| nter-Office Memorandum

To Alto Users Date December 30, 1980
From Martin Newell, Lyle Ramshaw Subject Command files with parameters
Filed on [Maxc]<AltoDocs>Do.press

XEROX

INTRODUCTION

The program Do actson a.do file as @ acts on a.cm file, except the file may contain
parameters for substitution.

Example
To edit afile on aremote file server, let edit.do contain:
//Edit file #1 on file server #2
Ftp #2 retrieve/u #1

Bravo/n #1
Ftp #2 store/c #1

Then the command:
Do edit spec.bravo maxc

will generate:
/IEdit file spec.bravo on file server maxc
Ftp maxc retrieve/u spec.bravo

Bravo/n spec.bravo
Ftp maxc store/c spec.bravo

Whereto find Do

Doison: [Maxc]<Alto>Do.run

SPECIFICATION
Command line syntax is:
Do [<file> [paraml [param? [... [paramN]...]]]]
Missing items will be requested interactively (see below). Do first substitutes the given
parameters into the text of file, and then presents that text to the Exec as a command

string. Multiple spaces are equivalent to a single space as a separator of items on the
command line.

¢ Xerox Corporation 1979, 1980

Parameter Specification

The nth parameter is substituted for each occurence of #n or #n# in <file>, the latter
form being required when the parameter is to be followed by one of: {digit, #, ?, =, *}.
The latter form may always be used if in doubt.

The string ## should be used to indicate aliteral # whenever it isto be followed by one
of: {digit, #, ?, =, *}.

In specifying the parameters, escape is the symmetric double-quote character ("); thus,
"<ch> is equivalent to an uninterpreted <ch>. Thisisuseful for including spacesin a
parameter, e.g.

Do file.do a" parameter” with" five" internal" spaces

To include a symmetric double-quote itsalf, type two of them: "".

A null actual parameter may be specified by typing the single-character string *‘-’’ on the
command line, or interactively to the request for that parameter. In those rare instances
where you really want to specify ‘-’ as an actual parameter, you can convince Do not to
trandate ‘-’ into the null string by typing ‘*"-"" instead. Null parameters may also be
specified interactively by typing <cr> to the request for that parameter.

Missing Parameters
Prompts: If no value for the nth parameter is given in the command line then the value of
that parameter will normally be requested interactively, using a standard prompt. The
prompt may be changed by including it with the first appearance of that parameter in the
.dofile, thus:

#n?prompt#

where n is the number of the parameter as before, and prompt is the required prompt
string, conforming to the rules for typing parameters (i.e. using " as escape).

Defaults: Another possibility when no value for the nth parameter is given isto provide a
default in the .do file, thus:

#n=defaul t#

where default is the default value of parameter n, again conforming to the rules for typing
parameters.

The trailing # can be omitted from a prompt or default if the next character is <space> or
<cr>. Again, if in doubt then include the trailing #.

Automatic file name extension

On filelookup if <file> includes an extension then no other extension is attempted.
Otherwise the extensions .do and .cm are attempted, followed by an attempt at the file
name with no extension. If that fails, or if no file name was given, the user is prompted for
the correct file name. Any typed parameters are retained and should not be retyped.

Nesting

Do does the right thing if embedded in a string of commands. Do’s may be nested
arbitrarily deep.

Mapping feature

It is often convenient to be able to perform some operation once for each file namein a
list. If thefirst occurrence of the nth formal parameter in the .do file includes atrailing
asterisk, asin #n*, then Do will instantiate the .do file multiple times, first substituting the
nth actual parameter for the nth formal parameter, and then the (n+1)st actua for the nth
formal, and so on until the actual parameters are exhausted. Only the highest numbered
formal parameter may be mapped in thisway. Note that it isimpossible to default any
parameters when using this mapping feature.

A couple of hacks
The ~U command in the Executive can be used to create a special purpose .do filein
Line.Cm with only afew keystrokes: for details on ~U, see the Executive documentation.
Also note that, when typing a parameter interactively, it is perfectly legal to supply the
string **//’; this can cause wondrous things to happen later, since it causes the Executive to
ignore the rest of the line on which it appears.

EXAMPLE 1

As ancther version of the example given at the beginning, but using a prompt and a
default, let edit.do contain:

/[Edit file #1?Edit" file:# on file server #2=lvy#
Ftp #2 retrieve/u #1
Bravo/n #1
Ftp #2 store/c #1
[Note: neither of the trailing # s above is necessary - they were included for clarity]
1. Thecommand:
Do edit spec.bravo maxc
will generate (the same asin the initial example since all parameters are given):
/[Edit file spec.bravo on file server maxc
Ftp maxc retrieve/u spec.bravo
Bravo/n spec.bravo
Ftp maxc store/c spec.bravo
2. Thecommand:
Do

will provoke the questions (and possible answers):

Do file: edit
Edit file: spec.bravo

and generate;
//Edit file spec.bravo on file server lvy
Ftp Ivy retrieve/u spec.bravo
Bravo/n spec.bravo
Ftp Ivy store/c spec.bravo

3. Usualy the command will be somewhere between these two extremes, making use of
the defaulting, e.g.

Do edit spec.bravo

which would generate the same command file as in the previous example, but without
any prompting.

EXAMPLE 2
Here is an example that uses the mapping feature. Suppose that your Bravo is configured
so that, when invoked in the manner
Bravo/H spec.bravo 3

it will print three copies of spec.bravo and then quit. You can use Do to help you print
many files by putting the following text into the file hardcopy.do:

/[Hardcopy #1 copies of #2* first

Bravo/H #2 #1

/lthen go on and do the rest
Then, giving the Executive the command:

Do Hardcopy 5 *.bravo

will print five copies of all of your .bravo files.

