
The Briefing Blurb:

Exploring the Ethernet with Mouse and Keyboard

1983 Edition

By Lyle Ramshaw of PARC/CSL

An immigration document in the tradition of Roy Levin’s A Field Guide to Alto-Land.

June 7, 1983

Filed on: [Indigo]<Cedar>Documentation>BriefingBlurb.tioga, BriefingBlurb.press

Abstract: This document is a general introduction to the computing environment at PARC slanted
towards the needs and interests of newcomers to the Computer Science Laboratory. If you are
looking at this document on-line from within the editor named Tioga, you might want to use the
level-clipping functions to see the overall structure rather than simply plowing straight through.
Click the ‘‘Levels’’ button in the top menu, then click ‘‘FirstLevelOnly’’ in the new menu that
appears. That will show you the major section headings. Click ‘‘MoreLevels’’ to see the
subsections, or click ‘‘AllLevels’’ to read the details.

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Internal Use Only

THE BRIEFING BLURB 2

Raison d’Etre

The purpose of this document is to help immigrants adapt to the local computing community. By
‘‘the local community’’, I mean primarily the Computer Science Lab, the Imaging Sciences Lab, and the
Integrated Design Lab of the Xerox Palo Alto Research Center, better known by the acronyms CSL,
ISL, and IDL respectively. Immigrants to other computing communities within Xerox may also find this
document of interest, but I make no guarantees. I shall assume herein that said immigrants know quite
a bit about computer science in general. Hence, I shall concentrate upon discussing the idiosyncratic
characteristics of the local hardware environment, software environment, social environment, linguistic
environment, and the like.

You will doubtless read many documents while you are at Xerox. A common convention observed in many manuals and

memos is that fine points or items of complex technical content peripheral to the main discussion appear in small type, like this

paragraph. You will soon discover that you cannot resist reading this fine print and that, despite its diminutive stature, it draws

your eyes like a magnet. This document has such passages as well, just so that you can begin to enjoy ferreting out the diamonds

hidden in the mountain of coal.

There is a great deal of useful information available on-line at Xerox in the form of documents and
source programs. Reading them is often very helpful, but finding them can be a nuisance. Throughout
this document, references to on-line material are indicated by <n>, where n is a citation number in the
bibliography at the end of this document. Standard citations to the open literature appear as [n].

If you are fortunate enough to be reading this document from within Tioga (the Cedar editor), you
should pause at this point to try out the ‘‘Def’’ command. If you were to select the three characters
‘‘<n>’’in the preceding paragraph and then click the ‘‘Def’’ command with the middle mouse button,
you would then find yourself looking at the place in this document where ‘‘<n>’’is defined, that is, where

it appears followed by a colon . You could then get back to this section of the document by clicking the
‘‘PrevPlace’’ command with any mouse button. The ‘‘Def’’ command is almost as good as an automatic
indexing facility. On another topic, you might try clicking the ‘‘FirstLevelOnly’’ button (click ‘‘Levels’’
first if you can’t find the ‘‘FirstLevelOnly’’ button), and then clicking ‘‘MoreLevels’’ a few times. Try
scrolling a bit too. The Tioga ‘‘levels’’commands are almost as good as an automatic table of contents.

Reading a document from front to back can be mighty boring. Fortunately, this document is so
disorganized that it is not at all clear that it really has a front and a back in any normal sense. You
might as well just browse through and read the parts that look interesting. To help out the browsers in
my reading community, I have more or less abandoned the custom of being careful to define my terms
before I use them. Instead, all the relevant terms, acronyms, and the like have been collected in a
separate Glossary. Some information is contained only in the Glossary, so you may want to skim through
it later (or now, for that matter) . The ‘‘Def’’ command in Tioga is particularly helpful when browsing the
Glossary from within Cedar; try selecting the word ‘‘Tioga’’, and then clicking the ‘‘Def’’ button in the
Glossary viewer, for example. While writing the Glossary, I assumed that you have a basic knowledge of computer science,

and a modicum of common sense: don’t expect to find terms like ‘‘computer’’ and ‘‘network’’ in the Glossary.

1983 EDITION

THE BRIEFING BLURB 3

Naming Things

At the outset, you should know something about the names of the creatures that you will find here.
The prevailing local philosophy about naming systems is perhaps somewhat different from the trend
elsewhere. We do have our share of alphabet soup, that is, systems and languages that are named by
acronyms of varying degrees of cuteness and artificiality; consider, for example: PARC, FTP, MAXC,
IFS. But we are trying to avoid making this situation any worse. To this worthy end, names for hardware
and software systems are frequently taken from the Sunset Western Garden Book [1]; Grapevine servers
are named after wines; Dorados are named after capital ships; Pilot releases are named after California
rivers. As this convention about names does not meet with universal approval, it seems inappropriate to
offer a justification of the underlying philosophy without offering equal time to the opposition. You
will doubtless provoke a far more interesting discussion if you advance your own views on naming to
almost anyone wandering in the corridors.

While we are on the general topic of the names of things, we should discuss for a moment the local
customs for constructing single identifiers out of multiple word phrases. Suppose that you would like to
name a variable in your program ‘‘name several words long’’. In some environments, a special character
that isn’t a letter but that acts something like a letter is used as a word separator within identifiers; this
leads to names such as

‘‘name!several!words!long’’ or ‘‘name several words long’’.

