net" field of the RTE and zeroing the rest of the entry.
If an entry already exists for "net", it is overwritten. If no entry already exists, a new one is created,
possibly displacing the least recently referenced RTE.

HDelete(rt, net)
Deletes the RTE for "net" in "rt", if one exists.

HEnumerate(rt, proc, arg)
Enumerates all RTEs in "rt", calling proc(rte, arg) for each one.

The following miscellaneous procedures are of possible interest to callers:

LocateNet(net) = rte or 0
Attempts to locate a route to "net". If an RTE for "net" exists and is valid (i.e., hops not greater than
maxHops), a pointer to it is returned. Otherwise, activity is initiated to locate a route to "net" and
zero is returned.

PupError(pbi, errorType, string)
Causes an "Error" Pup to be returned to the sender of "pbi", containing the specified "errorType"
and "string". The PBI is released in the process. Consult the "Pup Error Protocol" specification for
more information. PupError is called from several places inside PupLevel1 when incoming Pups are
rejected for one reason or another.

ExchangePorts(pbi)

Pup Package January 25, 1981 94

Cleared version of May 24, 1981

Exchanges the Pup source and destination ports in "pbi". Useful when sending a packet back where
it came from (possibly after modifying its contents).

AppendStringToPup(pbi, firstByte, string)
Appends the supplied "string" to the Pup in "pbi", starting at byte position
pbi>>PBI.pup.bytes^firstByte, then sets the Pup length to include the data so stored. Useful for
generating Pups that end in (or consist entirely of) a string, such as Error, Abort, and Interrupt Pups.

SetPupDPort(pbi, port)
Copies the specified "port" into the Pup destination port field of "pbi".

SetPupSPort(pbi, port)
Copies the specified "port" into the Pup source port field of "pbi".

SetPupID(pbi, pupID)
Copies the two words pointed to by "pupID" into the Pup ID field of "pbi".

FlushQueue(queue)
Dequeues and releases all PBIs presently on "queue".

OnesComplementAdd(a, b)
Returns the ones-complement sum of "a" and "b".

OnesComplementSubtract(a, b)
Returns the ones-complement difference between "a" and "b".

LeftCycle(word, count) = result
Returns the result of left-cycling "word" by "count" mod 16 bits.

MultEq(adr1, adr2, nWords [...2]) = true or false
Compares the nWords words starting at adr1 with the corresponding words starting at adr2, returning
true iff they all match.

Max(a, b); Min(a, b)
Return the arithmetic maximum or minimum, respectively, of "a" and "b". These are treated as
signed integers and must differ by less than 2^15.

DoubleIncrement(adr, offset)
Adds the signed 16-bit integer "offset" to the 32-bit number pointed to by "adr". Note that a
negative "offset" will cause the 32-bit number to be decremented.

DoubleDifference(adr1, adr2) = value
Returns as a 16-bit signed integer the result of subtracting the 32-bit number pointed to by "adr2"
from the one pointed to by "adr1". If the two numbers differ by more than 2^15, the result is either
2^15-1 or -2^15, depending on the sign of the 32-bit difference.

DoubleSubtract(adr1, adr2)
Subtracts the 32-bit number pointed to by "adr2" from the one pointed to by "adr1", and leaves the
result in "adr1".

4. Rendezvous/Termination Protocol Interface

The RTP module (file PupRTP) contains primitives for establishing and breaking connections with foreign
processes according to the Rendezvous/Termination Protocol.

The local end of a connection is maintained within the confines of an RTPSoc, an RTP socket structure

Pup Package January 25, 1981 95

Cleared version of May 24, 1981

(defined in PupRTP.decl). This begins with a level 1 Pup socket (PupSoc), but includes the following
additional information:

ctx A pointer to the background context maintaining the connection.

state The state of the connection (see below).

connID The connection ID (see "Pup Specifications").

rtpOtherPupProc A procedure called upon receipt of any Pup that is not part of the
Rendezvous/Termination Protocol.

rtpOtherTimer A timer for use by higher levels of protocol.

rtpOtherTimerProc A procedure called when rtpOtherTimer expires.

There is some other information (wasListening, rtpTimer) used by the RTP module but not of interest to
external programs.

At a given moment, an RTPSoc may be in one of a number of "states". A detailed explanation of the
meanings of these states may be found in the memo "Pup Connection State Diagram" (file
<Pup>RTPStates.press).

stateClosed No connection exists: either none has ever been created or a previously existing
connection has terminated.

stateRFCOut The local process has initiated a request for connection (RFC) to some foreign
process. A reply is expected from the remote process.

stateListening The local process is "listening" for an RFC from any foreign process.

stateOpen The connection is considered by both parties to have been established. What the
cooperating processes do with this connection is a matter of higher-level protocol
(e.g., BSP).

stateEndIn The foreign process has requested that the connection be terminated, and is
awaiting a confirmation from the local process.

stateEndOut The local process has requested that the connection be terminated, and is
awaiting a confirmation from the foreign process.

stateDally A transitory state having to do with the termination handshake (see "Pup
Specifications").

stateAbort The connection has been aborted abnormally by the foreign process.

An RTPSoc is created by calling OpenRTPSocket, which performs various initialization, creates a
background process to manage the connection, and interacts with some foreign process in one of three
ways (see below) to open a connection. Once the connection is open, the RTP background process
monitors the socket for arrival of Pups requesting that the connection be closed or aborted, and updates
the state of the socket appropriately. The local process may also request explicitly that the connection be
terminated, by calling CloseRTPSocket.

The procedures defined in the RTP module are the following:

OpenRTPSocket(soc, ctxQ [pupCtxQ], openMode [modeInitAndWait], connID [random], otherProc
[DefaultOtherPupProc], timeout [defaultTimeout], zone [pupZone]) = true or false

Causes an RTP socket to be created and optional interactions with a foreign process to be initiated.
"soc" is a block of length lenRTPSoc which must already have been initialized as a level 1 socket

Pup Package January 25, 1981 96

Cleared version of May 24, 1981

(PupSoc) by a prior call to OpenLevel1Socket. (An external static "lRTPSoc" exists whose value is
the length of an RTPSoc in words.) Both the local and foreign port addresses (the "lclPort" and
"frnPort" fields in the PupSoc) must be completely established, unless "openMode" is
"listenAndWait" or "listenAndReturn", in which case only the local socket number
(soc>>PupSoc.lclPort.socket) need be established.

"ctxQ" is a context queue to which a context created by this procedure may be appended. It defaults
to pupCtxQ (the "ctxQ" passed to InitPupLevel1).

"openMode" specifies the manner in which the connection is to be opened. If it is
"modeInitAndWait", a request for connection to the foreign process is initiated, and
OpenRTPSocket then blocks until either the answering RFC is received and the connection’s state
becomes open (in which case it returns true) or an error occurs (in which case the RTPSoc is closed
and OpenRTPSocket returns false). If it is "modeInitAndReturn", the request is initiated in a similar
manner, but then OpenRTPSocket returns true immediately and it is the caller’s responsibility to
monitor the subsequent state of the connection.

If "openMode" is "modeListenAndWait", the socket is placed in a "listening" state. When a request
for connection is received from some foreign process, a reply is generated and the connection
becomes open, and OpenRTPSocket returns true. If the mode is "modeListenAndReturn",
OpenRTPSocket returns true immediately and it is the caller’s responsibility to monitor the
subsequent state of the connection.

If "openMode" is "modeImmediateOpen", the socket is immediately placed in the open state (it is
assumed that the caller has already performed a rendezvous with the foreign process in some other
manner) and OpenRTPSocket returns true.

"connID" is a pointer to a two-word vector specifying the connection ID (see "Pup Specifications").
If not specified, a connection ID is chosen at random. "connID" need never be specified if
"openMode" is one of the listening modes.

"otherProc" is a procedure to be called when a non-RTP Pup is received by the socket. This will be
described in more detail later. If not specified, "otherProc" defaults to DefaultOtherPupProc, a
procedure that simply releases any PBI it is passed (one may change the default by clobbering the
DefaultOtherPupProc static with something else).

"timeout" specifies the maximum time OpenRTPSocket will wait (if "openMode" is
"modeInitAndWait" or "modeListenAndWait") before timing out and returning false. It (and all
other "timeout" arguments in the Pup package) is in units of 10 milliseconds, with a maximum legal
value of 2^15 (a little over 5 minutes), according to the conventions established in the Timer Package.
If unspecified, "timeout" defaults to "defaultTimeout", a static defined in this module, whose value
in the released package is 6000 (i.e., 60 seconds; this is set by the parameter "defaultDefaultTimeout"
in PupParams.decl).

"zone" is a free-storage zone from which a context block (of size rtpStackSize) may be allocated. If it
is not specified, pupZone (the "zone" passed to InitPupLevel1) is used. Note: OpenRTPSocket calls
InitializeContext, so the ContextInit module must be resident (despite what the Context Package
writeup says).

CloseRTPSocket(soc, timeout [...defaultTimeout]) = true or false
Requests that the connection rooted in the RTPSoc "soc" be terminated. If "timeout" is nonzero, a
normal termination is attempted if possible; if zero (or the attempted normal termination times out),
the connection is aborted (terminated abnormally). When the connection has been closed, the
context created by OpenRTPSocket is destroyed and returned to the zone from which it was
allocated. CloseRTPSocket then returns true if the connection was terminated normally and false if
abnormally. The level 1 PupSoc pointed to by "soc" still exists, and it is the caller’s responsibility to
dispose of it appropriately (generally by calling CloseLevel1Socket).

The process created by OpenRTPSocket (called RTPSocketProcess) has several responsibilities. First, all

Pup Package January 25, 1981 97

Cleared version of May 24, 1981

Pups arriving on the socket’s iQ are dequeued and inspected. Ones whose types are part of the
Rendezvous/Termination protocol are processed internally. All protocol interactions (including replies,
retransmissions, and local state changes) are handled automatically.

Received Pups that are not part of the RTP are passed to the "rtpOtherPupProc" procedure, which is
initialized to the "otherProc" argument in OpenRTPSocket. More specifically, the statement

(soc>>RTPSoc.rtpOtherPupProc)(pbi)

is executed, and it is up to the called procedure to appropriately process and dispose of the PBI. Since this
call is made within the context of the RTPSocketProcess, which has only "rtpStackSize" (130 as released)
words of stack space, the called procedure cannot make heavy demands on the stack without risk of stack
overflow. One might increase rtpStackSize (a static defined in this module, whose initial value is given in
PupParams.decl as "defaultRTPStackSize"), but the safest course of action is for the called procedure
simply to enqueue the PBI on some queue looked at by another process with more stack space available to
it. (One should note, however, that the "rtpOtherPupProc" procedure defined by the BSP module, to be
described in the next section, manages to do all its work--a significant amount--without overflowing the
RTP process’s stack. The main potential pitfall is in calling system procedures such as Ws that require very
large amounts of stack space in some cases.)

"Abort" and "Error" Pups, while handled by RTPSocketProcess (for their effects on the socket’s state), are
also passed on to the "rtpOtherPupProc" procedure, for purposes such as displaying the Pup’s text to the
user. The RTP module distinguishes between "fatal" and "non-fatal" sub-types of Errors, treating the
former the same as an Abort (thereby placing the connection in the "Abort" state) and ignoring the latter;
both kinds, however, are passed to "rtpOtherPupProc".

Additionally, the RTPSocketProcess checks for expiration of a timer called "rtpOtherTimer" in the
RTPSoc. If it expires, the procedure given in "rtpOtherTimerProc" is called, with the socket as its
argument. This facility is used in the BSP module, which also requires the ability to do asynchronous
processing. "rtpOtherTimerProc" is initialized to Noop when OpenRTPSocket is called.

The following miscellaneous procedures defined in the RTP module are of possible interest to callers:

RTPFilter(pbi, checkFrnPort, checkID) = true or false
Does selective filtering of "pbi" against parameters in the socket to which the PBI is assigned, and
returns true if the PBI is accepted and false if rejected. First, broadcast Pups (destination host zero)
are always rejected. Then, if checkFrnPort is true, the source port address of the PBI is checked for
equality with the foreign port address given in the socket. Finally, if checkID is true, the Pup ID in
the PBI is checked for equality with the connection ID in the socket.

CompleteRTPPup(pbi, type, length)
Stores "type" and "length" in the respective fields of the Pup, copies the connection ID from the
socket to the Pup, and finally calls CompletePup(pbi) to send it on its way.

5. Byte Stream Protocol Interface

The BSP module (files PupBSPStreams, PupBSPProt, and PupBSPa) contains procedures for sending and
receiving error-free, flow-controlled byte streams to and from a foreign process, and for dealing with the
other primitives defined by the BSP (namely Marks and Interrupts).

A process’s interface to the BSP module is by way of a BSPSoc, a BSP socket structure, which is a further
extension of an RTPSoc (which, it will be recalled, is an extension of a PupSoc). The BSPSoc contains a
large amount of additional information, most of which fortunately is not of interest to external programs.
The items that are of interest are the following:

bspStatus A word containing various status bits, including the following three:

Pup Package January 25, 1981 98

Cleared version of May 24, 1981

markPending A Mark has been encountered while reading the incoming byte stream.
Further attempts at input (via Gets or BSPReadBlock) will fail until this
bit is cleared (either explicitly or by calling BSPGetMark).

interruptIn An Interrupt has been received. If the caller depends on this bit for
noticing the arrival of Interrupts, then it must clear the bit explicitly after
doing so. Interrupts arriving in close succession will not be
distinguishable as separate events unless they are intercepted via the
"bspOtherPupProc" mechanism, described later.

noInactivityTimeout This flag, normally false, may be set to true to disable an automatic
timeout mechanism that aborts the BSP connection if the foreign process
does not respond to any BSP protocol requests for two minutes. The
purpose of this is to detect that a connection has died (due to network
failure or the foreign process crashing). Being able to disable this timeout
mechanism is handy during debugging.

bspOtherPupProc A procedure called upon receipt of any Pup not part of the BSP (or RTP).

bspStr A block containing a BSPStr, a BSP stream structure. This contains the
dispatches for interfacing to the operating system’s generic stream-
handling procedures (Gets, Puts), plus some information specific to the
BSP stream.

A BSP stream is created by first opening a connection to a foreign process (by means of the RTP), then
calling the following procedure:

CreateBSPStream(soc) = str
Creates and initializes a BSP socket, and returns a pointer to the stream block within it. "soc" must
point to a region of length lenBSPSoc (which is the value of an external static lBSPSoc), and it must
already support one end of an open RTP connection (by having been passed to OpenLevel1Socket
and then OpenRTPSocket). If the state of the connection is not stateOpen or stateEndIn,
CreateBSPStream returns zero. Otherwise, the stream is completely initialized and the pointer to it is
returned. See the sample program at the end of this document for an example of the proper sequence
of operations for opening a BSP stream from scratch.

All the generic stream procedures (Gets, Puts, etc.) must be passed "str" as an argument, as should the
procedures BSPReadBlock and BSPWriteBlock. However, all other operations on the socket (including
specialized BSP functions such as BSPGetMark) must be passed "soc". When necessary, "str" and "soc"
may be computed from each other by the following statements:

str = soc+offsetBSPStr
soc = str-offsetBSPStr

where offsetBSPStr is an external static defined in the BSP package.

The defined generic stream procedures are as follows. The descriptions of Gets and Puts assume that the
default stream error-handling procedure (invoked by Errors(str, ec)) is in use; the real truth appears in the
description of Errors.

