
c Xerox Corporation 1979

Inter-Office Memorandum

To Alto Bcpl Programmers Date October 12, 1977

From Ed McCreight Location Palo Alto

Subject B-Tree Package Organization CSL

XEROX

The file <ALTOSOURCE>BTREE.DM contains the five BCPL code modules BTreeRead.bcpl,
BTreeWrtMS0.bcpl, BTreeWrtMS1.bcpl, BTreeWrtMS2.bcpl, and BTreeDel.bcpl, plus a declarations
module BTree.decl (plus BTreeCheck.bcpl and some other model Bcpl code). These modules, with
considerable support from user-supplied routines, implement B-Trees with variable-length records for
the Alto. (If you don’t know what a B-Tree is, put this memo down for a while and read section 6.2.4
of Knuth’s The Art of Computer Programming, volume 3.) Subroutines are assigned to modules in such
a way that if one only reads from the B-Tree, only one modules is required; writing requires up to
four; deleting may require all five.

The B-Tree package infers the lengths of B-Tree records and order among B-Tree records by asking
questions of user-supplied routines. It also assigns responsibility for storing and recalling B-Tree pages
to/from a disk (or whatever) to user-supplied routines. These routines are provided to the B-Tree
procedures via a tree handle, a block of memory that is supplied as a parameter in all calls to the B-
Tree package. This tree handle must be initialized before calling the B-Tree package. The package is
re-entrant (if the user-supplied routines are), and can be working on several tree handles at once.

What the Package Needs
The user must supply the following routines in the tree handle (see BTree.decl for the exact format of
the tree handle: it’s the structure called TREE):

ReadBTreePage(BTreeHandle, pageNumber) = core address
The routine must read the desired page into core somewhere and return the address of where
it was put. The page may be flushed from core at any later time (within reason) except if it is
locked (see below).

WriteBTreePage(BTreeHandle, pageNumber) = core address
The routine must read the desired page into core somewhere and returns the address of where
it was put. In addition, the B-Tree routines will immediately alter the page in core, so that it
must subsequently be written out before being flushed from core.

LockBTreePtr(BTreeHandle, lv pointer)
This call notifies that pointer must be checked before flushing any B-Tree page from core. If
pointer points into a B-Tree page, that page may not be moved or removed.

UnlockBTreePtr(BTreeHandle, lv pointer)
Notification that pointer need not be checked any more.

AllocateBTreePage(BTreeHandle) = pageNumber
This routine must return the number of a page not currently being used in the B-Tree.

2

FreeBTreePage(BTreeHandle, pageNumber)
Notification that the numbered page is now no longer being used in the B-Tree.

CompareKeyRtn(Key, Record) = {-1, 0, 1}
This routine must compare an isolated key (whatever that is) with a record and say whether
the key is less than, equal to, or greater than the record.

LengthRtn(Record) = length
This routine must return the length of the record in words.

It is no coincidence that the first four routines mesh hand in glove with four nearly identical routines
in the VMEM package. I shall eventually make a nice stand-alone OpenTree procedure that uses the
ISF and VMEM packages in the simplest possible ways and creates a proper tree handle. For the
moment, alas, users must follow the models in IFSBTREERES and IFSBTREESWAP, which are also
included in the dump file for inspirational purposes only. I know that this puts a pretty high potential
barrier in front of somebody who wants to use B-Trees in a simple application, but the only
applications to appear thus far have been far from simple, and ultimately needed the full generality of
the IFS environment.

What The Package Will Do
The following routines are part of the BTREEREAD module. In these routines, CompareKeyRtn is an
optional comparison routine which, if present, is used in preference to the comparison routine specified
in the tree handle. The ordering relation R’ used to search the tree must be a weakening of the relation
R used to create the tree. That is, if a<b in R’, then a<b in R. Similarly, if a>b in R’, then a>b in R.
This feature can be useful, for example, when one wishes to store capitalizations distinctly while
sometimes having a search match any capitalization. In this case R would sort first on letter content,
and then (if all letters were the same) on capitalization. R’ would simply sort on letter content and call
all keys containing the same letters in the same order equal.

ReadRecLE(TreeHandle, Key, CompareKeyRtn) = record copy
This returns either 0 or a pointer to a copy of the tree record with the greatest key less than or
equal to Key. When the user is finished with the record copy, he must FREE it into
TreeHandle>>TREE.Zone.

MapTree(TreeHandle, StartKey, Function, Param, CompareKeyRtn, dontCopy)
This function is similar to ReadRecLE. However, instead of returning a pointer to a copy of
the tree record, it passes that pointer to the user-supplied Function which should take three
arguments. The first one will be a pointer to a copy of the record, or to the live record itself if
dontCopy is true, the second one will be Param, and the third will be uninteresting. When it is
finished, Function is responsible for FREEing the record copy into TreeHandle>>TREE.Zone.
If Function returns the value true, then it is called again on the next larger record in the tree,
and so on until either Function returns the value false or the largest record in the tree has
been processed. MapTree itself returns the value false if Function returned false, and true if
there are no more records to process.

The following external subroutine is contained in the BTREEWRTMS0 module:

UpdateRecord(TreeHandle, Key, RecordGenerator, Param, CompareKeyRtn)
The user-supplied function RecordGenerator is called with two parameters. The first parameter
is either 0 or a pointer to a copy of a record in the tree whose key is equal (according to
CompareKeyRtn or the key-comparison routine specified by the tree handle) to Key. The
second parameter is Param. RecordGenerator is expected to produce a record whose key is
equal to Key (this is checked). That new record will replace the original one (if any) in the
tree. Finally the record produced by RecordGenerator will be FREEd into
TreeHandle>>TREE.Zone.

The following external subroutine is contained in the BTREEDEL module:

3

DeleteKey(TreeHandle, Key, CompareKeyRtn)
The record whose key is equal to Key is deleted from the tree. The value returned is true if
this was done, and false if no such record was contained in the tree.