No such character is in common use locally, however. Instead, shifting between upper and lower case
is used to show the word boundaries, leading to the name

‘‘NameSeveralWordsLong’’.

Some people, including Don Knuth, think that identifiers with mixed case look terribly ugly. I refuse
to get sucked into expressing my opinion in this document; once again, I exhort you to espouse your
views in the corridors.

There are several fine points that I should mention as well. As a general rule, case is significant for
identifiers in the local programming languages, but case is not significant in file names or in Grapevine
R-names. Thus, the Cedar identifiers ‘‘REF’’, ‘‘Ref’’, and ‘‘ref’’ are quite distinct, but the file names
‘‘BriefingBlurb.tioga’’ and ‘‘briefingblurb.tioga’’ are equivalent, as are the R-names ‘‘Ramshaw.PA’’ and
‘‘ramshaw.pa’’. In Mesa and Cedar, there is a further convention that the case of the first letter of an
identifier is used to distinguish fancy objects, such as procedures and types, from simple ones, such as
integers and reals. Thus, the identifier name ‘‘ProcWithFiveWordName’’ begins with an upper case ‘‘P’’,
but the name ‘‘integerWithFiveWordName’’ begins with a lower case ‘‘i’’. The latter form looks very
strange to most people when they first see it. When you first tasted an olive, you probably didn’t like
it. Now, you probably do. Give these capitalization conventions the same chance that you would an
olive.

These capitalization conventions don’t work too well when acronyms and normal words appear together in one identifier.

Suppose, for example, that I wanted to introduce an identifier named ‘‘FTP version number’’. Logic would demand

‘‘FTPVersionNumber’’, but this doesn’t look quite right; many people would be probably write ‘‘FTPversionNumber’’ instead.

Of course, since a version number is probably an integer, it should really be ‘‘fTPVersionNumber’’. Ugh. Perhaps case is being

used for too many purposes?

1983 EDITION

THE BRIEFING BLURB 4

Local Hardware

Most of the offices and some of the alcoves around PARC have personal computers in them of one
flavor or another. The first of these was the Alto . There are more than a thousand Altos in existence
now, spread throughout Xerox, the four universities in the University Grant program (U. of Rochester, CMU,

MIT, and Stanford) , and other places. In recent years, most of the local Altos have been replaced by various
flavors of D-machines: Dorados, Dolphins, and Dandelions. Both D-machines and Altos come equipped
with bitmap displays, mice, and Ethernet interfaces. Let’s discuss these components first, and then turn
our attention to the various personal computers that contain them.

Bitmap Displays

First, let’s talk about displays. Different displays use different representations of images. A character
display represents its image as a sequence of character codes. This is a very compact representation, but
not a very flexible one; text is all you can get, and probably in only a limited selection of fonts. A
vector display represents its image as a list of vector coordinates. This works very well for certain
varieties of line drawings, but not so well for filled areas or text. A bitmap display, on the other hand,
produces an image by taking a large matrix of zeros and ones, and putting white where the zeros are
and black where the ones are (or vice versa). The great advantage of bitmap displays are their flexibility:
you can specify a tremendous number of images by giving even a relatively small array of bits. Cursors

and icons are two large classes of prominent examples. Of course, you do have to supply enough memory to hold
all those bits. Altos and D-machines store their bitmaps in main storage. An alternative would be to provide a special chunk

of memory on the side where the display’s image sits; such a memory is often called a frame buffer .

The primary display of the Alto is a bitmap that is 608 pixels wide by 808 pixels high. Such a
display is almost large enough to do a reasonable job of rendering a single 8.5" by 11" page of text.
The CRT on a D-machine has the long axis horizontal instead of vertical, giving a bitmap display that
is 1024 pixels wide by 808 high. It had to be 808 high so that D-machines could emulate Altos, of course. The extra
space allows you to have something else on the screen as well as the somewhat scrunched page of text
that you are editing.

Ere I leave you with a mistaken impression, let me note in passing that bitmap displays are not the
final solution to all of the world’s problems. Raster displays that can produce various levels of gray as
well as black and white can depict images free of the ‘‘jaggies’’ and other artifacts that are inherent in
bitmap displays [2]. And, for some purposes, color is well worth its substantial expense.

Mice

But now on to mice. A mouse has two obvious properties�it rolls and it clicks. Inside the machine,
the mouse position and the display cursor position are completely unrelated; but most software arranges
for the cursor to ‘‘track’’ the mouse’s movements. The three mouse buttons go by various names; ‘‘left’’,
‘‘middle’’, and ‘‘right’’ is one set of names. The mouse buttons are also called ‘‘red’’, ‘‘yellow’’, and
‘‘blue’’ respectively, even though physically they are nearly always black. These colorful names were
proposed at an earlier time when some of the mice had their buttons running horizontally instead of
vertically. Using colors (even imaginary ones!) worked better than switching back and forth between the
nomenclatures ‘‘top-middle-bottom’’ and ‘‘left-middle-right’’.