Gets(str, timeout [...-1]) = byte or -1
Attempts to return the next byte from the BSP stream "str"; returns -1 on any failure. A failure will
result if the connection has become closed or a Mark has been encountered in the incoming stream.
If "timeout" is -1 (the default), Gets waits indefinitely for data to arrive (or some failure condition to
arise); if other than -1, it waits up to "timeout" (units of 10 milliseconds) and then gives the failure
return.

Note that occurrence of the timeout condition does not imply anything about the health of the
connection; the timeout feature is provided entirely for the caller’s convenience, and has nothing to

Pup Package January 25, 1981 99

Cleared version of May 24, 1981

do with the internal connection inactivity timeout. If the connection fails, the connection state
(soc>>RTPSoc.state) will change to something other than stateOpen.

Puts(str, byte, timeout [...-1]) = true or false
Attempts to output "byte" to the BSP stream "str"; returns true on success and false on failure. A
failure will result if the connection has become closed or the operation times out. The "timeout" is
defined as for Gets, with -1 meaning wait indefinitely. Note that in general, outputting a byte to a
BSP stream merely causes that byte to be appended to a partially-constructed Pup in memory; only
when a Pup is filled up is any packet actually sent over the net. BSPForceOutput (described below)
must be called to cause a partially-filled Pup to be closed out and transmitted immediately.

Endofs(str) = true or false
Returns true if there is not presently any data to be read from the BSP stream "str" or a Mark has
been encountered. Note that this definition of Endofs is analogous to that for "keys" as opposed to
that for disk files; i.e., so long as the connection is still open, Endofs(str) being true says only that
there is not now any data to be read, not that there won’t be data at some time in the future.

Closes(str) = true or false
Closes the BSP stream "str" and destroys the associated socket, as detailed in the description of
CloseBSPSocket (below).

Errors(str, ec) = value
The stream error procedure (which is initialized to BSPErrors by CreateBSPStream) is called under
various error conditions arising in Gets and Puts. The error code "ec" will be one of the following:

ecBadStateForGets Gets has failed because the connection is no longer open. This can occur
either because an Abort or fatal Error is received or because the
connection’s inactivity timeout (2 minutes) expires. (The timeout may be
disabled for debugging purposes by setting
soc>>BSPSoc.noInactivityTimeout to true.)

ecGetsTimeout Gets has failed because no data became available for reading within the
timeout specified in the call to Gets.

ecMarkEncountered Gets has failed because it has encountered a Mark in the stream.

ecBadStateForPuts Puts has failed because the connection is no longer open.

ecPutsTimeout Puts has failed because it was not possible to output the byte within the
timeout specified in the call to Puts.

In each case, the Gets or Puts returns the result of calling Errors with the corresponding error code.
The default Errors procedure returns -1 when passed any of the Gets error codes and false when
passed one of the Puts error codes, thereby obtaining the failure behavior presented earlier in the
descriptions of Gets and Puts.

The remaining procedures operate on a "soc" (BSPSoc) rather than a "str", since they are peculiar to BSP.

CloseBSPSocket(soc, timeout [...defaultTimeout]) = true or false
Closes the connection and destroys the BSPSoc pointed to by "soc". First, if the connection is still in
a reasonable state, any pending output is transmitted; CloseBSPSocket will wait up to "timeout" for
successful acknowledgment of this data. Next, the connection is terminated by a call to
CloseRTPSocket (the description of which includes the interpretation of "timeout"). Then all PBIs
still residing on the BSPSoc’s various queues are released. Finally, the socket is destroyed by a call to
CloseLevel1Socket. The result returned is true if the connection was closed normally, false if
abnormally.

BSPGetMark(soc) = byte
Returns the value of the pending Mark byte in the incoming stream, and clears the markPending flag

Pup Package January 25, 1981 100

Cleared version of May 24, 1981

so as to permit future calls to Gets to read data past the Mark in the stream. This procedure will call
SysErr(soc, ecBadBSPGetMark) if a Mark has not in fact been encountered.

BSPPutMark(soc, markByte, timeout [...-1], sendNow [false]) = true or false
Inserts the specified "markByte" into the outgoing stream. Calling this procedure causes all data up
to and including the Mark byte to actually be transmitted immediately. The interpretation of
"timeout" and the result returned by the procedure are the same as for Puts; "sendNow" is described
under BSPForceOutput (below).

BSPForceOutput(soc, sendNow [false])
Forces any partially-filled output Pup to be transmitted immediately. This procedure will never
block. If "sendNow" is true, the BSP package will elicit an immediate acknowledgment, thereby
expediting the process of flushing the local output queue of unacknowledged Pups. The caller should
set this argument to true when it expects not to send more data for a while, particularly if it is about to
turn around and receive some data over the same stream.

BSPPutInterrupt(soc, code, string, timeout [...-1]) = true or false
Generates a BSP Interrupt Pup (see "Pup Specifications") using the specified "code" for the
Interrupt Code and "string" for the Interrupt Text. The procedure returns true unless it failed to
send the Interrupt due either to the connection no longer being open or to exhausting the specified
"timeout".

The BSP module accomplishes much of its work as a result of being given control by the socket’s
RTPSocketProcess context through two paths: the "rtpOtherPupProc" procedure, called when a non-RTP
Pup is encountered, and the "rtpOtherTimerProc" procedure, called when the "rtpOtherTimer" expires.
These three cells in the RTPSoc structure are renamed "bspPupProc", "bspTimer", and "bspTimerProc"
within the BSP module. By this means, the management of both incoming and outgoing byte streams is
accomplished automatically (including the generation of acknowledgments and retransmissions).

Received Pups that are not part of either the RTP or the BSP are handed to the procedure given in the
"bspOtherPupProc" cell in the socket. This is initialized to the previous contents of the socket’s
"rtpOtherPupProc" by CreateBSPStream (which then stores a pointer to the BSP module’s own
BSPPupProc into the latter cell). The earlier description of "rtpOtherPupProc" (in the section on the RTP
module) applies to "bspOtherPupProc".

Received Interrupt packets are also passed to "bspOtherPupProc" after being processed by the BSP
module. Note that an Interrupt passed in this manner has been verified to conform to protocol (this is the
case also for Abort and Error packets passed up from the RTP module) and may therefore be "believed".
Any other type of packet, on the other hand, has had no checking done on it beyond the level 1 interface
(where the destination port and checksum were verified).

A note on allocations: this BSP implementation probably will not work at all unless the socket’s PBI
allocations are at least 3, 2, and 2 for "total", "input", and "output" respectively. High throughput will be
gained only by giving the socket somewhat larger allocations (say, 6 to 10 PBIs) for the direction(s) in
which high throughput is desired.

In a program with at most one active BSP connection, that socket should be allocated all of the PBIs in the
system except one per directly-connected network (there must always be one extra PBI available for
receiving incoming packets on each network); this is the default allocation established in dPSIB by
InitPupLevel1. In a program with several active connections, one should adjust individual socket
allocations appropriately (though probably not simply by dividing the total PBIs by the number of sockets,
since doing so typically leads to underutilization of PBIs). Assuming there are plenty of PBIs in the system,
it is generally safe to overcommit the system resources (relying on the statistical unlikelihood that all
sockets will simultaneously tie up all the PBIs to which they are individually entitled). One should be
aware, however, that the higher-level protocols can get into deadlock conditions if the system pbiFreeQ
becomes exhausted. For the same reason, a PBI passed to an external program via the "bspOtherPupProc"
entry in the socket must be released as quickly as possible, since it is charged against the socket’s allocation.

The BSP module includes a static "bspVersion" whose value is (protocol version * 1000) + package
version.

Pup Package January 25, 1981 101

Cleared version of May 24, 1981

6. BSP Block Transfer Procedures

The BSP stream mechanism just presented, while being a "fast stream" in the sense defined by the
operating system, is still relatively slow and is therefore not well suited to transferring large volumes of data
(such as file transfers between disk and net). A separate module (PupBSPBlock) is provided for
accomplishing block transfers at least an order of magnitude faster than by iterated calls on Gets or Puts.
This module requires that the AltoByteBlt module (released as a separate package) be loaded as well.

Two procedures are defined in this module:

BSPReadBlock(str, wordP, byteP, count, timeout [...-1]) = count
Reads a maximum of "count" bytes from the BSP stream "str", storing them in memory starting at
byte position "byteP" relative to word address "wordP" (for example, byteP = 0 means the left byte
of the word referenced by "wordP"). The transfer terminates under any of the conditions that would
cause Gets(soc,timeout) to return -1. The procedure returns the actual number of bytes transferred.

BSPWriteBlock(str, wordP, byteP, count, timeout [...-1]) = count
Writes a maximum of "count" bytes to the BSP stream "str", obtaining them from memory starting at
byte position "byteP" relative to word address "wordP". The transfer terminates under any of the
conditions that would cause Puts(soc,byte,timeout) to return false. The procedure returns the actual
number of bytes transferred.

7. Name Lookup Module

This module (file PupNameLookup) contains procedures which will parse a string consisting of any legal
inter-network name/address expression and return a Port structure containing that address (suitable for
passing to OpenLevel1Socket or plugging into the dPort field of a Pup). See the memo "Naming and
Addressing Conventions for Pup" (file <Pup>PupName.press) for information on legal expressions.

GetPartner(name, stream [none], port, s1 [...none], s2 [...none]) = true or false
Parses the BCPL string "name" and stores the resulting address value in the Port structure "port",
returning true if successful and false otherwise. "stream", if nonzero, is used for publishing an error
message if the conversion is unsuccessful. "s1" and "s2", if supplied, specify the high- and low-order
parts of the default socket number, which is substituted into the "port" if the socket number is
unspecified in the "name".

If the "name" consists entirely of address constants (in the form "net#host#socket" or some subset
thereof, where the components are octal numbers), then it is parsed locally. Otherwise, GetPartner
attempts to establish contact with a Name Lookup server, to which it passes the "name" for
evaluation. If the reply consists of several alternative addresses, the "best" one is chosen on the basis
of information in the local routing table. Regardless of whether or not the string is an address
constant, GetPartner will return false (with the message "Can’t get there from here") if no routing
table entry exists for the resulting network and several calls to LocateNet discover no way of reaching
that network.

ParseAddressConst(name, port) = true or false
Attempts to parse the BCPL string "name" as an address constant of the form "net#host#socket".
Stores the result in "port" and returns true if successful; returns false if unsuccessful.

RequestNameLookup(name, stream, resultVec, lenResultVec) = numPorts
Attempts to establish contact with a Name Lookup server to look up "name". If successful, stores the
answer as an array of Ports in the vector "resultVec", whose length in words is "lenResultVec", and
returns the number of ports so stored. If unsuccessful, outputs an error message to the supplied
"stream" (if nonzero) and returns zero.

Pup Package January 25, 1981 102

Cleared version of May 24, 1981

8. Example

The following example program makes use of most of the facilities provided in the Pup package. It is
basically a rock-bottom minimal user Telnet (like Chat) with no redeeming features whatsoever.

The main procedure PupExample performs initialization, which consists of creating a large zone,
initializing the Pup package, creating a large display window, and creating and starting a context running
the procedure TopLevel.

TopLevel first requests the user to type in a foreign port name, which it parses by calling GetPartner (note
that the socket number is defaulted to 1, the server Telnet socket). Then a socket is created and a
connection is opened. Two new contexts are now created, running the procedures KeysToNet and
NetToDsp. TopLevel then blocks until either the connection is no longer open or the second blank key on
the right of the keyboard is pressed, at which point it destroys the two contexts it created, closes the
connection, and loops back to the beginning.

The KeysToNet procedure blocks waiting for keyboard input, then outputs the typed-in character to the
BSP stream and calls BSPForceOutput to force immediate transmission. If the Puts fails, KeysToNet
simply blocks forever, in the expectation that TopLevel will detect that the connection is no longer open
and take appropriate action.

The NetToDsp procedure blocks waiting for input from the BSP stream. When a normal character is
received, it is output to the display. If Gets returns -1, then either a Mark is pending or the connection has
ended; if the former, a message is printed and BSPGetMark is called to clear the Mark pending status; if
the latter, NetToDsp blocks indefinitely.

// PupExample.bcpl

// Bldr PupExample PupBSPStreams PupBSPProt PupBSPa PupBSPOpenClose ^
// PupRTP PupRTPOpenClose PupNameLookup ^
// Pup1b PupAl1a Pup1OpenClose PupRoute ^
// PupAlEthb PupAlEtha ^
// Context ContextInit Interrupt AltoQueue AltoTimer ^
// Pup1Init PupDummyGate PupAlEthInit InterruptInit

get "Pup.decl"

external
[
InitPupLevel1; OpenLevel1Socket; CloseLevel1Socket; SetAllocation
OpenRTPSocket; CreateBSPStream; GetPartner
BSPForceOutput; BSPGetMark
InitializeContext; CallContextList; Block; Enqueue; Unqueue
InitializeZone; CreateDisplayStream; ShowDisplayStream
Gets; Puts; Closes; Endofs; Ws
keys; dsp
]
static [ctxQ; myDsp; bspSoc; bspStr]

let PupExample() be // initialization
[
let myZone = vec 10000; InitializeZone(myZone, 10000)
let q = vec 1; ctxQ = q; ctxQ!0 = 0
InitPupLevel1(myZone, ctxQ, 20)
let v = vec 10000
myDsp = CreateDisplayStream(40, v, 10000)
ShowDisplayStream(myDsp)

Pup Package January 25, 1981 103

Cleared version of May 24, 1981

let v = vec 3000
Enqueue(ctxQ, InitializeContext(v, 3000, TopLevel))
CallContextList(ctxQ!0) repeat
]

and TopLevel() be // top-level process
[
Ws("*nConnect to: ")
let name = vec 127; GetString(name)
if name>>String.length eq 0 then finish
let frnPort = vec lenPort
unless GetPartner(name, dsp, frnPort, 0, 1) do loop
let v = vec lenBSPSoc; bspSoc = v
OpenLevel1Socket(bspSoc, 0, frnPort)
unless OpenRTPSocket(bspSoc, ctxQ) do
 [Ws("*nFailed to connect"); CloseLevel1Socket(bspSoc); loop]
Ws("*nOpen!")
bspStr = CreateBSPStream(bspSoc)
let keysToNetCtx, netToDspCtx = vec 1000, vec 1000
Enqueue(ctxQ, InitializeContext(keysToNetCtx, 1000, KeysToNet))
Enqueue(ctxQ, InitializeContext(netToDspCtx, 1000, NetToDsp))
Block() repeatuntil bspSoc>>BSPSoc.state ne stateOpen %
 @#177035 eq #177775 //second blank key pressed
Unqueue(ctxQ, keysToNetCtx); Unqueue(ctxQ, netToDspCtx)
Closes(bspStr)
Ws("*nClosed!")
] repeat

and KeysToNet() be
[
test Puts(bspStr, GetKeys())
 ifso BSPForceOutput(bspSoc)
 ifnot Block() repeat
] repeat

and NetToDsp() be
[
let char = Gets(bspStr)
if char eq -1 then
 test bspSoc>>BSPSoc.markPending
 ifso
 [
 Ws("*nI saw a Mark!")
 BSPGetMark(bspSoc)
 loop
]
 ifnot Block() repeat
Puts(myDsp, char)
] repeat

and GetKeys() = valof
[
while Endofs(keys) do Block()
resultis Gets(keys)
]

Pup Package January 25, 1981 104

Cleared version of May 24, 1981

and GetString(string) be
[
for i = 1 to 255 do
 [
 let char = GetKeys(); Puts(dsp, char)
 test char eq $*n
 ifnot string>>String.char^i = char
 ifso [string>>String.length = i-1; return]
]
]

9. Revision History

March 25, 1976

Various minor bugs in both code and documentation were fixed. One serious error in the documentation
was in the description of CreateBSPStream, where "lenBSPStr" should have been "lenBSPSoc". The level
1, RTP, and BSP modules each became slightly smaller. Various calls to CallSwat were changed to SysErr
with registered error codes.

Level 0: External change: file PupAlEth.bcpl replaced by PupAlEthb.bcpl and PupAlEtha.asm. Internal
change: fast (~20-instruction) Ethernet receiver turnaround implemented.

Level 1: External changes: statics pupZone and pupCtxQ added; procedures SetPupDPort, SetPupSPort,
SetPupSPort, and FlushQueue added; RT structure definition changed; default pupErrSt is now a "nil"
stream rather than "dsp".

RTP: External changes: defaultTimeout and rtpStackSize changed from manifests to statics (with default
values defaultDefaultTimeout and defaultRTPStackSize); DefaultOtherPupProc added.

BSP: External change: static bspVersion added. Internal change: the transmission strategy was modified to
elicit an acknowledgment before allocation is completely exhausted, hence reducing lost throughput due to
round-trip delay.

April 16, 1976

The released package Pup.dm was renamed PupPackage.dm, and a debugging version of the package
released as PupDebug.dm. A number of bugs (particularly in level 1) were uncovered while bringing up
the software on the Nova.

Level 0: External change: lenPup and lenPBI changed from manifests to statics (defined in level 1) to
permit changing PBI size without recompiling the package. Internal change: 100-millisecond transmit
timeout and discard added (eliminating deadlocks caused by things like disconnecting the Alto from the
Ethernet).

Level 1: External changes: gateway code split out into separate files PupGateway and PupDummyGate,
one of which must be loaded (usually the latter); optional extra argument "pupDataBytes" added to
InitPupLevel1; default allocations in dPSIB changed to permit a socket to assign all but one of the PBIs in
the system; OpenLevel1Socket defaults the foreign net in some circumstances. Internal change: if
"pupDebug" is on, PupLevel1 checks for the pbiFreeQ being exhausted for more than 20 seconds and calls
Swat (this usually indicates a deadlock).

BSP: External change: PupBSPb.bcpl replaced by PupBSPStreams.bcpl and PupBSPProt.bcpl
(necessitated by Nova BCPL’s inability to compile PupBSPb in one gulp).

May 18, 1976

Pup Package January 25, 1981 105

Cleared version of May 24, 1981

Mostly bug fixes and performance improvements. Some structure definitions were changed, so
recompilation of user programs is advised.

Level 0: Internal changes: more assembly code included to reduce packet loss rate; performance statistics
gathered if pupDebug on.

Level 1: External change: optional "type" and "length" arguments added to CompletePup.

October 6, 1976

Significant internal changes were made at levels 0 and 1, and several new capabilities were added.
However, for the most part the changes are upward-compatible. Many structure declarations changed, so
recompilation of programs that "get" any Pup .decl files is required.

Level 0: External changes: SendEtherPup removed; EncapsulateEtherPup and SendEtherPacket added;
ability to send and receive non-Pups implemented.

Level 1: External changes: PupRoute file added; PupGateway module deleted from public Pup package
release; routing table completely reorganized; new procedures HLookup, HInsert, HDelete, HEnumerate,
HHash added; pupErrSt removed; mechanism added for broadcasting to all connected networks;
procedures DoubleIncrement, DoubleDifference, Double subtract included (formerly in BSP module).
Internal change: GatewayListener dynamically maintains the best path to each network and purges RTEs
of networks for which no routing information has been received recently.

BSP: Internal change: adaptive retransmission timeout implemented to reduce packet loss rate when
sending through slow networks or to slow destinations (e.g., Maxc).

March 21, 1977

Mostly bug fixes. Some structure definitions at level 0 were changed, so recompilation of user programs is
advised.

Level 0: SendStats operation added to the NDB object.

July 11, 1977

No external changes. The Ethernet driver was rewritten to eliminate several low-probability race
conditions and improve performance slightly. The driver now uses the "input under output" feature
unconditionally, so problems may be encountered on Alto-Is running old microcode.

March 20, 1978

External changes: Several source files have been broken into smaller pieces to permit much of the code to
be included in overlays. The added modules are Pup1OpenClose, PupRTPOpenClose, and
PupBSPOpenClose (see section 1.2 for revised packaging information). Recompilation is required of any
programs that get Pup.decl or PupBSP.decl.

Internal changes: BSP performance through slow links and gateways has been improved. GetPartner’s
timeout has been increased. A few minor bugs have been fixed.

November 6, 1978

Level 0: External changes: The Ethernet driver can now control multiple interfaces connected to the same
Alto. InitAltoEther is called differently. Drivers are now available for the XEOS EIA interface and the
ASD Communication Processor, though they aren’t documented here.

Level 1: Internal change: The routing module data structures and algorithms have geen modified to
conform to some minor Pup protocol changes.

Pup Package January 25, 1981 106

Cleared version of May 24, 1981

BSP: External change: An inactivity timeout has been added to automatically abort connections that have
died; this may be disabled by setting the noInactivityTimeout bit in the BSPSoc. Recompilation is
required of any programs that get Pup.decl or PupBSP.decl.

February 19, 1979

Level 0: Internal change: The format of the statistics collected by drivers changed.

Level 1: Internal change: The interface between PupRoute and the forwarder changed. This is only of
interest to gateways. External change: The definitions of pup types and well-known sockets have been
removed from Pup1.decl. We now feel that these belong in less global declaration files closer to the code
implementing the various protocols. Recompilation of user programs will probably cause undefined
symbols which you will have to add to your declaration files.

May 27, 1979

Level 1: External changes: InitPupLevel1 takes an additional optional argument "numRTE"; LocateNet
procedure added; HHash removed; PupDummyGate module moved from resident to initialization;
lPupSoc static added. Internal changes: the routing table is now a cache of routing information rather than
a hash table of all accessible networks in the internet; RTEs may be "invalid" (hops greater than maxHops
and ndb equal to zero); new PupRoute.decl includes definitions internal to the routing module.

RTP: External change: lRTPSoc static added. Internal change: more code moved from resident (PupRTP)
to swappable (PupRTPOpenClose) modules.

BSP: External change: lBSPSoc and offsetBSPStr statics added. Internal changes: minor bugs fixed; more
code moved from resident (PupBSPStreams and PupBSPProt) to swappable (PupBSPOpenClose)
modules.

NameLookup: External changes: RequestNameLookup and ParseAddressConst procedures now exported.

March 9, 1980

Levels 0 & 1: External change: a "destroy" operation has been added to the NDB, and the procedure
DestroyPupLevel1 is included to shut down the Pup package. A few bugs have been fixed.

December 30, 1980

BSP: External change: The default timeouts for Puts, PutMark, PutInterrupt and BSPWriteBlock were
changed from ’defaultTimeout’ to ’-1’ (infinity). This makes the ’put’ operations symmetrical with the ’get’
operations: so long as the other end of the connection is alive, the BSP will wait indefinitely to put or get a
byte. Recompilation of client programs is not necessary.

January 25, 1981

BSP: External change: optional ’sendNow’ argument added to BSPForceOutput and BSPPutMark.
Recompilation of client programs is not necessary.

Pup Package January 25, 1981 107

Cleared version of May 24, 1981

Queue Package

This package implements a simple set of queue primitives. They are written in assembly language, so they
are small (the entire package is 69 instructions) and fast (see timings).

All the procedures are contained in AltoQueue.br, which is assembled from AltoQueue.asm. A Nova
version of this package is available.

All queue primitives make use of two structures: the Queue header (hereafter abbreviated Q) and the Item.

 structure Q: [
 Head word // Pointer to first Item on Q
 Tail word // Pointer to last Item on Q
]

 structure Item: [
 Link word // Link to next Item
 Remainder word whatever
]

An empty queue is denoted by Q.Head equal to zero and Q.Tail unspecified. The last Item on a queue has
zero in its Link field. An Item either passed to or returned from the following procedures may have an
arbitrary Link word. The Q and Item parameters in these procedures are of course pointers to the
respective objects.

Enqueue(Q,Item)
Appends the Item to the Q, thereby making it be the tail item. Enqueue will call Swat if Item is zero
(which is a common source of bugs).

Dequeue(Q) = head Item or zero
Removes and returns an Item from the head of the Q, or zero if the Q is empty.

InsertBefore(Q,Successor,Item) = true or false
Inserts the Item in a specific place on the Q, immediately before the specified Successor item.
Returns true normally, false if Successor was not found on the Q.

InsertAfter(Q,Predecessor,Item) = true
Inserts the Item in a specific place on the Q, immediately after the specified Predecessor item.
Returns true always (undefined things will happen if Predecessor is not actually on the Q).

Unqueue(Q,Item) = true or false
Removes a specific Item from the Q. Returns true normally, false if Item was not found on the Q.

QueueLength(Q) = integer
Returns the number of items on the Q.

All the queue routines are completely race-free, and both interrupt and non-interrupt code may safely
access the same Q simultaneously. However, calls to these procedures must be made with interrupts
enabled, since they execute "dir" and "eir" internally for race avoidance.

Timings for these procedures are now given. These counts are simply the number of instructions executed,
not including the instruction that called the procedure. The procedures InsertBefore, Unqueue, and
QueueLength must search the queue from its head until they reach Successor, Item, or the end of the
queue respectively; the factor "n" in the timings is the number of items looked at.

Enqueue 14 if Q previously empty
 13 otherwise

Queue Package May 17, 1976 108

Cleared version of May 24, 1981

Dequeue 10 if Q empty
 11 otherwise
InsertBefore 10+4n
InsertAfter 15 if Predecessor was previously the tail
 14 otherwise
Unqueue 12+4n if Item was previously the tail
 11+4n otherwise
QueueLength 6+4n

Queue Package May 17, 1976 109

Cleared version of May 24, 1981

Random Number Generator

This package consists of a single procedure, Random(), that returns uniformly-distributed 16-bit random
numbers. The generator used is:

x[n] = (x[n-33] + x[n-13]) mod 2^16

which, according to Ed McCreight, has a period greater than 2^33. The numbers generated pass all the
usual tests for randomness.

This package is coded in assembly language, so it is compact (about 55 words) and fast. It consists of a
single file, Random.Br, whose source is Random.Asm. The generator’s state is stored as part of the code,
so the code should not be included in an overlay (doing so would reset the generator to its initial state
every time the overlay was swapped in).

Random Number Generator November 9, 1977 110

Cleared version of May 24, 1981

ReadMB -- read a .MB file

This package provides a convenient, although not particularly efficient, facility for reading an arbitrary
binary microcode file and parsing it. The package will read .MB files produced by Mu, Micro, or MicroD,
and .DIB files produced by Micro; it will not read Dump files produced by Midas, since they are not in the
documented .MB format even though they usually have the extension .MB.

ReadMB(stream, maxMemx, memProc, symProc, fixProc, xfixProc)

This is the only procedure defined by the package. Stream is a word-item stream from which the
microcode will be read. MaxMemx is the maximum valid memory number: a reasonable value is 20. The
remaining procedures are called as the file is being read, as blocks of the various types are encountered.
ReadMB returns 0 when it reads the end block on the file, or a string describing the problem if the file is
not in proper format or some other problem occurs.

memProc(memx, width, name) is called when ReadMB encounters a memory definition. Memx is the
memory number, width is the memory width in bits, and name is the memory name as a Bcpl string.
MemProc should return a procedure dataProc(addr, data, memx) which will be called whenever a data
word is read for the memory. Memx is passed to dataProc so that the same dataProc can be used for more
than one memory if desired.

symProc(memx, value, name) is called when ReadMB encounters a symbol definition. Memx is the
memory number, value the value of the symbol, and name the symbol name as a Bcpl string. If symProc is
omitted, it defaults to a no-op. Note that even in .MB files produced by MicroD, the values of symbols in
IM are imaginary, not real, addresses.

fixProc(memx, addr, field, value) is called when ReadMB encounters a fixup. Memx is the memory
number, addr the address within the memory, firstBit the first bit of the field within the word, lastBit the
last bit of the field, and value the value to be stored into the field. If fixProc is omitted, ReadMB will
return with an error string if a fixup is encountered.

xfixProc(memx, addr, firstBit, lastBit, name) is called when ReadMB encounters a fixup that references an
external symbol. The parameters are the same as for fixProc, except that name is the symbol name, a Bcpl
string. If xfixProc is omitted, ReadMB will return with an error string if an external fixup is encountered.

MBDataSeqNo

Every data item in a .MB file contains a field which Micro uses for the line number in the source file, and
the other processors do not use. Since this field is of no known use, ReadMB leaves it in the static
MBDataSeqNo when calling a dataProc rather than passing it as a parameter.

ReadMB -- read a .MB file August 1, 1980 111

Cleared version of May 24, 1981

READMU

A library routine is now available for reading MU binary output. This routine may be useful for those
interested in debugging, analyzing, or otherwise manipulating Alto microcode. The package is called
READMU; it is written in BCPL and the only file required to use it is READMU.BR. It declares one
entry procedure, ReadMU, and one entry static, MuSeqNo. The arguments to ReadMU are (stream,
writeram, writecon, definename) of which only stream is required. Their significance is as follows:

stream must be a word-oriented input stream, the MU binary file. ReadMU only reads from this
stream.

writeram(addr, hipart, lopart) is called for every instruction in the file. If the writeram argument is
missing or 0, instructions are discarded.

writecon(addr, value) is called for every constant in the file. If writecon is missing or 0, constants are
discarded.

definename(addr, string, memoryid) is called for every symbol definition in the file. memoryid is $R
for R registers, $C for constants, or $I for instructions. If definename is missing or 0, symbol
definitions are ignored.

MU outputs instructions in an unspecified order, but with each instruction it outputs a "sequence number"
that reflects the order of appearance of the instructions in the source file. ReadMU leaves this sequence
number in the static MuSeqNo for use by the writeram procedure.

ReadMU returns 0 if everything went normally. If an error occurs, ReadMU returns immediately (leaving
the stream positioned just past the item in error) and the value returned is a string which identifies the type
of error. ReadMU detects the following errors:

Unexpected end of stream
Bad memory #
Data for undefined memory
Bad width
Bad memory name
Invalid block type

READMU March 21, 1975 112

Cleared version of May 24, 1981

ReadUserCmItem

 A package is now available for reading items from user profile files such as User.Cm. This package
provides one procedure:
 ReadUserCmItem(stream, string)
where stream must be a standard Alto stream which delivers characters from User.Cm (or any other file in
the same format), and string must be a pointer to a 128-word buffer area. ReadUserCmItem reads the next
item from the stream and stores it in the buffer area in the form of a standard Bcpl string.
ReadUserCmItem returns a value which identifies what type of item was read:
 $E (end) End of stream. String is meaningless.
 $N (name) The item was of the form [string].
 $S (string) The item was of the form "string".
 $L (label) The item was of the form string:.
 $P (parameter) The item was a line not conforming to any of the above (terminated by <cr>).

 For items of types $L and $P, ReadUserCmItem removes initial blanks and tabs if any. Blank lines
are skipped. If an item will not fit in a Bcpl string (i.e. is longer than 255 characters), characters beyond the
255th are simply discarded.

 Here is an example file with the list of values and strings returned by ReadUserCmItem.