Mice also come in two basic flavors: mechanical and optical. Our current mechanical mice roll
on three balls: two small ones, and one large one. Motion of the large ball is sensed by two little wipers
inside the mouse, one sensing side to side rolling while the other senses forward and backward rolling.
The motion of each wiper drives a commutator, and little feelers slide along the commutator, producing
the electrical signals that the listening computer can decode. Building one of these little gadgets is not
quite as hard as building a Swiss watch, but it’s in the same league. The optical mice are a more recent

1983 EDITION

THE BRIEFING BLURB 5

innovation. An optical mouse lives on a special pad, covered with little white dots on a black background.
A lens in the mouse images a portion of the pad onto the surface of a custom integrated circuit. This
IC has sixteen light-sensitive regions, some of which notice that they are being shined on by the image
of a white dot on the pad. As the mouse slides along the pad on its Teflon-coated underbelly, the
images of the white dots move across the IC; it is subtly constructed so as to observe this phenomenon,
and take appropriate electrical action. For more details on this interesting application of a custom chip,
you might enjoy checking out Dick Lyon’s blue-and-white report on the subject [3].

The Ethernet

Two’s company, three’s a network. A collection of machines within reasonable proximity is hooked
together by an Ethernet; if that doesn’t sound familiar, I know of some blue-and-whites that you might
like to browse [4,5]. Ethernets are connected to each other by Gateways and phone lines, which for
most purposes allow us to ignore the topology of the resulting network. The resulting network as a
whole is called an Internet . Occasionally, it’s nice to know where things really are, and that’s when a
map <6> is helpful.

Ethernets come in two flavors: old and new. The old one runs at 3 MBits/sec, and should now be
referred to as the ‘‘Experimental Ethernet’’. The unqualified name ‘‘Ethernet’’ should be reserved for
the new one, the standardized version used in OSD products; it runs at 10 MBits/sec.

We all know how uncommunicative computers can be when left to their own devices. That’s why
we invent careful protocols for them to use in talking to each other. There are two entire worlds of
protocols that are spoken on our various Ethernets as well: old and new. The old ones are called
PUP-based (PARC Universal Packet) [7]. The new ones are known by the acronym NS (Network
Systems) [8, 9]. I’m sure that the NS protocols must be documented, but I don’t know where; sorry . Each protocol
world includes a hierarchy of protocols for various purposes such as transporting files, or sending and
receiving mail.

In addition to connecting up all of the personal computers, the network also includes a number of
machines generically called servers. Normally, servers have special purpose, expensive hardware attached
to them, such as large-capacity disks, or printers. Their purpose in life is to make that hardware available
to the local community. We tend to identify servers by function, so we talk about print servers, file
servers, name lookup servers, mailbox servers, tape servers, and so on. Many of the protocols for use of
the Ethernet were developed precisely so that personal computers could communicate effectively with
servers.

The Alto

The innards of the Alto are wonderfully described in a clear and informative blue-and-white report
[10]; I seriously recommend that you read it. In the very unlikely event that you need to know still
more about the Alto, you might try looking in the Alto hardware manual <11>. But for our purposes,
suffice it to say that the Alto is a 16-bit minicomputer whose primary claim to fame is that it comes
equipped with a bitmap display, a mouse, and an Ethernet interface.

D-Machines

The D-machines are a family of personal computers, each member of which has a name starting
with the letter ‘‘D’’. As long as you don’t look too closely, D-machines look a lot alike. In particular,
they are all 16-bit computers with a microprogrammed processor that handles most of the I/O as well
running the user’s programs. And they all generally come equipped with a hard disk, a bitmap display,
a keyboard, a mouse, and an Ethernet interface. There are differences of course: in size, in speed, and
in flexibility.

1983 EDITION

THE BRIEFING BLURB 6

The Dolphin (formerly called the D0)

The Dolphin was one of the early D-machines, and there are still some of them around. Dolphins
are housed in the same sized chassis as Altos. You can tell that they aren’t Altos because they have
wide screen terminals, and because they don’t have a slot on top for a removable disk pack. Instead,
they use a 28MByte Winchester disk drive made by Shugart. Dolphins can talk to both 3 MBit and 10
MBit Ethernets.

The Dandelion

The Dandelion is the D-machine processor that is used in the Star products. It comes in a box
about half the width of an Alto chassis, and roughly the same height and depth. Dandelions are less
flexible than Dolphins, since the microprocessor is shared among the various I/O devices and the
emulator in a fairly rigid round-robin fashion (associated with the terms ‘‘clicks’’and ‘‘rounds’’). As a
consequence, it isn’t very easy to hang a new I/O device off of a Dandelion. On the other hand,
Dandelions are both faster and cheaper than Dolphins. Dandelions talk only to 10 MBit Ethernets.

The Dorado

Building large software systems is a demanding chore. It doesn’t help any when the hardware upon
which your programming environment is based doesn’t have enough horsepower to support you
properly�that is, in the manner to which you would like to become accustomed. After some years of
trying to shoehorn large programs into Altos, CSL twisted the arms of its hardware folk and talked them
into building the Dorado, the current high-performance model in the D-machine line. The processor,
the instruction fetch unit, and the memory system of the Dorado have been written up in papers for
your enjoyment [12]. Dorados come equipped with an 80 MByte removable-pack disk drive at present;
new models may start showing up soon with a 315 MByte Winchester drive instead. Dorados talk only
to 3 MBit Ethernets at present.