File:
 [BRAVO]
 LEAD: Line lead = 6, Paragraph lead = 12

 [DDS]
 Selspec: "D*"

Values and strings returned by successive calls of ReadUserCmItem:
 $N BRAVO
 $L LEAD
 $P Line lead = 6, Paragraph lead = 12
 $N DDS
 $L Selspec
 $S D*
 $E

ReadUserCmItem March 19, 1976 113

Cleared version of May 24, 1981

RenameFile

This package contains a single procedure, RenameFile, which changes the name of a file in an Alto file
system. The procedure handles multiple directories and versions, changes the file’s serial number to
invalidate old hints, updates leader page information, works with BFS or TFS, and generally tries to do the
job as throughly as if it were part of the Alto OS directory module. RenameFile only works in Operating
System versions 13 or later (in earlier versions it returns false without doing anything).

RenameFile(oldName, newName, versionControl [verLatest], errRtn [SysErr], zone [sysZone], nil, disk
[sysDisk]) = true or false
Deletes the directory entry ’oldName’ (after applying versionControl), changes the file serial
number, and creates a directory entry ’newName’, returning true if successful. ’OldName’ must
exist and ’newName’ must not exist (unless versions are enabled in which case the next version of
’newName’ is created). RenameFile will call errRtn(ecZoneTooSmall) if there is not enough space
in zone to allocate a page-sized buffer.

RenameFile March 9, 1978 114

Cleared version of May 24, 1981

Ring Buffer Routines

This package consists of a set of fairly fast assembly-language procedures for buffering data by means of
circular buffers. The package comes in two versions: a "byte" version (RingBytes.br) that deals with bytes
and packs them two per word, and a "word" version (RingWords.br) that deals with full words. The
procedures in the two packages are called identically, so one may substitute the "word" version for the
"byte" version to gain about a factor of two in speed at the cost of using buffer space only half as
efficiently. The binary files mentioned above are contained in <Alto>RingBuffer.dm, and the source files
are in <AltoSource>RingBuffer.dm. A Nova version of this package is available.

A ring buffer is described by a Ring Buffer Descriptor (RBD), which is the address of a 4-word patch of
memory provided by the user, initialized through a call to InitRingBuffer, and thereafter maintained by
the routines in the package. The "byte" and "word" versions of the routines make different uses of the
RBD, but this is of no interest to callers.

InitRingBuffer(RBD,Buffer,Length)
Initializes the RBD to describe a block of storage starting at "Buffer" and of length "Length" (in
words).

ResetRingBuffer(RBD)
Renders the ring buffer described by RBD empty.

RingBufferEmpty(RBD) = true or false
Returns true if the buffer is empty.

RingBufferFull(RBD) = true or false
Returns true if the buffer is full.

ReadRingBuffer(RBD) = Item (byte or word)
Returns the next Item in the ring buffer if there is one, or -1 if there isn’t. Obviously, if the "word"
version of the package is being used and -1 is a possible Item, then the caller should check with
RingBufferEmpty before calling ReadRingBuffer.

WriteRingBuffer(RBD,Item) = true or false
Attempts to put Item into the ring buffer and returns true if successful. The "byte" version of this
procedure depends on the left half of Item being zero.

When these routines are used to pass streams of data between interrupt-level and non-interrupt-level code,
the following precautions should be observed to avoid races:

1. For a given RBD, neither ReadRingBuffer nor WriteRingBuffer should be called both from interrupt
level and from non-interrupt level. However, ReadRingBuffer may be called from interrupt level and
WriteRingBuffer from non-interrupt level or vice versa.

2. InitRingBuffer and ResetRingBuffer should not be called from interrupt level.

3. Calls to all routines should be made with interrupts on, since some of them execute "dir" and "eir"
internally. (This is not a problem if the BCPL Interrupt Package is being used.)

The following information is provided for debugging purposes only, and one should not write code that
depends on it.

The "byte" version of the package lays out the RBD in the following way:

structure RBD: [
Begin word // Pointer to start of buffer
Length word // Buffer size in bytes

Ring Buffer Routines February 20, 1976 115

Cleared version of May 24, 1981

Read word // Current read index
Write word // Current write index
]

The buffer is treated as an array of bytes, packed left to right and indexed starting at zero. The Read and
Write indices refer to the last byte read or written.

The "word" version of the package uses the RBD in this way:

structure RBD: [
Begin word // Pointer to start of buffer
End word // Pointer past end of buffer
Read word // Current read pointer
Write word // Current write pointer
]

The End word points to the first word beyond the end of the buffer; i.e. its value is Begin plus the length of
the buffer. The Read and Write pointers point to the next word to be read or written.

Rough timings for the important procedures are now given. The counts are simply number of instructions
executed, not including the instruction that called the procedure.

"byte" "word"
RingBufferEmpty 9 9
RingBufferFull 10 11
ReadRingBuffer 20.5 normally 12 normally

9 if empty 9 if empty
WriteRingBuffer 25 normally 13 normally

13 if full 13 if full

Ring Buffer Routines February 20, 1976 116

Cleared version of May 24, 1981

RWREG - procedures for reading and writing Alto microprocessor memories

 This package provides procedures for reading and writing the Alto microprocessor memories (R/S,
constant, microinstruction). These procedures are of greatest use when debugging new microcode, but
may also be useful in conjunction with language emulators such as Lisp and Mesa.

 For the purposes of this package, as for the Mu microassembler, the R registers are numbered 0
through 37b, and the S registers 41b through 77b (register 40B is the M register).

ReadReg(regno[, Sbank]) -> value

 Returns the contents of register regno. Altos with the 3K CRAM option have 8 banks of S registers;
the optional second argument to ReadReg is the bank number. Sbank is irrelevant on Altos without the
3K CRAM option, or if regno specifies an R register rather than an S register. If omitted, Sbank defaults
to zero.

WriteReg(regno, value[, Sbank])

 Writes value into register regno, in bank Sbank if applicable.

MakeXregDesc(regno, flag[, Sbank]) -> desc

 Returns a "register transfer descriptor" which contains an encoding of the register number regno, the
bank number Sbank, and the operation specified by flag (false means read, true means write).

DoXreg(desc, value) -> value

 Performs the operation specified by the register transfer descriptor desc, returning the contents of the
register if a read, or writing value into the register if a write.

 The reason for MakeXregDesc and DoXreg is that "compiling" the descriptor in advance allows the
actual transfer to be done more quickly.

ReadConReg(conno) -> value

 Returns the contents of constant memory location conno.

ReadInsReg(loc, v2[, RAMbank])

 V2 must be a pointer to a 2-word area. Reads the contents of microinstruction RAM location loc into
v2!0 and v2!1. Note that ReadInsReg is not capable of reading the microinstruction ROM, only the RAM.
On Altos with the 3K CRAM option, RAMbank specifies which RAM bank to use, 0 through 2. If
omitted, RAMbank defaults to zero.

WriteInsReg(loc, v2[, RAMbank])

 Writes v2!0 and v2!1 into microinstruction RAM location loc, in RAM bank RAMbank if applicable.

RegWorkArea

 This static contains the RAM(0) address of a 4-instruction scratch area used by ReadReg, WriteReg,
DoXreg, and ReadConReg. It is initialized to 1000b, which is the standard scratch area in RAM0; the user
of this package may reset it at any time. On Altos with 3K CRAMs, this address must lie in the range 0-
177b or 1000b-1177b; on Altos with 2K ROMs, this address must lie in the range 0-377b or 1000b-1377b.

Read/write registers July 31, 1980 117

Cleared version of May 24, 1981

ScanFile - a package for rapid sequential file scanning

This package enables a program to scan Alto files at full disk speed, including overlapping disk transfers
with computation. The package is written entirely in Bcpl and uses only standard OS facilities.

To initialize the package, call
 ScanFile(fp, bufferAddress, bufferSize, fa [0], disk [sysDisk], altoFile [false])
where fp is a file pointer as described in the Alto OS manual and bufferAddress is the beginning of a block
of bufferSize words. If fa is not zero, it must be a file address as described in the Alto OS manual, and
scanning will begin with the file page specified by fa. The disk address in fa must be correct, not just a
hint. If disk is given, it must point to a disk descriptor as described on p. 52 of the Alto OS manual;
otherwise, ScanFile uses sysDisk, the standard system disk.

If fa is zero and altoFile is true, ScanFile will read the length hint in the leader page of the file and not
queue any reads beyond it until the presumed last page has been read. This involves the following
tradeoff: if altoFile=false, the entire file will be read at maximum speed, but because of a peculiarity of
the Alto file system and disk controller the disk will seek to track 0 at the end of the file, thereby wasting a
substantial amount of time; if altoFile=true and the length hint is correct, one disk revolution will be lost,
but the disk will not seek to track 0; if altoFile=true and the length hint is wrong, two revolutions will be
lost and the disk wil seek to track 0 anyway. The length hint is almost always right, and one disk revolution
is much less time than a seek to track 0 and back, so setting altoFile to true is a good idea unless you are
doing something very unusual.

ScanFile returns an instance pointer (ip) which points to a structure ScanFile sets up in the buffer area.
The minimum size for the buffer area is available in a static called
 ScanFileFixedSize
and each additional page (400b-word) buffer requires
 ScanFileBufferSize
words.

To get the next page of the file, call
 ScanBuffer(ip, fa)
where ip is the instance pointer returned by ScanFile and fa is a pointer to a file address structure as
described in the Alto OS manual. If the end of the file has not been reached yet, ScanBuffer returns the
address of a page buffer containing the next page of data, and fills in the fa with the page number, disk
address, and number of characters of data in the page. If the end of the file has been reached, ScanBuffer
returns 0. Note that the contents of a page buffer are only guaranteed valid until the next call on
ScanBuffer. Note also that the first page delivered by ScanBuffer is the first page of data, not the leader
page.

When you are finished scanning a file, call
 ScanFinish(ip)
where ip is the instance pointer. If you don’t do this, the next use of the Bfs (e.g. by the OS) may throw
you into Swat.

It is possible, although not particularly recommended because of arm movement, to scan more than one
file simultaneously with ScanFile. Of course, each file being scanned requires a separate call on ScanFile
and its own buffer area.

ScanFile currently only handles the standard Alto Diablo disks (model 31 or 44), not Tridents. If the need
arises, ScanFile can be extended to handle Tridents fairly easily.

ScanFile April 25, 1979 118

Cleared version of May 24, 1981

SCV: Scan Converter Package

SCV is a package for scan-converting objects from a description of the boundaries of the object. The
package computes which bits of each scan-line fall under the object described; if these bits are displayed in
black, the object will appear, colored black.

The input to SCV is an ordered sequence of edge descriptions; an edge may be either a straight line or a
spline curve. SCV scales the coordinates of the edge and computes the intersections of the edges with the
coordinate grid. Finally, the intersections are sorted, first by scan-line number, and then by "run
direction" within the scan-line.

Thus the coordinate system is based on "scan-direction" and "run-direction" rather than on x and y. The
coordinates of a point are (s,r) where s is the scan-line number, and r is measured along the scan-line. For
example, on the Alto, s might run from 0 to 807, a vertical measure; r might run from 0 to 605, a horizontal
measure.

Before passing to detailed explanations, consider the following example:

SCVBeginObject(false) (5,10)
SCVMoveTo(0,0) /\
SCVDrawTo(10,0) / \
SCVDrawTo(5,10) / \
SCVEndObject(v) / \
 ...(details) /--------\
SCVReadRuns(v,buf,100) (0,0) (10,0)

This returns a list of intersections: (1,0) (1,2) (2,0) (2,4) (3,0) (3,6) (4,0) (4,8) (5,0) (5,10) (6,0) (6,8) (7,0)
(7,6) (8,0) (8,4) (9,0) (9,2) (10,0) (10,0). If these intersections are paired into "runs," we can see which bits to
turn on (e.g. on scan-line 3, we turn on bits 0 (inclusive) through 6 (exclusive); more on this below). Thus
we get (remember, scan-lines are vertical in the above example):

 *
 *

Initialization

SCVInit(Getb,Putb,Error)

This routine must be called before any objects are scan-converted. Getb is the address of a routine
for obtaining blocks of storage; Putb is a routine to return these blocks to the pool; Error is an
error routine. Templates for these subroutines are:

let
Getb(BlockSize) = valof [
 //Get a free storage block of length BlockSize.
 //Suppose Addr is the address of the first usable word.
 resultis Addr
] and
Putb(Addr) be [
 //Returns block acquired previously by Getb.
] and

SCV 23 May 1975 119

Cleared version of May 24, 1981

Error(String) be [
 //String is a BCPL string that describes the error.
]

SCVMatrix(a,b,c,d)

This routine sets the scaling matrix. In all functions that have s and r values as parameters, the
following scaling takes place:

S = a*s + c*r
R = b*s + d*r

and the values of S and R are actually used. In all explanations below, if upper-case S and R are
used, they represent scaled versions of s and r. The arguments to SCVMatrix are either:

a. 0. The corresponding coefficient is zero.

b. A pointer to a packed floating-point number.

c. The number of a floating-point accumulator. (See "Restrictions," below.)

Thus the identity transformation can be established with: FLDI(2,1); SCVMatrix(2,0,0,2).

SCVTransformF(s,r,v)

This routine scales s and r by the scaling matrix, and returns Floor(Round(S)) in v!0 and
Floor(Round(R)) in v!1. The full value of S is left in floating-point accumulator 8; that of R in
accumulator 9.

Generating Object Descriptions

The operations of generating object descriptions and of actually computing the intersections are separated
in order to cater to certain applications. The object generation process is: (1) initialize by calling
SCVBeginObject, (2) pass boundary descriptions to SCVMoveTo, SCVDrawTo or SCVDrawCurve, and
(3) finish by calling SCVEndObject, which returns an object descriptor (structure SCV).

SCVBeginObject(Care)

Called to begin describing a new object. Care is true if "careful" scan conversion is required (see
SCVEndObject).

SCVMoveTo(s,r) -or- SCVMoveToF(s,r)

Starts a new boundary, and sets the "current" point to (S,R). The arguments to SCVMoveTo are
signed 16-bit integers; SCVMoveToF is identical in function, but requires floating-point numbers
(or accumulator numbers) as arguments.

SCVDrawTo(s,r) -or- SCVDrawToF(s,r)

Specifies that the next leg of the boundary is an edge from the "current" point to (S,R). The
current point is set to (S,R). The arguments to SCVDrawTo are signed 16-bit integers;
SCVDrawToF is identical in function, but requires floating-point numbers (or accumulator
numbers) as arguments.

SCVDrawCurve(sa,ra,sb,rb,sc,rc)

SCV 23 May 1975 120

Cleared version of May 24, 1981

Specifies that the next leg of the boundary is a parametric cubic spline traced out by values of t
from 0 to 1 in the equations ("current" point is (So,Ro)):

S(t) = So + Sa t + Sb t2 + Sc t3
R(t) = Ro + Ra t + Rb t2 + Rc t3

The "current" point is set to (S(1),R(1)). Arguments are floating-point numbers (or accumulator
numbers).

SCVEndObject(v)

Finishes the object description, and returns useful data in v:

v>>SCV.Smin, v>>SCV.Smax. Minimum and maximum values of S (inclusive) where the object
lies. Signed 16-bit integers.

v>>SCV.Rmin, v>>SCV.Rmax. Minimum and maximum values of R (inclusive). (If splines are
used, these two numbers are accurate only if the Care argument to SCVBeginObject is "true".)
Signed 16-bit integers.

Generating Intersections

Armed with an object description ("v" argument to SCVEndObject), intersections can be calculated with
calls to SCVReadRuns.

SCVReadRuns(v,Buffer,Bufsize)

Calculates some intersections, and records them in a buffer (Buffer is the address of the first usable
word of the buffer, Bufsize is the number of words in the buffer). Two values in the vector v
govern the range of S values to consider: values from v>>SCV.Sbegin and v>>SCV.Send
(inclusive) are considered. NB: This S range must proceed unhesitatingly from v>>SCV.Smin to
v>>SCV.Smax, as returned by SCVEndObject.

The function returns, in v:

v>>SCV.IntPtr. Pointer to the first intersection.

v>>SCV.IntCnt. Number of intersections calculated. This is guaranteed to be even, so that an
integral number of intersection pairs ("runs") are in the buffer.

v>>SCV.Send. Largest S value considered. If the buffer is too small to contain all intersections in
the S range requested, the range is reduced until the intersections will fit. On return,
v>>SCV.Sbegin and v>>SCV.Send represent the range actually calculated.

The intersections returned by SCVReadRuns are sorted in the buffer by S and then by R. Each
intersection requires two words: the first is the S value, the second the R value.

The following code demonstrates a probable use of SCVReadRuns:

 SCVBeginObject(false)
 ...specify boundaries...
 let v=vec size SCV/16
 SCVEndObject(v)

 let b=vec 200
 v>>SCV.Sbegin=v>>SCV.Smin //First range
 [
 v>>SCV.Send=v>>SCV.Smax //Assume entire range fits.

SCV 23 May 1975 121

Cleared version of May 24, 1981

 SCVReadRuns(v,b,200) //Calculate intersections.
 let n=v>>SCV.IntCnt
 if n eq 0 then break //All done.
 let p=v>>SCV.IntPtr
 for i=1 to n by 2 do //Loop for each run.
 [
 let S=p!0 //S value
 for R=p!1 to p!3-1 do TurnOnBit(S,R)
 p=p+4 //Next intersection pair.
]
 v>>SCV.Sbegin=v>>SCV.Send+1 //Prepare next S range.
] repeat

The loop on R values of the intersection pair stops just short of the second intersection. That the R interval
should be open can be demonstrated with the following example: suppose that two edges intersect a
particular scan-line at R=0.5 and R=2.5. Clearly the "width" of the object on this scan-line is 2.5-
0.5=2.0. SCV truncates the R values before sorting them, and so reports intersections at R=0 and R=2,
again a "width" of 2.

Operation

SCV code is contained in the files SCVMAIN.C and SCVSORT.C. The definitions for the SCV structure
are in SCV.DFS. The SCV package requires the floating-point package FLOAT. The program
SCVTEST.C is an example of the use of SCV.

Strategies

The orderly way in which SCVReadRuns proceeds from small values of S to large values can sometimes be
linked to the order in which information is used, e.g. added to the screen. If several objects are to be added
in one pass over the screen, SCV can handle that as follows:

a. Generate object descriptions for all objects, saving the "v" vectors for each one.

b. Call SCVReadRuns for each object, dumping intersections into separate buffers. Use the
intersection information to update the screen. (Or, for the energetic, merge the runs from the
several objects!)

c. Repeat step b until all objects are finished.

Note that objects may have several closed boundaries (a call to SCVMoveTo signals the beginning of a new
boundary). The most common use of this feature is to specify the boundaries of "holes" in the object.

Restrictions and Caveats

1. After scaling, S and R must both lie between -16000 and +16000.

2. The SCV package uses many floating-point accumulators. However, it guarantees never to clobber AC 0
to 7 inclusive. Similarly, the caller must guarantee:

a. Not to clobber AC’s 28-31 inclusive unless he is willing to re-establish the scaling matrix with a
call to SCVMatrix.

SCV 23 May 1975 122

Cleared version of May 24, 1981

b. Not to clobber AC’s 22-27 inclusive during object generation (i.e. between a call to
SCVBeginObject and SCVEndObject).

3. If you do not intend to use splines at all, the code in SCVMAIN.C can be shortened considerably.
Remove all code between comments //BEGIN $$$ and //END $$$. (Eventually, conditional compilation
will be used.)

4. Free storage use. For each edge, an 8 word block is acquired (24 if it is a spline); the blocks are released
by SCVReadRuns when it is no longer needed.

SCV 23 May 1975 123

Cleared version of May 24, 1981

SDialog -- Simple Dialoging Package

SDialog is a package of BCPL subroutines that will aid a program in carrying on a teletype style interaction
with its users. Here is a list of its features:

1) SDialog handles all the display and keyboard I/O, including such things as backspacing over a
character.

2) SDialog handles converting things between their representations as strings and their internal form.

3) There is help provided when the user types in an illegal or malformed response.

4) There are provisions for defaulting the user responses.

5) SDialog is small (it’s probably fast too, but that doesn’t matter).

Before proceeding any further you should read the memo entitled "Users’ Guide for ’Simple Dialoging’"
in <Parsley>SDlg.ears. The rest of this discussion will assume a familiarity with that memo.

SDialog will handle dialog about several different kinds of things. Each of these things is assigned a
"radix". Note that as is usual in BCPL, all "values" are always 16 bits, but some of those values may really
be pointers to (addresses of) multiword vectors. Here is a list of the legal radices (the declarations may be
found in the file UtilStr.d):

integers (>=2) -- Only radices of 2, 8, 10, and 16 will really work right. When integers of radix 2, 8,
and 16 are shown to the user, they are always considered unsigned.

radixString (0) -- a normal BCPL string

radixFileName (-3) -- a BCPL string, but user responses are checked for legality

radixCharCode (-1) -- the ASCII code of a character, i.e., 0 <= value <= #377

radixSwitch (-2) -- the value is either TRUE or FALSE

If you wish to do dialoging about something other than the above, then you should tell SDialog that you
are dialoging about a radixString and then convert the users response to your internal form yourself.

Here are some notational conventions for what follows: Arguments enclosed in square brackets are
optional. If an optional argument is followed by a slash, then whatever follows the slash is the default
value for that argument. If there is no slash, then there is no default value. Whatever follows "->" is an
indication of the return value of the routine (if any).

There is one basic procedure:

 Dlg (prompt, radix, [defaultValue, [pointer, [defaultExtension]]])
 -> value

where prompt is a string, radix is one of the list above, defaultValue and value are "values" of that radix,
pointer is just that, and defaultExtension is a string. pointer is where to put the (converted) response if a
value to this radix is really a pointer, e.g., if radix is radixString.

Since this routine would be somewhat awkward to use, there are several other routines that call it. In
general there are two routines per radix, one that takes a default value and another that doesn’t.

 DlgNum (prompt, [radix/10]) -> integer
 DDlgNum (prompt, defaultNumber, [radix/10]) -> integer

SDIALOG March 4, 1977 124

Cleared version of May 24, 1981

 DlgStr (prompt, resultString)
 DDlgStr (prompt, defaultString, resultString)

 DlgFileName (prompt, resultFileName, [defaultExtension])
 -> resultFileName>>SL
 DDlgFileName (prompt, defaultFileName, resultFileName,
 [defaultExtension])

 DlgSw (prompt) -> Switch
 DDlgSw (prompt, defaultSwitch) -> Switch

 DlgChar (prompt) -> CharCode
 DDlgChar (prompt, defaultCharCode) -> CharCode

 DlgCA (prompt)

DlgCA is what you should call when you want something confirmed, but don’t want any "value". DlgCA
merely waits for the user to type one character. If it’s a positive response it returns. If it’s negative it calls
DlgErr (see below).

No problems are occasioned by having defaultString and resultString be the same (this holds for file names
too). In the dialoging about file names it’s possible to specify a default extension for that file name with or
without a default file name. The default extension will be added to the user response if and only if that
response did not include a period. string>>SL means the length of the string.

Now will talk about dialoging errors. Whenever anybody discovers an error in a user response, he should
call

 DlgErr ([msg1, [msg2, [errLoc, [errStack]]]])

where msg1 and msg2 are strings (or 0), errLoc is the label where control is to go, and errStack is the value
that should be in the stack pointer (address of a frame) when control gets to errLoc. DlgErr types the
messages to the user followed by a carriage return and does a GotoLabel (errStk, errLoc, nil). Note that
errLoc and errStack had better go together.

Actually things are a bit better than this. There is a routine

 DlgInit ([errLoc, [inStream, [outStream]])

that may be used to set errLoc and errStack. errLoc is generally set explicitly using DlgInit and errStack is
set to the frame of the caller of DlgInit. The idea is that just before you’re about to get a parameter from
the user that he/she might screw up on, call DlgInit with a label that is just before the call on some
dialoging routine. Then if an error is discovered, call DlgErr with the appropriate error message. The
error message will appear and the user will get another chance to type in the parameter. There are
examples of this sort of usage of DlgInit and DlgErr in the source code files for the subsystems IcSEM and
IcGerb. Here is an example:

 let inFileName = vec lFileName
 DlgInit (NoInFile)
 NoInFile:
 DlgFileName ("Input", inFileName, "icarus")
 let inS = OpenFile (inFileName, ksTypeReadOnly)
 if inS eq 0 do DlgErr (inFileName, " doesn’t exist")
 if Gets (inS) ne icarusPassWord do
 DlgErr (inFileName, " isn’t an Icarus file -- wrong password")

The reason why DlgInit ought to be used (rather than DlgErr alone) is that SDialog itself sometimes calls
DlgErr and errLoc and errStack should be correct before that happens. SDialog checks user responses for
such things as: no letters or illegal digits in integers, only legal characters in file names. If SDialog sees

SDIALOG March 4, 1977 125

Cleared version of May 24, 1981

such an inappropriate response from the user, it calls DlgErr, so things ought to be set up so that the user
gets to try again on his response, and that’s what DlgInit does for you.

There are three "global" variables in SDialog that a user program may change: dlgDefaulted, dlgInS, and
dlgOutS. The latter two are streams. They default to keys and dsp respectively. Feel free to set up your
own display or file streams. Note that these globals get set every time DlgInit is called.

The global variable dlgDefaulted is a boolean. It says whether or not the user has asked to take the
defaults for the rest of the dialog. Some strange programs may want to intervene in this.

There are two more routines that are available (but probably no one will want to use them):

 DlgGetParameter (string, [defaultSwitch])
 DlgBackaChar (char)

DlgGetParameter does all the work of Dlg after the prompt has been displayed and up to the conversion of
the response, i.e., it displays the default response (if any) and receives the user’s response (with echoing).
DlgBackaChar will backspace over and erase a character on the display.

SDialog uses several routines from the package UtilStr, so normally SDialog and UtilStr should be loaded
together. You may want to combine and tailor the source code of these two packages for your own uses.
Help is available from the maintainer(s) of the packages.

SDIALOG March 4, 1977 126

Cleared version of May 24, 1981

Cubic spline packages:
SPLINE1, SPLINE2, SPLINE3, and DRAWSPLINE

This document describes several spline packages: a set of packages for computing a cubic spline, and a
package for displaying such a cubic spline on the Alto display. The package for computing splines is
available in three versions: SPLINE1.Bcpl, SPLINE2.Bcpl, and SPLINE3.Bcpl. Each one contains a
procedure for fitting cubic splines to sets of data points, called knots, following algorithms documented in
the report "Spline Curve Techniques" (by Baudelaire, Flegal, & Sproull), May 1977.

1- Spline computation packages:

The three packages SPLINE1, SPLINE2, and SPLINE3 contain a procedure of the SAME name, with an
IDENTICAL calling sequence:

success_ParametricSpline(N, x, y, p1x, p2x, p3x, p1y, p2y, p3y, type [0])

N n=|N| is the number of knots. The sign of N tells whether the knot coordinates are given in
integer format (N is negative) or floating point format (N is positive).

x, y are two tables containing the coordinates of the knots. They are of length n (integer) or 2*n
(floating point).

p1x, p2x, p3x, p1y, p2y, p3y are six tables of length 2*n in which the coefficients defining the
parametric splines are returned (floating point). These coefficients are, respectively, the first,
second and third derivatives at each knot of the cubic splines x(t) and y(t), t varying between 0 and
1. Notice that, although only the first n-1 values of these derivatives are necessary, the arrays
should be of length 2*n.

typeis either 0 (for natural end conditions, i.e. open ended curve) or 1 (for periodicity, i.e. cyclic curve).
In the later case, it is mandatory that the first and last knots be identical. The type defaults to 0
(natural end conditions).

The implementation of the parametric spline algorithm is different in each packages: SPLINE1
implements a natural spline with unit step parametrization (algorithm 1.2.7), SPLINE2 implements a
natural spline with chord length parametrization (algorithm 1.2.5), and SPLINE3 implements local cubic
B-splines.

In addition, SPLINE2 contains the procedure CubicSpline which computes a general non-parametric cubic
spline (algorithm 1.2.5). The calling sequence is:

success_CubicSpline(N, x, y, p1y, p2y, p3y, type [0])

with the same conventions as above.

All the procedures need free storage, which they get from a zone you must provide by setting the static
PSzone. The amount of storage needed is as follows: In the basic case (n positive, type=0): enough for 8
floating point registers (16), plus 4*n. If n is negative, the coordinates have to be converted to floating point
format: so add 4*n. If type is 1, add 6*n.

The static PSerror points to an error procedure that simply traps to SWAT. The error routine is called by
the statement: "... resultis PSerror(errorNumber);" You may substitute your own error handling routine.
errorNumber=1 means "not enough storage." Other errors are probably fatal.

The spline packages use the microcoded floating-point package MICROFLOAT for all arithmetic
calculations. The format of floating point numbers is consistent with the conventions of that package.
Loading of the microcode in RAM and initialization of floating-point routines (by calling procedure
FPSetup) must be done before using spline routines.

Cubic spline packages December 19, 1977 127

Cleared version of May 24, 1981

2- Spline display package:

DRAWSPLINE contains a set of procedures for displaying on an Alto display bitmap a cubic spline
defined by its knot coordinates. It uses the procedure ParametricSpline defined above: the
DRAWSPLINE package must be loaded with one of the SPLINE packages.

The package must first be initialized: this is done by invoking the procedure:

InitSpline(zone)

which loads and initializes the floating-point microcode, and provides a zone to be used by all spline
displaying and computation procedures: the static PSzone will point to this zone. You may prefer to do
initialization yourself.

Splines are displayed on an "area" which is an arbitrary rectangular window on the plane, mapped onto
some arbitrary position inside a bitmap. An area is defined by a call to the procedure:

area_DefineArea(bitmap, wordWidth, scanCount, Xw [0], Yw [0], Xleft [0], Ybottom [0], width
[16*wordWidth], height [scanCount])

bitmap is a pointer to an Alto display bitmap. You are responsible for creating and linking the
appropriate DCB for this bitmap.

wordWidth and scanCount define the x and y dimension of the bitmap.

Xw and Yw specify the bit position and the scanline position in the bitmap of the lower-left corner of
the window, relatively to the lower-left corner of the bitmap. For good results, these numbers
should be positive, and respectively less than 16*wordWidth and scanCount. The default window
position is the corner of the bitmap (Xw=0, Yw=0).

Xleft, Ybottom, width, and height specify a rectangular window on the plane in which the spline is
defined. This defines the portion of the plane that is visible on the display bitmap: the spline will
be clipped to the limits of this window. The lower-left corner of the window (plane coordinate
Xleft, Ybottom) is displayed as point (Xw, Yw) of the bitmap. The plane coordinate system
follows standard conventions: Y goes up, and X goes to the right; one unit represents one display
point. The window defaults to fill the whole bitmap (Xleft=0, Ybottom=0,
width=16*wordWidth, height=scanCount). If the window is too large when positioned at point
(Xw, Yw), it is appropriately reduced.