A Dorado is roughly three to five times faster than an Alto when emulating an Alto, that is, running
BCPL. A Dorado runs compute-bound Mesa software roughly eight to ten times as fast as an Alto.
Because of the raw power of a Dorado, it is usually the computer of choice for substantial programming
projects. The primary difficulty about Dorados is that there aren’t enough of them (and the related fact that

they are rather tricky to build) . Some people have their own, but others must share a pool of public machines.
Now, even though the Dorado disk drives have removable packs, it really isn’t very convenient to start
your session of a public Dorado by mounting your own pack. The biggest difficulty is that you must be
at the processor to change the disk pack, and the processor is a long way away. Subsidiary difficulties
are that you must power down a Dorado in order to change the disk pack, and that T-80 disk packs are
difficult to label effectively. As a result, when you borrow a Dorado, you generally also want to borrow
at least some of the space on that Dorado’s local disk. In order for this sharing to work out well, certain
social taboos and customs concerning the use of such local disks have emerged, under the general rubric
of ‘‘living cleanly’’. More on this topic anon.

In a return to the ways of the past, the Dorado processors are rack mounted in a remote, heavily
air-conditioned machine room. It was initially intended that the Dorado, like the Alto, would live in
your office. To prevent its noise output from driving you crazy, a very massive case was designed,
complete with many pounds of sound-deadening material. But experience indicated that Dorados ran
too hot when inside of these cabinets, and the concept of having Dorado processors in offices was
abandoned. With progress in general and VLSI in particular, there is hope that some successor to the
Dorado will once again come out of the machine room and into your office.

The Dicentra

1983 EDITION

THE BRIEFING BLURB 7

The Dicentra is the newest D-machine. Essentially, it consists of the processor of the Dandelion
with the tasking stuff striped out squeezed onto one Multibus card. It communicates with its memory and with
I/O devices over the Multibus. Dicentras will talk to any Ethernet, or any I/O device for that matter,
for which you can supply a Multibus interface card; that’s one of the Dicentra’s strengths. The initial
application of the Dicentra is as a processor for low cost Internet gateways. The Dicentra and the Dandelion

are named after wildflowers partially because they are outgrowths of an initial design of Butler Lampson’s called the Wildflower.

The Daffodil

The Daffodil is a D-machine that doesn’t exist yet, but someday may. If so, it will be cheap to
build, since it will use custom integrated circuits. The Daffodil is product-related. Thus, please don’t
talk about it too widely. I mention it hear only so that you will know what it is that Chuck Thacker is
talking about.

The Dragon

The Dragon is a high-performance processor based on custom integrated circuits that is being
designed in CSL; confusingly enough, though, the Dragon is not really a D-machine. For example, the
Dragon word size is 32 bits rather than 16. The underpinnings of Cedar will be adjusted as necessary
so that Cedar will run on a Dragon; but this will take some doing.

A few comments about Booting

All of the local processors come equipped with a hidden button called the ‘‘boot button’’ that is
used to reinitialize the processor’s state. The Alto had just one boot button, hidden behind the keyboard;
pushing it booted the Alto. On Dolphins, the situation is only slightly more complex: there are two
boot buttons, one at the back of the keyboard, and the other on the processor chassis itself. They
perform roughly the same function, but the one on the chassis is a little more potent. On Dorados,
there is a lot more going on. There are really two computers involved, the main Dorado processor and
a separate microcomputer called the baseboard. It is the baseboard computer’s job to monitor the power
supplies and temperature and to stage-manage the complex process of powering up and down the main
processor, including the correct initialization of all of its RAM’s. The boot button on a Dorado is
actually a way of communicating with this baseboard computer. You encode your request to the
baseboard computer by pushing the boot button repeatedly: each number of pushes means something
different. For details, see Ed Taft’s memo on the subject <13>. If the baseboard computer of the Dorado
has gone west for some reason (as occasionally happens), your only hope is to push the real boot button,
a little white button located on the processor chassis itself, far, far away. Just as the boot button on the keyboard

is essentially a one-bit input device for the baseboard computer, the baseboard computer also has a one-bit output device: a green

light located on the processor chassis. Various patterns of flashing of this light mean various things, as detailed in <13>.

There is one more bit of folklore about booting that I can’t resist mentioning�every once in a while,
I have to throw in some subtle tidbit to keep the wizards who read this from getting bored. Our subject
this time is the ‘‘long push boot’’. Suppose that you have been working on your Dorado for a while,
and you walk away to go to the bathroom. When you return and reach toward your keyboard, you get
a static shock. You are only mildly annoyed at this until you notice that the cursor is no longer tracking
the mouse, and the machine doesn’t seem to hear any of your keystrokes. The screen looks OK, but the
Dorado is ignoring all input. What has probably happened is that the microprocessor in your terminal
has been knocked out by the static shock. Yes, Virginia! In addition to the Dorado itself, and the
baseboard computer, there is also a microprocessor in your terminal (located in the display housing),
which observes your input actions and sends them on to the main processor under a protocol referred
to as ‘‘the seven-wire interface’’. What you want to do now is to reboot the terminal microprocessor
without disturbing the state of the Dorado at all�after all, you were in the process of editing something,

1983 EDITION

THE BRIEFING BLURB 8

and you are now in danger of loosing those edits. What you should do is to depress the boot button
and hold it down for quite a while (more than 2.5 seconds); and then release it. This is known as a
‘‘long push boot’’, and it does just what you want under these conditions: it reboots your terminal
without affecting anything higher up.