The procedure returns an "area", a structure to be used by the spline drawing routine. Several area may
exist simultaneously, on several bitmaps or on the same bitmap. Areas which are not used any more are
released by the call:

Free(zone, area)

To compute and draw a spline defined by its knots, call:

success_DrawSpline(area, N, x, y, brush [0], drawMode [1], type [0])

area is a structure that has been obtained by a call to DefineArea.

N n=|N| is the number of knots. The sign of N tells whether the knot coordinates are given in
integer format (N is negative) or floating point format (N is positive).

x, y are two tables containing the coordinates of the knots. They are of length n (integer) or 2*n
(floating point).

brush is a pointer to a small bitmap defining a brush. The brush bitmap is 1 word wide and H words
high. The first word contains H, and it is followed by H words of bitmap. Standard brushes may

Cubic spline packages December 19, 1977 128

Cleared version of May 24, 1981

be obtained by calling the routine GetBrush (see below). If the brush argument is ommitted or
equal to zero, a single dot brush is used.

drawMode is either 1 (the curve is "painted" onto the bitmap using the brush), 2 (the curve is
"xored"), or 3 (the curve is erased). The procedure uses the microcode function BitBlt to paint,
xor, or erase the brush along the trajectory defined by the spline.

typeis either 0 (for natural end conditions, i.e. open ended curve) or 1 (for periodicity, i.e. cyclic curve).
In the later case, it is mandatory that the first and last knots be identical. The type defaults to 0
(natural end conditions).

Standard brushes can be obtained by a call to

brush_GetBrush(brushShape, brushSize)

brushShape has one of the following values: 0 (round brush); 1 (square brush); 2 (flat horizontal
brush); 3 (flat vertical brush); 4 (flat diagonal brush).

brushSize is a number between 1 and 16 defining the size of the brush: it is rounded to one of the
values 1, 2, 4, 8 or 16.

The package DrawSpline must be loaded with the following files:

SPLINE1, SPLINE2, or SPLINE3

MICROFLOAT (small resident code for floating point)

MICROFLOATMC (floating point microcode; may be reclaimed after initialization)

READPRAM (for loading the RAM; may be reclaimed after initialization)

Cubic spline packages December 19, 1977 129

Cleared version of May 24, 1981

Strings Package

This package provides a small set of useful string-manipulation primitives. There are two independent
modules: a "streams" module implementing standard stream operations reading and writing strings, and a
"utility" module containing a small set of procedures for concatenating, extracting, and comparing strings.

The utility operations parallel some of those provided in Bruce Parsley’s UtilStr package. The principal
departures from that package are:

1. Procedures that create new strings get storage by allocating it from sysZone rather than
requiring that the caller supply it.

2. Operations on large strings are relatively efficient because the ByteBlt package is used.

3. No format conversion operations are provided, since the availability of string streams makes it
possible to use existing software that formats output to streams (e.g., the procedures in the
operating system or the Template package).

The .br files are packaged as Strings.dm, and the sources are contained in StringsSource.dm, which also
includes various command files.

1. String Streams

The "streams" module (file StringStreams.br) provides one external procedure for creating a string stream;
all other access to the stream is via the standard stream operations. The package makes use of the
operating system’s "fast streams" mechanism, so it is relatively efficient when dealing with long strings.

CreateStringStream(string, maxLength [0], firstChar [1], zone [sysZone]) = ss
Creates and returns a string stream reading or writing the specified BCPL string. If maxLength is
zero (the default), assumes that an existing string has been supplied (presumably for reading); if
nonzero, assumes only that a block of storage capable of holding a string of maxLength characters has
been provided. firstChar is the index of the first character to be read or written (remember that the
first character of a BCPL string is numbered 1, not 0). By appropriate setting of maxLength and
firstChar one may read partial substrings or append to existing strings. The stream structure is
allocated from the specified zone.

Gets(ss), Puts(ss, c)
Reads or writes the next character in the string. If the end of the string is exceeded (either its existing
length or maxLength), Errors(ss, ecEof) is called (ecEof = 1302).

Endofs(ss) = true or false
Returns true if the next Gets or Puts would call Errors.

Closes(ss)
If any Puts operations have been executed, updates the string’s length to be the current position (i.e.,
the index of the last character read or written). Then destroys the stream by returning it to the zone
from which it was allocated.

An additional module StringOEP.br is provided. It declares the Overlay Entry Points (OEPs) for the
StringStreams module, which need be done only if the module is loaded as part of an overlay. Consult the
author for further information.

Strings Package July 8, 1977 130

Cleared version of May 24, 1981

2. String Utilities

The "utilities" module (file StringUtil.br) requires that the ByteBlt package (file AltoByteBlt.br) also be
loaded. All strings created by these procedures are allocated from a zone (default sysZone), so the caller
should return them by calling Free when done with them.

ExtractSubstring(string, first [1], last [string>>String.length], zone [sysZone]) = newString
Extracts the "first" through "last" characters of the supplied string and returns the result as a new
string. The defaults are such that the entire source string is copied, thereby providing a convenient
way to create copies of strings.

ConcatenateStrings(s1, s2, free1 [false], free2 [false], zone [sysZone]) = newString
Returns the result of concatenating strings s1 and s2. Then frees s1 if free1 is true and s2 if free2 is
true. This facilitates writing embedded string expressions whose result is a single string, with all
intermediate strings discarded. (All strings must belong to the same zone.)

CopyString(dest, source)
Simply copies the source string into the block pointed to by dest, which had better be big enough.
This procedure does not allocate new storage.

StringCompare(s1, s2, first1 [1], last1 [s1>>String.length], first2 [1], last2 [s2>>String.length]) = result
Compares the first1 through last1 characters of string s1 with the first2 through last2 characters of s2.
Returns a code describing the outcome:

-2 s1 is an initial substring of s2.
-1 s1 is "less than" s2 but not an initial substring.
0 s1 is "equal to" s2.
1 s1 is "greater than" s2.

Lower-case letters collate with their upper-case equivalents. The arguments beyond s2 are optional
and default to the entire respective strings.

3. Revision History

May 24, 1977

First release.

July 8, 1977

Optional zone argument added to ExtractSubstring and ConcatenateStrings.

Strings Package July 8, 1977 131

Cleared version of May 24, 1981

Template Package

The Template Package contains a single procedure, PutTemplate, which formats output to a stream
according to a template provided as a string. This software serves essentially the same purpose as the
existing Format Package, but is implemented much more efficiently (it contains one-third as much code,
requires one-fifth as much stack space, and runs over ten times as fast as Format). The major difference
from Format is that PutTemplate outputs to a stream rather than to a string (though of course one could
obtain the same effect by outputting to a string stream). The template syntax is also different, and
PutTemplate omits a few miscellaneous capabilities such as hexadecimal output. A Nova version of this
package is available.

PutTemplate(stream, template, par1, par2, ..., parN)
Writes the "template" (a BCPL string) to "stream". Within the template may appear zero or more
escape sequences of the form:

$ modifiers command

For each of these, the next parameter (starting at "par1") is substituted, with conversion as specified
by the escape sequence.

An escape sequence consists of a dollar sign, followed by an optional modifier sequence, followed by
a one- or two-letter command (upper and lower case are equivalent). There should not be any spaces
or other extraneous characters within the escape sequence. A dollar sign may be included literally in
the template by writing "$$".

The defined escape sequences are as follows. "#" stands for the optional modifier sequence (to be
explained shortly).

$S Treat the parameter as a BCPL string.

$US Treat the parameter as an unpacked string. This is a vector consisting of a
character count in the first word followed by that number of characters right-
justified in succeeding words.

$C Treat the parameter as a single right-justified character.

$#D Output the parameter as a decimal integer.

$#O Output the parameter as an octal integer.

$#B Output the parameter as a binary integer.

$P Treat the parameter as a procedure, passing it the stream and the next parameter
as arguments (hence a $P uses up two of PutTemplate’s parameters).

In the case of numeric output commands (namely $D, $O, and $B), a modifier sequence may be
included between the dollar sign and the command. These modifiers further control the
interpretation and formatting of the output.

One kind of modifier is a decimal number (of one or more digits). If present, it specifies the
minimum field width to be used in outputting the number. If the number contains fewer digits than
specified for the field width, then leading fill characters (normally spaces; see below) are supplied.
However, if the number contains more digits than will fit in the field, the width specification is
ignored and as many digits as necessary are printed. The default field width is one.

Other modifiers consist of single letters and are as follows:

Template Package October 1, 1976 132

Cleared version of May 24, 1981

U Treat the parameter as an unsigned rather than a signed integer. (Generally one
should invoke this modifier when outputting numbers in octal or binary.)

E Treat the parameter as a double-precision (32-bit) integer (mnemonic
"Extended"). In this case, the argument is a pointer to a two-word vector
containing the integer to be printed, with the high-order 16 bits in the first word
and the low-order 16 bits in the second. Double-precision numbers may be
treated as either signed or unsigned.

Fx Use the character "x" for leading fill, when necessary, rather than space.

For example, the escape sequence "$12UEF0O" will output an unsigned, double-precision octal
number, right-justified in a 12-digit field, with leading zeroes printed as zeroes rather than spaces.

PutTemplate will call SysErr if it encounters an escape sequence it doesn’t understand or if there
aren’t enough parameters to fill all the escape sequences in the template. PutTemplate can handle a
maximum of 20 parameters.

Template Package October 1, 1976 133

Cleared version of May 24, 1981

Date and Time Conversion Package

IMPORTANT:

The operation of this package has changed significantly. Please read the revised description
carefully. Note in particular that the Timer and UpdateTimer procedures have been absorbed into
the Operating System, and that DayTime and SetDayTime have been replaced by ReadCalendar
and SetCalendar, which are also in the Operating System. This version of the Time package
functions only under O.S. version 14 or later.

This package provides facilities for converting date and time between internal and human-readable forms.
Date and time values have three different representations: packed, unpacked, and text.

The packed representation is a 32-bit integer representing number of seconds since midnight, January 1,
1901, GMT (Greenwich Mean Time). The Alto O.S. continuously maintains a date and time clock, whose
current value is available via the ReadCalendar procedure, and which is used internally for such purposes
as time-stamping accesses to files.

The unpacked representation is a 7-word vector UTV, whose structure is defined in the definition file
Time.d. It describes a particular date and time in terms of separate year, month, day, hour, minute, and
second values, and is hence a more convenient representation for use during input and output of human-
readable date and time strings.

The text representation (either a string or characters passing through a stream) is one readable by a human
being. There is no standard format for this, though the Time package does define one particular format.

Procedures dealing with these representations are organized into three parts. Procedures for obtaining and
setting packed times are defined in the O.S. and are not included as part of the Time package, though they
are described here for convenience. Procedures for converting between packed and unpacked times are
contained in the files TimeConvB.Br and TimeConvA.Br. Procedures for converting between unpacked
times and text strings are contained in file TimeIO.Br. TimeIO requires the other two, but the reverse is
not true. All three files are distributed in the dump-format file Time.Dm.

1. Operating System Time Procedures

The following procedures are defined in the Alto Operating System:

ReadCalendar(ptv)
Reads the current packed date and time into the 2-word vector pointed to by ptv (packed
time vector). Returns ptv as its value.

SetCalendar(ptv)
Declares the packed date and time pointed to by ptv to be the current date and time. (This
value might have been constructed using the PACKDT procedure in the time conversion
package. It is not reasonable to compute packed time values by hand.) Most programs
should have no occasion to call this procedure; it is intended for use by programs such as the
Executive’s SetTime command.

Timer(tv)
Reads a millisecond timer into the 2-word vector pointed to by tv, and returns tv!1 as its
value. This timer is maintained by the Operating System, but it bears no particular relation
to the date and time clock and has an arbitrary starting value. It is useful primarily for
interval timing.

Time Conversion May 6, 1981 134

Cleared version of May 24, 1981

The old procedures DayTime and SetDayTime are still included in the O.S. for backward compatibility,
but they are simply aliases for ReadCalendar and SetCalendar and no longer convert between the old and
new time standards.

2. Time Packing and Unpacking

The procedures in TimeConvB.Br and TimeConvA.Br convert between packed time vectors (ptv) and
unpacked time vectors (utv). The structure UTV is defined in Time.d. It has the following components:

utv>>UTV.year Actual year (e.g., 1977)
utv>>UTV.month Month (January = 0)
utv>>UTV.day Day of month (first day = 1)
utv>>UTV.hour Hour of day (midnight = 0)
utv>>UTV.minute Minute
utv>>UTV.second Second
utv>>UTV.daylight 1 if Daylight Savings Time is in effect
utv>>UTV.weekday Day of week (Monday = 0, Sunday = 6)
utv>>UTV.zone Local time zone. This has three components: a sign (0 if west of

Greenwich, 1 if east), an hour value (number of hours east or west of
Greenwich), and a minute value (normally zero).

Note that a utv describes local time (with Daylight Savings Time already applied if appropriate) rather
than Greenwich Mean Time. The conversion procedures take care of the necessary time zone and DST
corrections.

UNPACKDT(ptv, utv)
Converts the packed date and time pointed to by ptv into the corresponding unpacked
representation, and stores the result in the unpacked time vector pointed to by utv. If ptv =
0, the present date and time are used. The procedure returns utv as its result.

PACKDT(utv, ptv, flag [false])
Performs the inverse of UNPACKDT, converting the unpacked date and time pointed to by
utv into packed format at ptv. Returns zero if successful and the index of an incorrect utv
element if unsuccessful (that is, 1 if the year was illegal, 2 if the month was illegal, etc.) The
weekday cell need not be valid, as it is recomputed by PACKDT.

If flag is false or omitted, the daylight and zone fields are ignored and values appropriate to
the date and time supplied and to the local time zone are used instead. This is the correct
action in most situations. If flag is true, the daylight and zone fields are used to control the
conversion, and no check is made of their reasonableness.

WEEKDAY(ptv)
Returns the day of week of the packed time vector ptv (Monday = 0, Sunday = 6). Note
that if you already have a utv, it is simpler just to extract the weekday field from it.

3. External Time Conversion

The module TimeIO.Br provides facilities for converting between internal form and external text strings.
It requires the presence of the TimeConvB.Br and TimeConvA.Br modules as well.

WRITEUDT(strm, utv, printZone [false])
Takes an unpacked time vector utv and writes it on the stream strm in the form "29-Dec-74
18:39:47". If utv = 0, the current date and time are used.

Time Conversion May 6, 1981 135

Cleared version of May 24, 1981

If printZone is supplied and true, the time zone is appended to the result, e.g., "29-Dec-74
18:39:47 PST". For time zones outside North America, the time is written as "29-Dec-74
18:39:47 +02" (2 hours west of Greenwich), or "29-Dec-74 18:39:47 -05" (5 hours east of
Greenwich), or "29-Dec-74 18:39:07 -01:30" (1 hour 30 minutes east of Greenwich).

WRITEUDT does not perform any of the error checks of PACKDT, so it will produce
garbage if given garbage.

CONVUDT(strg, utv, printZone [false])
Performs the same conversion as WRITEUDT, but deposits the result in the string strg.
Returns strg as its result.

FINDMONTH(strg)
Tries to interpret the string strg as the name of a month. If successful, returns the month
number (January = 0, December = 11); if unsuccessful, returns -1. Strg must be at least 3
characters long, and must be the prefix of some month name, ignoring upper/lower case
distinctions.

MONTHNAME(mo)
Returns a string which is the name of the month mo (0 to 11), fully spelled out (e.g.,
"December"). The caller should not write into this string.

4. Implementation

Maintenance of the current date and time and the local time parameters is performed by several
cooperating pieces of software, including the Operating System.