MAXC: a blast from the past

Before we leave the topic of hardware completely, I should pause to mention the existence of MAXC
(the name is said to be an acronym for Multiple Access Xerox Computer). Over the years, the folk in
CSL built two MAXC’s. Each was a good-sized microprogrammed computer that spent its days emulating
a PDP-10: running TENEX, and timesharing away with the best of them. One of the MAXC’s still
survives, the one initially known as MAXC2, and it serves us now primarily as the Internet’s interface to the
Arpanet. Vestiges of MAXC1 still survive as souvenirs in some people’s offices. Most of the stuff going between the
Internet and the Arpanet is electronic mail; our mail systems understand about Arpanet recipients, so
there is no need to talk to MAXC directly just to send Arpanet mail. There are a few other computing
tasks that MAXC can perform and that no one has yet had the energy to supply in some other way,
such as archiving files onto magnetic tape. But most folks should be able to spend their time here quite
happily without ever talking directly to MAXC.

1983 EDITION

THE BRIEFING BLURB 9

Local Programming Environments

Various programming environments have grown up around the various pieces of hardware mentioned
above. You can get a software merit badge simply by writing one non-trivial program in each envirnoment.

Programming on MAXC

Since we were discussing MAXC just a moment ago, let’s get it out of the way first. From a software
point of view, MAXC is a PDP-10. Thus, it is programmed either in the assembler Macro-10 or else in
one of a variety of higher level languages [14]. Fortunately, there aren’t all that many new programs
that have to be written to run on MAXC any more.

BCPL

The first high-level programming language used on the Alto was BCPL, and quite a bit of program
writing was done in that environment over the years. By now, however, essentially no new programming
is being done in BCPL. The language itself will be around for some time to come, since there are BCPL
programs that perform valuable services for us: the print server programs Press and Spruce and the file
server program IFS are three important examples.

Of the better-known computer languages, BCPL is closest to C. The fundamental data type in
BCPL is a sixteen-bit word. There are facilities in the language for building structured data objects
including records and pointers. But there is no type-checking in the language at all. For example, if
foo is a pointer to a record of type node that includes a field named next , that field is referenced in
BCPL by writing

‘‘foo>>node.next’’,

which means ‘‘treat foo as a pointer to a node, and extract the next field’’. In a strongly typed language,
you wouldn’t have to mention that foo was a pointer to a node, since the compiler would be keeping
track of the fact that foo was so declared. The BCPL compiler, however, thinks of foo as a sixteen bit
value, just like any other sixteen bit value. For example, it would be legal in BCPL to write

‘‘(foo+7)>>node.next’’, or ‘‘foo>>otherNode.next’’.

Some of the strictness of the Mesa approach to type-checking and version matching discussed below may
be a reaction to BCPL’s free-wheeling ways of handling these issues. Further details about the BCPL
language and environment can be found elsewhere <14, 15, 16>.

The debugger in the BCPL environment was named ‘‘Swat’’. This name is preserved in the local
dialect as the name of the bottom of the three unmarked keys at the right edge of the keyboard. Various
debuggers may be invoked in various environments by depressing this key, perhaps in conjunction with
the left-hand shift key or the control key. (The right hand shift key won’t do; it is too close to the swat
key itself for comfort!)

Mesa

Mesa is a strongly typed, PASCAL-like implementation language designed and built locally. It first
ran on Altos. Herein, I shall call that system Alto/Mesa. Dolphins and Dorados (but not Dandelions)
can run Alto/Mesa by impersonating an Alto at some level. More recent instances of Mesa now run on
all of our D-machines under the Pilot operating system. In passing, I should observe that Pilot is an
operating system written in Mesa by folk in SDD. It is a heavier-weight operating system than the Alto
OS, providing its clients with multiprocessing, virtual memory, and mapped files.

Alto/Mesa programs do not use the Alto OS at all, mostly because Mesa and BCPL have rather

1983 EDITION

THE BRIEFING BLURB 10

different philosophies about the run-time world in which they exist. So the first thing that a Mesa
program does when running on an Alto is to junta away almost all of the OS, and set about building a
separate Mesa world. It is a considerable nuisance for Mesa and BCPL programs to communicate, since
their underlying instruction sets are completely different. So, most of the important OS facilities, such
as the file system, had to be re-implemented directly in Mesa. Mesa’s memory management strategies
replace the revolutionary tactics of ‘‘junta’’ and ‘‘counter-junta’’ with the relative anarchy of segment
swapping.