Locations 570 through 577 in page 1 of Alto memory are reserved for use by the Time software. They must
not be overwritten by any booting or core image restoration process. Of these, locations 572 through 577
are used by the O.S. to maintain the calendar clock and millisecond timer. This is accomplished by calling
the UpdateTimer procedure during the display vertical field interrupt routine (60 times second).
UpdateTimer examines the clock maintained by the Alto microcode and appropriately updates the second
and millisecond clocks.

Locations 570 and 571 contain local time parameters required by the date and time conversion software.
These parameters are described by the structure LTP, defined in AltoDefs.d, which may be used in
constructs such as "timeParams>>LTP.zoneH".

sign Zero if the local time zone is west of Greenwich, one if east.

zoneH Number of hours east or west of Greenwich, in the range 0 to 12. The Pacific
time zone is 8 hours west of Greenwich.

zoneM Additional minutes east or west or Greenwich, in the range 0 to 59. This is
usually zero, but there are a few places in the world whose local time is not an
integer number of hours from Greenwich.

beginDST The day of the year on or before which Daylight Savings Time takes effect,
where 1 = January 1 and 366 is December 31 (the correspondence between
numbers and days is based on a leap year). The software will adjust this
number to the nearest preceding Sunday. The standard value is 121 = April
30.

endDST The day of the year on or before which Daylight Savings Time ends. The
standard value is 305 = October 31. If Daylight Savings Time is not observed
locally, the beginDST and endDST values should both be set to 366.

Time Conversion May 6, 1981 136

Cleared version of May 24, 1981

The local time parameters are set by the Executive’s SetTime command from information obtained from
time servers on the local Ethernet. These values are also written into magic locations in the O.S. boot
image so as to make them available even if, at some later time, no time server is available. When the O.S. is
booted, it checks to see whether the in-core values are reasonable, and if not attempts to restore them from
the magic locations in the boot image.

Time Conversion May 6, 1981 137

Cleared version of May 24, 1981

Timer Package

This package contains a small set of trivial procedures for setting, testing, and blocking on timers. It exists
as a separate package so as to isolate its Alto-dependent implementation in one place (an exactly
compatible version for the Nova is also available). For example, calls to this timer package are scattered
throughout a rather large body of new Alto Pup software which is intended to run without change on the
Nova as well. The package is written in assembly language and contains only 33 words of code.

A "Timer", as used in this package, is a single word whose address is passed to the procedures in this
package and used as a temporary variable by those procedures. The actual manner in which this word is
used is not of interest to callers.

The unit of time is 10 milliseconds (again, for compatibility with the Nova). Since the Alto clock used in
this package (memory location #430) has an period of 39 milliseconds, intervals passed to these
procedures must be converted to Alto clock units. Fractions of an Alto tick are rounded up, with the effect
that the actual elapsed time will be at least as great as that specified, possibly as much as 39 milliseconds
greater. These procedures are not intended for use in making precise measurements or maintaining clocks,
but rather for controlling asynchronous operations such as Pup timeouts and retransmissions.

InitializeTimer()
Initializes the timer package. It should be called once at the beginning of a program that uses the
other routines in this package. In the Alto version, InitializeTimer is a complete no-op, and is
included only for compatibility with the Nova version in which some initialization is actually
required.

SetTimer(lvTimer,Delta)
Sets the timer word pointed to by lvTimer so that it will expire at the current time plus Delta (in units
of 10 milliseconds). Delta must be less than 2^15 (a little over 5 minutes).

TimerHasExpired(lvTimer) = true or false
Returns true if the timer pointed to by lvTimer has expired (i.e., the interval Delta specified in the
last SetTimer has elapsed).

Dismiss(Delta)
Blocks (i.e., suspends execution) until the interval Delta has elapsed (Delta is specified in units of 10
milliseconds and must be less than 2^15). Blocking is accomplished by calling the external procedure
Block(), which is defined in the BCPL Context Package and causes control to pass to other processes.
If the Context Package is not being used, it suffices to define an external procedure Block() which just
returns immediately. The effect of Dismiss(Delta) is approximately equivalent to the following
BCPL code, but implemented somewhat more efficiently:

 let Timer=nil
 SetTimer(lv Timer,Delta)
 until TimerHasExpired(lv Timer) do Block()

Timer Package February 26, 1976 138

Cleared version of May 24, 1981

Bcpl/Asm procedure tracing package

This package makes it possible to trace Bcpl and Asm procedures on the Alto, similar to the TRACE
facility available in Interlisp. The package normally uses Taft’s Template (formatted output) package, but
is usable without it.

To start tracing calls and returns of procedure proc, call
 Trace(proc, str)
where str, as described below, specifies the format of the output which Trace produces. To stop tracing
proc, call
 UnTrace(proc).
If you want to trace a procedure but produce all the output yourself, you can call
 ProcTrace(proc, tproc)
which turns on tracing of proc, but instead of using the second argument as an output template, causes
tproc to be called just before proc is entered and just after proc returns. The call when proc is entered is of
the form
 tproc(proc, lv arg0, n, 0)
where n is the number of arguments and arg0 is the first argument; when proc returns, the call is
 tproc(proc, lv arg0, n, lv val)
where val is the value returned. (Note that tproc may alter the arguments or the return value if it wishes.)
Proc may be any Bcpl procedure (including the procedures in the Trace package or the PutTemplate
procedure), or any assembly language procedure that begins with the same 4 instructions as a standard
BCPL procedure, i.e.
 STA 3,1,2
 JSR @370
 frame size
 JSR @367

All output produced by tracing goes to the stream
 TraceStream
or to the system display stream dsp if TraceStream is zero. If you set the static
 TraceLines
to a non-zero value, the tracing routines will pause after every TraceLines lines of output, as follows:
 print 3 *’s,
 wait for a character to be typed,
 print 2 more *’s,
and then proceed. Other output to the same stream (e.g. from the program being traced) will not be
counted in the line count, since the tracing routines have no way to intercept it, but the package constructs
a stream
 TraceOuts
to which you can do Puts and which does the line counting.

The output produced for a Trace’d procedure consists essentially of the arguments when the procedure is
entered, and the value when the procedure returns. Output is indented 2N mod 16 spaces, where N is the
depth of nesting in traced procedures, similar to the Interlisp convention. (The procedure
 TraceIndent(stream)
writes the appropriate number of spaces on a stream, e.g. TraceOuts.) The format of the output is
determined by the str argument to Trace. There are 4 cases:

1) Str=0, or str omitted, e.g. Trace(foo). In this case, the message on entry is
 locfoo:
 arg1 arg2 ... argn
where locfoo is the octal location of the first instruction of foo, and the arguments are printed in octal (by
Wos). The return message is
 locfoo returns val
where val is the value returned, also in octal.

Bcpl Trace package July 18, 1977 139

Cleared version of May 24, 1981

2) Str contains neither $; nor $:, e.g. Trace(foo, "Foo"). The messages are the same, except that the string
Foo appears in place of the location locfoo.

3) Str contains a $;, e.g. Trace(foo, "foo: a1=$D;foo = $O"). In this case, the portion of str before the $;
is used as the template given to PutTemplate for printing the arguments, and the portion after the $; is
used for printing the value. If there are more arguments than $ fields, the extra arguments are printed with
Wos; if there are fewer, printing stops after the last $ field for which an argument was supplied. This
produces pleasing output for procedures which take a variable number of arguments.

4) Str contains no $;, but does contain a $:, e.g. Trace(foo, "FOO: A1=$D"). This is equivalent to
Trace(foo, "FOO: A1=$D;FOO returns $6UO"), i.e. the string up to the $: is taken as the procedure
name and the word "returns" and an octal format are supplied.

Of the 4 options, 1 and 2 do not require the presence of the Template package; 3 and 4 do require
Template if str contains any $ fields. In the latter case, if the Template package is not loaded, all values will
be printed with Wos. Use of ProcTrace does not require the Template package, unless, of course, the
user’s own trace-print procedures use Template.

Note that Trace can be called from Swat, but only with str omitted or zero. ProcTrace and UnTrace can be
called freely from Swat.

Bcpl Trace package July 18, 1977 140

Cleared version of May 24, 1981

UtilStr -- Utility and String Package

I. Introduction

UtilStr is a collection of BCPL subroutines that do string manipulation, double precision arithmetic, and
some other things.

It should be noted that these routines don’t have much to do with each other, so if you only want to use
some of them, feel free to extract or copy from the source code. UtilStr uses definitions from the file
UtilStr.d. If you use UtilStr in some program, you will probably want to do a "get" on this file. UtilStr
only uses routines from the O.S.

There are three sections to this document. The rest of this Introduction will give the various notational and
naming conventions used in the other two. Section II, "Descriptions of Subroutines", gives the calling
sequences and a brief description of each routine. Section III, "List of Subroutines", just lists all the calling
sequences. It is meant to be used for quick reference purposes.

Here are some notational conventions for what follows: Arguments enclosed in square brackets are
optional. If an optional argument is followed by a slash, then whatever follows the slash is the default
value for that argument. If there is no slash, then there is no default value. Whatever follows "->" is an
indication of the return value of the routine (if any). str>>SL means the length of a string.

Here is a list of conventions for argument names. In general, the "type" of an argument is indicated by its
name.
 value -- a value is always associated with a radix which
 specifies the value’s type
 radix -- one of the following constants
 (manifests are defined in the file UtilStr.d):
 2 -- binary integer
 8 -- octal integer
 10 -- decimal integer
 16 -- hexadecimal integer
 radixString (0) -- a BCPL string
 radixFileName (-3) -- a BCPL string for a legal file name
 radixCharCode (-1) -- an ASCII character code
 radixSwitch (-2) -- something that is either true or false
 num -- a signed integer
 str -- a BCPL string, e.g., let str = vec lString, "literal string"
 char -- an ASCII character code, i.e., 0 le char le #377
 sw -- a switch, i.e., sw eq true % sw eq false
 index -- a character position in a string
 dbl -- a double precision integer, e.g., let dbl = vec 1
 M1, P1 -- minus 1 and plus 1 respectively

UTILSTR March 4, 1977 141

Cleared version of May 24, 1981

II. Descriptions of Subroutines

// String manipulation

ValueToString (value, destinationStr, [radix/10]) -> destinationStr

Convert value to a string according to the radix and put that string in destinationStr.

StringToValue (sourceStr, [radix/10, [resultValue]]) -> value

Convert sourceStr to a value according to the radix. Put the value into resultValue if and only if
radix specifies a multiword type thing.

CopyString (sourceStr, destinationStr) -> destinationStr

Copy sourceStr into destinationStr.

AppendChar (char, destinationStr) -> destinationStr

Append char onto destinationStr.

AppendString (sourceStr, destinationStr) -> destinationStr

Append sourceStr onto destinationStr.

AppendNum (value, destinationStr, [radix/10]) -> destinationStr

Convert value into a string according to radix and append it onto destinationStr.

MakeString (destinationStr, radix,value, [radix,value, ...])
 -> destinationStr

Make up a string in destinationStr. Convert each of the values into a string according to its paired
radix and concatenate the strings.

ImbedChar (char, destinationStr, [index/destinationStr>>SL+1])
 -> destinationStr

Imbed (insert) char in destinationStr at the position specified by index.

ExtractString (sStr, dStr, beginIndexM1, [endIndexP1/sStr>>SL+1])
 -> dStr

Make a string in dStr from the characters in sStr from beginIndexM1 to endIndexP1 exclusive.

SearchChar (searchStr, forChar, [beginIndexM1/0]) -> index/0

Search searchStr for forChar beginning at character position beginIndexM1 + 1. If found, return
the index, otherwise return 0.

SearchString (searchStr, forStr, [beginIndexM1/0, [capSw/false]]
 -> index/0

Search searchStr for forStr beginning at character position beginIndexM1 + 1. If found, return
the index, otherwise return 0. If capSw, ignore capitalization.

StringEqual (str1, str2, [capSw/false]) -> true/false

Decide whether or not str1 eq str2. If capSw, ignore capitalization.

UTILSTR March 4, 1977 142

Cleared version of May 24, 1981

// Miscellaneous

Sc (num1, num2) -> -1/0/1

You may not know it, but (exp relation exp) doesn’t work correctly if the two expressions differ by
more that 2**15. This routine works correctly for all values of num1 and num2. The results are
the same as with Usc, i.e., -1 if num1 ls num2, 0 if num1 eq num2, and 1 if num1 gr num2.

Abs (num) -> num

= (num ls 0 ? -num, num)

Max (num1, num2) -> num

= (Sc (num1, num2) ge 0 ? num1, num2)

Min (num1, num2) -> num

= (Sc (num1, num2) le 0 ? num1, num2)

MinMax (minNum, num, maxNum) -> num

= Min (maxNum, Max (minNum, num))

InBounds (minNum, num, maxNum) -> true/false

= Sc (minNum, num) le 0 & Sc (num, maxNum) le 0

IntDivide (dividend, divisor) -> num

= (dividend + divisor - 1) / divisor

ZoneLeft (zone) -> available memory size

Return the size of the largest buffer left in zone.

WriteForm (stream, radix,value, [radix,value, ...])

Convert each value to a string according to its paired radix and write it to stream.

// Double precision arithmetic

DblMul (multiplicand1, multiplicand2, dblResult) -> dblResult!1

dblResult _ multiplicand1 * multiplicand2

DblDiv (dblDividend, divisor, dblResult) -> dblResult!1

dblResult _ dblDividend / divisor

DblAdd (dblAddend1, dblAddend2, dblResult) -> dblResult!1

dblResult _ dblAddend1 + dblAddend2

DblSub (dblMinuend, dblSubtrahend, dblResult) -> dblResult!1

dblResult _ dblMinuend - dblSubtrahend

DblSingAdd (dblAddend, addend, dblResult) -> dblResult!1

UTILSTR March 4, 1977 143

Cleared version of May 24, 1981

dblResult _ dblAddend + addend

DblMulAdd (multiplicand1, multiplicand2, addend, dblResult)
 -> dblResult!1

dblResult _ (multiplicand1 * multiplicand2) + addend

DblMulDiv (multiplicand1, multiplicand2, divisor, [dblResult])
 -> dblResult!1

dbl _ (multiplicand1 * multiplicand2) / divisor; if numargs eq 4, dblResult _ dbl

UTILSTR March 4, 1977 144

Cleared version of May 24, 1981

III. List of Subroutines

// String manipulation

ValueToString (value, destinationStr, [radix/10]) -> destinationStr
StringToValue (sourceStr, [radix/10, [resultValue]]) -> value
CopyString (sourceStr, destinationStr) -> destinationStr
AppendChar (char, destinationStr) -> destinationStr
AppendString (sourceStr, destinationStr) -> destinationStr
AppendNum (value, destinationStr, [radix/10]) -> destinationStr
MakeString (destinationStr, radix,value, [radix,value, ...])
 -> destinationStr
ImbedChar (char, destinationStr, [index/destinationStr>>SL+1])
 -> destinationStr
ExtractString (sStr, dStr, beginIndexM1, [endIndexP1/sStr>>SL+1])
 -> destinationStr
SearchChar (searchStr, forChar, [beginIndexM1/0]) -> index/0
SearchString (searchStr, forStr, [beginIndexM1/0, [capSw/false]]
 -> index/0
StringEqual (str1, str2, [capSw/false]) -> true/false

// Miscellaneous

Sc (num1, num2) -> -1/0/1
Abs (num) -> num
Max (num1, num2) -> num
Min (num1, num2) -> num
MinMax (minNum, num, maxNum) -> num
InBounds (minNum, num, maxNum) -> true/false
IntDivide (dividend, divisor) -> num
ZoneLeft (zone) -> available memory size
WriteForm (stream, radix,value, [radix,value, ...])