A fair amount of software was written in Alto/Mesa, but little new programming is being done in
that environment; that is, Alto/Mesa isn’t quite at dead as BCPL, but it is getting there. Perhaps the
crown jewels of Alto/Mesa are the systems Laurel, Grapevine, Mockingbird, and Griffin. You will be
hearing more about the former two in the section on electronic mail; to find out more about the latter
two, check out their entries in the Glossary.

The Pilot version of Mesa is the home to lots of active programming in several locations. First, it
is the system in which the Star product was and is being implemented by OSD. The programmers in
OSD have developed a set of tools for programming in Mesa variously called the ‘‘Tools Environment’’
or ‘‘Tajo’’. This body of software may soon be marketed under the name ‘‘the Mesa Development
Envirnoment’’. In addition, Pilot Mesa is the current base of the Cedar project in CSL and ISL. More
on Cedar later.

Although Mesa programs look a lot like PASCAL programs when viewed in the small, Mesa provides
and enforces a modularization concept that allows large programs to be built up out of smaller pieces.
These smaller pieces are compiled separately, and yet the strong type checking of Mesa is enforced even
between different modules. The basic idea is to structure a system by determining certain abstract
collections of facilities that some portions of the system will supply to other portions. Such an abstraction
is called an ‘‘interface’’, and it is codified for the compiler’s benefit in a Mesa source file called an
‘‘interface module’’. An interface module defines certain types, and specifies a collection of procedures
that act on values of those types. Only the procedure headers go into the interface module, not the
procedure bodies (except for INLINE’s, sad to say). This makes sense, since all the interface module has to do
is to give the compiler enough information so that it can type-check programs that use the abstraction.

Having specified the interface, some lucky hacker then has the job of implementing it�that is, of
writing the procedure bodies that actually do the work. These procedure bodies go into a different type
of module called an ‘‘implementation module’’. An implementation module is said to ‘‘export’’ the
interface that it is implementing; it may also ‘‘import’’ other interfaces that it needs to do its job,
interfaces that some other program will implement.

In simple systems, each interface is exported by exactly one module. In such a system, there isn’t
much question about who should be supplying which services to whom. In fact, in these simple cases,
the binding , that is, the resolution of imports and exports, can be done on the fly by the loader. But in
more complex cases, there might be several different modules in the system that can supply the same
service under somewhat different conditions, or with somewhat different performance. Then, the job of
describing exactly which modules are to supply which services to which other modules can become rather
subtle. A whole language was devised to describe these subtle cases, called C/Mesa. The Binder is the
program that reads a C/Mesa description, called a config , and builds a runnable system by filling imports
request from exports according to the recipe.

The Mesa language is described by a manual [18]. It lies somewhere between a tutorial and a
reference manual. Some people find some portions of it rather obscure; in particular, the discussion of
interfaces and implementations in Chapter 7 is often cited as confusing. To make matters a little worse,
that manual documents Mesa version 5.0; the current Alto/Mesa is version 6.0, and Pilot mesa has
advanced even further. From the point of view of the Mesa language itself, the most important changes
that have occurred since version 5.0 are the introduction of sequences and zones in version 6.0; they
are documented for your reading pleasure <19>. You may also be interested in Jim Morris’s comments

1983 EDITION

THE BRIEFING BLURB 11

on how programs should be structured in Mesa [20].

Smalltalk

Smalltalk was developed by the folk who now call themselves the Software Concepts Group (formerly
known as the Learning Research Group). The Smalltalk language is the purest local embodiment of
‘‘object-oriented’’ programming:

A computing world is composed of ‘‘objects’’.

The only way to manipulate an object is to be polite, and ask it to manipulate itself. One asks by
sending the object a message. All computing gets done by objects sending messages to other
objects.

Every object is an ‘‘instance’’ of some ‘‘class’’.

The class definition specifies the behavior of all of its instances�that is, it specifies their behavior
in response to the recipt of various messages.

Genealogists will recognize that ideas from both Simula and Lisp made their way into Smalltalk,
together with traces of many other languages.

For some years now, the folk in SCG have been working at trying to get the Smalltalk language
and system out into the great wide world. The first public event that came out of this effort was the
August 1981 issue of Byte magazine; it was devoted to Smalltalk-80, including a colorful cover drawing
of the now famous Smalltalk balloon. In addition, the SCG folk are writing several books about
Smalltalk, and they are planning to license the system itself to various outside vendors. The first of the
books, entitled Smalltalk-80: The Language and Its Implementation , emerged from the presses at
Addison-Wesley just recently [21]. Future books will include Smalltalk-80: The Interactive Programming
Environment , and Smalltalk-80: Bits of History, Words of Advice .

Interlisp-D

LISP is the standard language of the Artificial Intelligence community. Pure LISP is basically a
computational incarnation of the lambda calculus; but the LISP dialects in common use are richer and
bigger languages than pure LISP. Interlisp is one dialect of LISP, an outgrowth of an earlier language
called BBN-LISP; for more historical details, read the first few pages of the Interlisp Reference Manual
[22]. One of the biggest strengths of Interlisp is the large body of software that has developed to assist
people programming in Interlisp. Consider the many features of Interlisp: an interpreter, a compatible
compiler, sophisticated debugging facilities, a structure-based editor, a DWIM (Do What I Mean) error
correction facility, a programmer’s assistant, the CLISP package for Algol-like syntax, the Masterscope
static program analysis database, and the Transor LISP-to-LISP translator, to name a few.

Interlisp itself has been implemented several times. Interlisp-10 is the widely-used version that runs
on PDP-10’s. Interlisp-D is an implementation of Interlisp on the D-machines [23], produced by folk
at PARC. In the process of building Interlisp-D, the boundary between Interlisp and the underlying
virtual machine was moved downward somewhat, to minimize the dependencies of Interlisp on its
software environment; that is, functions that were considered primitive in Interlisp-10 were implemented
in Lisp itself in Interlisp-D. But the principal innovations of Interlisp-D are the extensions that give the
Interlisp user access to the personal machine computing environment: network facilities and high-level
graphics facilities (including a window package) among them.

By the way, Interlisp has the honor of being the first system (to my knowledge) to use the prefix ‘‘Inter-’’. This prefix has

become quite the rage of late: Internet, Interpress, Interscript�you get the general idea.

Cedar

1983 EDITION

THE BRIEFING BLURB 12

Back in 1978, folk in CSL began to consider the question of what programming environment we
would use on the emerging D-machines. A working group was formed to consider the programming
environments that then existed (Lisp, Mesa, and Smalltalk) and to form a catalog of programming
environment capabilities, ranked by both by value and by cost. A somewhat cleaned-up version of the
report of that working group is available as a blue-and-white for your perusal [24]. After pondering the
alternatives for a while, CSL chose to build a new programming environment, based on the Mesa
language, that would be the basis for most of our programming during the next few years. That new
environment is named ‘‘Cedar’’.

Cedar documentation is in a constant state of flux; indeed, it might be said that Cedar as a whole,
not only its documentation, is in a constant state of flux. Much of the documentation for the current
release is accessible through a ‘‘.df’’ file named Manual.df <25>. Hardcopies of this packet of stuff,
entitled ‘‘The Cedar Manual’’, are produced from time to time, and distributed to Cedar programmers.

The programming language underlying Cedar is essentially Mesa with garbage collection added.
Now, adding garbage collection actually changes things quite a bit. First of all, it changes programming
style in large systems tremendously. Without garbage collection, you have to enforce some set of
conventions about who owns the storage. When I call you and pass you a string argument, we must
agree whether I am just letting you look at my string, or I am actually turning over ownership of the
string to you. If we don’t see eye to eye on this point, either we will end up both owning the string
(and you will aggravate me by changing my string!) or else neither of us will own it (and its storage will
never be reclaimed�a storage leak). Once garbage collection is available, most of these problems go
away: God, in the person of the garbage collector, owns all of the storage; it gets reclaimed when it is
no longer needed, and not before. But there is a price to be paid for this convenience. The garbage
collector takes time to do its work. In addition, all programmers must follow certain rules about using
pointers so as not to confuse the garbage collector about what is garbage and what is not.

Thus, programs in the programming language underlying Cedar look a lot like Mesa programs, but
they aren’t really Mesa programs at all, on a deeper level. To avoid confusion, we decided to use the
name ‘‘Cedar’’ to describe the Cedar programming language, as well as the environment built on top of
it. Cedar is really two programming langauges: a restricted subset called the safe language, and the
unrestricted full language. Programmers who stick to the safe language can rest secure in the confidence
that nothing that they can write could possibly confuse the garbage collector. Their bugs will not risk
bringing down the entire environment around them in a rubble of bits. Those who choose to veer
outside of the safe language had better know what they are doing.

Those who want to know more about Cedar are once again encouraged to dredge up a copy of the
Cedar Manual <25>. It includes documentation on how Cedar differs from Mesa, annotated examples
of Cedar programs, manuals for many of Cedar’s component parts, a Cedar catalog, and lots of other
good stuff. By the way, the most authoritative source for what the current Cedar compiler will do on
funny inputs can be found in a document called the Cedar Language Reference Manual, also known by
the acronym CLRM. This is logically part of the Cedar Manual, but it is currently bound separately,
and only available in draft form. The CLRM suggests a particular design philosophy for building a
polymorphic language that is a superset of the current Cedar, since that is the direction in which the
authors of the CLRM, Butler Lampson and Ed Satterthwaite, would like to nudge the Cedar language.

1983 EDITION

THE BRIEFING BLURB 13

Local Software

This section is a once-over-lightly introduction to some of the major software systems that are
available in the Alto and Cedar worlds. First, let me mumble some general words about how such
subsystems are documented. The most commonly used Alto subsystems are documented in a tome called
the Alto User’s Handbook [26]. The less commonly used ones are documented in a catalog entitled
‘‘Alto Subsystems’’ <27>. In addition, Suzan Jerome wrote a Bravo primer aimed at non-programmers
[28]. In Cedar, the current best sources are the Cedar Manual mentioned above <25>, and a brand new
public database, sitting on Alpine, containing whiteboards of Cedar documentation. Unfortunately, I
won’t hear about the latter until Dealer tomorrow, so that I can’t tell you any more about it at the
moment; I’m sorry, but that’s life in a rapidly changing world. Wow! I’ve seen the whiteboards stuff now, and

it’s flashy! Maybe this is the last version of the Briefing Blurb that I’ll ever have to write.