// Double precision arithmetic

DblMul (multiplicand1, multiplicand2, dblResult) -> dblResult!1
DblDiv (dblDividend, divisor, dblResult) -> dblResult!1
DblAdd (dblAddend1, dblAddend2, dblResult) -> dblResult!1
DblSub (dblMinuend, dblSubtrahend, dblResult) -> dblResult!1
DblSingAdd (dblAddend, addend, dblResult) -> dblResult!1
DblMulAdd (multiplicand1, multiplicand2, addend, dblResult)
 -> dblResult!1
DblMulDiv (multiplicand1, multiplicand2, divisor, [dblResult])
 -> dblResult!1

UTILSTR March 4, 1977 145

Cleared version of May 24, 1981

VMEM, a virtual memory package for the Alto

 ***** Note: there has been a change in the division of VMEM procedures among the .BR files. See
the last section of this writeup for details. *****

 The VMEM package provides a virtual memory facility for Alto programs. The virtual address space
is 2^24 words; the page size is 2^8 (256, 400b) words.

 The package uses several data structures for which you (the user) must supply storage, as follows:
 1) A hash map, whose size is 2P+1 words, where P is the largest number of 256-word paging buffers
you will ever have allocated at one time, rounded up to a power of 2 (e.g. if you have 20K for paging
buffers, this is 80 buffers, so P=128).
 2) An optional logging area, located just below the hash map. If desired, VMEM will make an entry in
this area each time you make a reference to a virtual address, and call a procedure when the area fills up.
 3) A buffer pointer table of 256 words.
 4) Paging buffers, as many as you want, located anywhere in core (not necessarily contiguous). Each
group of buffers is truncated if necessary so that it starts at an address which is a multiple of the page size
(400b) and is a multiple of the page size long.
 5) A locked cell list of 2N+2 words, where N is the largest number of cells you will ever want to use as
locks (see below).

 VMEM is designed to use special microcode loaded into the Alto microinstruction RAM, although it
will run properly without such microcode. Unfortunately, there is no straightforward procedure for getting
the relevant microcode into the RAM and getting it properly hooked up to the Nova emulator, if it is to
share the RAM with any other special microcode. People wishing to use the RAM with VMEM should be
prepared to include the microcode source in their own microprograms.

1. Initialization

VmemRam()
VmemSoft()

 Before calling InitializeVmem, you must call one of these two procedures to tell VMEM whether or
not you are using the RAM. After calling InitializeVmem, you may call either of these procedures at any
time if you want.

InitializeVmem(HMAP, HMAPSIZE, BPTAB, LCL, LLCL, MSBASE, MSPROC[, NBPROC])

 HMAP is the address of the hash map; HMAPSIZE is 2P (256 in the example of 80 buffers.) (VMEM
will clear the hash map.) BPTAB is the address of the buffer pointer table. LCL is the address of the
locked cell list, and LLCL is its length. MSBASE is the base of the logging area (below HMAP), or 0 if no
logging is desired. MSPROC is the procedure to call when the logging area fills up (see below). NBPROC
is an optional procedure to call when VMEM cannot find enough unlocked buffers to handle a page fault
or a SnarfBuffer call (see below): VMEM will call NBPROC and then try again, indefinitely. If NBPROC
is not supplied, VMEM will call Swat instead.

AddBuffers(FIRST, LAST)

 In order for VMEM to function, you must give it space for page buffers with AddBuffers. FIRST and
LAST are the bounds of a core area to be used for this purpose. FIRST will be rounded up to the next
multiple of the page size if necessary, and LAST+1 rounded down; thus AddBuffers(7700b, 10077b)
followed by AddBuffers(10100b, 10377b) will NOT result in the space from 10000b through 10377b being
made into a page buffer.

2. Mapping functions

Virtual Memory package August 1, 1977 146

Cleared version of May 24, 1981

 A 24-bit address:

 $-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$
 | high part | low part |
 $-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$
 | virtual page part | word part |
 $-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$

"The virtual address (HI, LO)" means a virtual address whose high part is bits 8-15 of HI (bits 0-7 being
zero) and whose low part is LO.

 For implementation reasons, virtual pages -8 through -1 are not legal. If you try to read from page -1,
you will get back unspecified data. If you try to read from pages -8 through -2, or write in any of these
pages, VMEM will call Swat.

 All of the mapping functions described in this section are declared global (page zero), so you must
declare them external with @-sign.

VRR2(HI, LO)

 Returns a core address corresponding to the virtual address (HI, LO), having read the page into a
buffer if necessary.

VWR2(HI, LO)

 Same as VRR2, but assumes you are about to write into the page, so marks it as needing to be
rewritten onto the disk.

VRR1(LO)

 Same as VRR2(0, LO). If you only have a 2^16-word virtual space, you can save a small amount of
code by using VRR1 instead of VRR2.

VWR1(LO)

 Same as VWR2(0, LO).

VRR(PTR)

 Same as VRR2(PTR!0, PTR!1). Useful if you are carrying around addresses in vectors, as Lisp does.

VWR(PTR)

 Same as VWR2(PTR!0, PTR!1).

VRRP(VP)

 Same as VRR2(VP RSHIFT 8, VP LSHIFT 8), i.e. converts a virtual address whose virtual page
number is VP and whose word part is zero. Useful if you are only using the virtual memory package to
manage buffers, and doing your own data scanning.

VWRP(VP)

 Same as VWR2(VP RSHIFT 8, VP LSHIFT 8).

3. Statistics

MSPROC(ARG, N[, VP]) [MSPROC from InitializeVmem]

Virtual Memory package August 1, 1977 147

Cleared version of May 24, 1981

 If N<0, ARG is a core page number (i.e. a core address divided by 400b), and the type of event
depends on N as follows:
 N=-1: page ARG is being freed because it is needed for some other purpose than holding its current
page of data. VP is the virtual address currently in the page.
 N=-2: page ARG, formerly not available to VMEM, has now become available (through AddBuffers
or UnsnarfBuffer).
 N=-3: page ARG, formerly available to VMEM, has now become unavailable (through SnarfBuffer).

 If N>=0, ARG is the MSBASE argument to InitializeVmem or InitSoftVmem, and N words (N/2
entries) starting at ARG contain 2-word entries representing calls on the address mapping functions. Each
entry consists of a 24-bit virtual address with the top 8 bits unused: no distinction is currently made
between reads and writes. If you are not using the RAM, VMEM will start reusing the area starting at
MSBASE; however, if you are using the RAM, VMEM cannot determine the correct value of N (and will
call MSPROC with N=0), so MSPROC must return this value and reset the R or S register itself.

4. Other facilities

REHASHMAP(VP)

 Looks up the virtual address VP*400b in the hash map, returning 0 if present, or the address of an
appropriate empty slot in the hash map if not present. Used by the page fault routine to reconstruct the
hash map, but also useful for determining quickly whether a page is in core.

VirtualPage(CPAGE)

 Returns the virtual page currently occupying core page CPAGE. Returns -2 if CPAGE is currently
empty, or -3 if CPAGE is unavailable to VMEM. If CPAGE is not in the range 0 to 377b inclusive, returns
garbage.

SnarfBuffer(BUFPTR[, NBUFS, ALIGN])

 BUFPTR must be the address of a buffer (i.e. a multiple of the page size) within the scope of some
previous call to AddBuffers, or 0 meaning any buffer(s) will do and SnarfBuffer should find it (them). The
effect of SnarfBuffer is to remove NBUFS (default is 1) buffers starting with that buffer from use by
VMEM. A typical application of SnarfBuffer is to acquire space for display data or Ethernet buffers.

 If BUFPTR is non-zero and some buffer in the specified range is locked (see below), SnarfBuffer
returns 0; normally SnarfBuffer returns the address of the buffer.

 If you need a group of buffers aligned as described under PageGroupAlign below, you may also
supply an ALIGN argument, which works the same way as the value returned by PageGroupAlign.

UnsnarfBuffer(BUFPTR)

 Reverses the action of SnarfBuffer. If you acquired a range of buffers, you must return them one at a
time with UnsnarfBuffer.

LockCell(LVLOCK, PROC)

 Declares that the cell whose address is LVLOCK holds a core address which must remain valid across
page faults, i.e. the buffer in which it lies must not be re-used. Note that the extra level of indirection
means that your program can store into the lock cell freely. As a consequence, if you store some arbitrary
bit pattern into a lock cell, it will function as a lock if it happens to constitute an address within some
buffer.

 When the virtual memory system wants to change the contents of a buffer, it goes through the lock list
and calls PROC(LVLOCK, NEWADDR, false) for each lock cell which contains a pointer into the buffer,
where NEWADDR is the proposed new core address for the page (if it is just being moved around in core,

Virtual Memory package August 1, 1977 148

Cleared version of May 24, 1981

e.g. to make room for a page group) or 0 (if it is being written out). If any PROC returns false, the system
will refrain from the proposed action. If all PROCs return true, the system calls PROC(LVLOCK,
NEWADDR, true) for each appropriate lock cell, and updates the contents of the lock cell (zeroing it if the
page is being written out) in the process. Note that in the latter case, the lock cell will NOT be restored
automatically if the page is read back in at some future time.

 The number of different lock cells is limited to the parameter LLCL supplied to InitializeVmem,
divided by 2, minus 1. If the lock list is full, LockCell calls Swat.

 The system provides the procedures LockOnly, LockReloc, and LockZero, described below, simply
because they are useful default actions: the user may provide an arbitrary procedure for PROC.

LockOnly(LVLOCK, NEWADDR, FLAG)

 If the PROC parameter of LockCell is LockOnly, the system will not move or write the page.

LockReloc(LVLOCK, NEWADDR, FLAG)

 If the PROC parameter of LockCell is LockReloc, the system may move the page in core (updating
the lock cells), but will not write it out.

LockZero(LVLOCK, NEWADDR, FLAG)

 If the PROC parameter of LockCell is LockZero, the system may move or write the page whenever
necessary, zeroing the lock cell in the latter case.

UnlockCell(LVLOCK)

 Undoes the action of LockCell. Returns true if LVLOCK was actually in the lock cell list, or false if it
was not.

IsLocked(PTR, FLAG)

 If PTR is a pointer into a locked buffer, returns true, otherwise returns false. If FLAG=true,
IsLocked returns true even if there are locked pointers into the same buffer as PTR, provided that the
relocation procedures are willing to have the buffer swapped out; if FLAG=false or FLAG is absent,
IsLocked only returns true if there are no locked pointers to the buffer whatever.

 Note that if the page addressed by PTR itself is not locked, IsLocked will return false even if there
exist locked pointers to other pages in a page group which PTR points into.

FlushBuffers()

 Rewrites all dirty pages from buffers onto the disk, including locked pages, and generally tidies things
up in preparation for quitting. (It is OK to go on using the virtual memory after this, you just have to do
another FlushBuffers before quitting eventually.)

5. User routines

 The VMEM package does not assume any particular correspondence between virtual addresses and
disk pages, or indeed that you are using the disk at all: for example, you can use the Ethernet for paging if
this suits your fancy, or store the data in some compressed form on the disk. Consequently, you must
supply a number of routines to establish the correspondence between virtual page addresses and stored
data.

CleanupLocks()

 This routine is called on every page fault, and at other times when VMEM needs to know that the

Virtual Memory package August 1, 1977 149

Cleared version of May 24, 1981

contents of the lock cells are correct. Normally, CleanupLocks need not do anything; however, if you have
pointers in microcode registers or other non-standard places which point into page buffers, CleanupLocks
should copy them into lock cells known to VMEM.

PageType(VPAGE, WFLAG)

 This routine is called on a page fault to determine if a page has never been referenced, already exists,
or is invalid. VPAGE is a virtual page number (the high 16 bits of a 24-bit address); WFLAG is true if the
fault was from a write reference, false if from a read reference. PageType must return 1 if the page is an
existing page, or -1 if a new page. If VPAGE is invalid, PageType can do whatever it wants, but it should
not return.

PageGroupBase(VPAGE)
PageGroupSize(VPAGE)

 These routines are for applications where it is necessary to cause a group of pages, rather than a single
page, to always be transferred into and possibly out of core at the same time and to occupy consecutive
page buffers. PageGroupBase must return the virtual page number of the first page in the group;
PageGroupSize must return the size of the group. If you are not using page groups, PageGroupBase
should return its argument, and PageGroupSize should return 1.

 VMEM distinguishes between read groups, in which individual pages may be rewritten if they become
dirty, and write groups, in which the entire group must be rewritten if any page becomes dirty. For write
groups, PageGroupSize must return the negative of the size of the group.

PageGroupAlign(VPAGE)

 Occasionally it is necessary to align a page or group of pages so that some of the bits of the core
address are zero; for example, if you want to get the effect of 1000b-word pages, it is necessary to align
each group so that the 400b-bit of its core address is zero. PageGroupAlign should return a mask which
specifies which of the high-order 8 bits of the core address must be zero; in the example, PageGroupAlign
should return 1. For pages which do not require alignment (the usual case), PageGroupAlign should
return 0.

DOPAGEIO(VPAGE, CORE, NPGS, WFLAG)

 This routine must transfer NPGS 256-word pages, starting at virtual page VPAGE and core address
CORE, to or from the swapping medium, depending on WFLAG: false means read, true means write.

6. Standard use

 The standard use of VMEM is to do swapping on a standard disk file in which virtual page N
corresponds to file page N+2 (page 1 is reserved for use as an index, and page 0 is the leader page), using
the ISF package (described elsewhere) to obtain rapid random access to the file. The following program
fragment will accomplish this, assuming you are just using 400b-word pages in the most straightforward
way.

external // entries for VMEM
[CleanupLocks
 PageType
 PageGroupSize
 PageGroupBase
 PageGroupAlign
 DOPAGEIO
]

external // links to ISF
[InitFmap

Virtual Memory package August 1, 1977 150

Cleared version of May 24, 1981

 IndexedPageIO
]

static
[MyFmap // pointer to work area for ISF
]

// To initialize ISF, set MyFmap to point to a work area
// of size MyFmapLength, and then call
// InitFmap(MyFmap, MyFmapLength, FilePtr, true)
// where FilePtr is a FP (see the O.S. manual)
// for the paging file. A reasonable value for
// MyFmapLength is 80 -- see the ISF writeup.

let CleanupLocks() be []

let PageType(vp) = 1

let PageGroupSize(vp) = 1
let PageGroupBase(vp) = vp
let PageGroupAlign(vp) = 0

let DOPAGEIO(vp, core, np, wflag) be
[IndexedPageIO(MyFmap, vp+2, core, np, (wflag? -1, 1))
]

7. Packaging

 The VMEM package actually consists of several files:
 VMEM.BR - the code required to process page faults, plus LockCell and UnlockCell
 VMEMAUX.BR - all the other entries to VMEM, except InitializeVmem
 VMEMINIT.BR - InitializeVmem
 VMEMA.BR - a small amount of assembly-language code
 VMEMSOFT.BR - a software version of the VMEM microcode
 VMEM.USE - the program fragment listed above
 VMEM.MU - the VMEM microcode.
You must load VMEM, VMEMAUX, VMEMINIT, and VMEMA with your program, and also
VMEMSOFT if (as is normally necessary) you are not using the RAM. In addition, you must load the ISF
package (files ISF.BR and ISFINIT.BR) if you are using VMEM in the standard manner described above.
Once you have called InitializeVmem, you may throw away VMEMINIT; once you have done all your
calls on AddBuffers, etc., you may throw away VMEMAUX.

Virtual Memory package August 1, 1977 151

Cleared version of May 24, 1981