Filing

When programming in the Alto world, or in current Cedar, you are dealing with two different types
of file systems: local and remote. The local file system sits on your machine’s hard disk. Remote file
systems are located on file servers, machines with big disks that are willing to store files for you. Local
file systems have several unpleasant characteristics in comparison with the remote systems: they are
small, and they aren’t very reliable. Both of these problems have consequences.

Because local file systems are small, it isn’t in general practical to store more than one version of a
file on the local disk. Thus, in our current local file systems, writing a ‘‘new version’’ of a file really
means writing on top of the old one. Nearly everyone who isn’t accustomed to this (particularly PDP-10
hackers) gets burned by it at least once. There is one important exception to this general rule of ‘‘no
old versions’’, however: our text editors maintain one backup copy of each file being edited as a separate
file, whose name ends with a dollar sign. That is, the backup copy of ‘‘foo.tioga’’ is stored in the file
‘‘foo.tioga$’’, and similarly for Bravo. Note that our remote file servers do maintain multiple versions of
files. Letting old versions of things accumulate is one easy way to overflow your disk usage allocation
on a remote server.

No disk is completely reliable. Our remote file servers have automatic backup facilities that protect
us from catastrophic disk failures. But the local file systems have no such automatic protection. Since
this protection isn’t provided automatically, it behooves you to adjust your behavior appropriately: make
sure that, on a regular basis, backup copies of the information on your local disk are put in some safe
place, such as on a remote file server where suitable precautions are constantly being taken by wizards
to protect against disk failure. Doing this is one facet of what is meant by the phrase L iving Cleanly ,
which deserves its own section.

Living Cleanly (also known as ‘‘Keeping your bags packed’’)

The phrases ‘‘living cleanly’’ and ‘‘keeping your bags packed’’ refer to a particular style of use of
your local file system. In order to understand the cosmic issues involved, we should pause to discuss
the ways in which local and remote file systems have been used over the years.

Back in the Alto days, personal files were usually stored on one’s Alto disk pack, while project-related
and other public files were stored on remote servers. Careful folk would occasionally store backup copies
of their personal files on remote servers as well, in case of a head crash. But, as a general rule, one
thought of one’s Alto pack as the repository of one’s electronic state. This made sharing Altos quite
convenient, since you could turn any physical Alto into ‘‘your Alto’’ just by spinning up your disk pack.

In the glorious world of the Cedar future, all of your personal files as well as all public files will
live on file servers in the network. The disk attached to your personal computer will, from time to time,
contain copies of some of this network information, for performance reasons; but you won’t have to do

1983 EDITION

THE BRIEFING BLURB 14

anything to achieve this, and you won’t have to worry about how it is done. From the user’s point of
view, all files will act as if they were remote at all times. Indeed, except in a few funny cases, there
won’t even be any notion of ‘‘local file’’; ‘‘file’’will mean ‘‘remote file’’.

At the moment, we are sitting in an unpleasant trasitional phase somewhere between these two styles
of usage of the local disk: we are attempting to simulate the latter state by means of manual methods
and social pressure. We want you to think of your data as really living out on the file servers. That is
the proper permanent home for your personal files as well as for public files. You will have to bring
copies of these files, both private and public, to your local disk in order to work on them. But, at the
end of each editing session, you should store the new versions of files that you have created back out to
their permanent remote homes. None of this happens automatically at present; you have to make it
happen manually by using various file shuffling tools, such as the ‘‘DF files’’ discussed below. Using
these tools is a hassle, and learning how to use them can be confusing. But, there are four important
benefits to be reaped from adopting a clean living life-style.

First, you are taking a step towards the glorious future.

Secondly, you are protecting yourself against failures of the local disk. A clean liver only holds
information on her local disk for the duration of an editing session. This puts a reasonable bound on
the amount of information that she can lose because of a disk crash.

Thirdly, there are various reasons why erasing your local disk is a good idea when updating to a
new release of the Cedar system; sometimes, in fact, it is required. Since clean living folk don’t keep
long term state on their local disks, this doesn’t bother them in the slightest.

Finally, and perhaps most importantly, clean living is the key to sharing disk space on machines
without removable disks. When you use a public Dolphin or Dorado, you are forced to share its disk
space with the other members of the community. This sharing is predicated on a policy of clean living:
when your session is over, you must store away all of your files on remote file servers. The person who
uses the machine next may need to free up some disk space; if so, she is perfectly entitled to delete
your files without qualm or pause. And you won’t mind a bit, it says here, because you have been living
cleanly.

The above paragraph is the ‘‘letter of the law’’ regarding the sharing of public disk space. People
who want to be well regarded should also pay some attention to the ‘‘spirit of the law’’: sharing things
is always more pleasant when everyone acts with a modicum of politeness and care. Don’t delete the
previous user’s files if she was called away by some disaster and didn’t have a chance to clean up. Try
not to delete the standard system files, such as the Compiler, that sit in the local file system, since
whoever follows you will be justifiably aggravated by their absence. Even more important, if you do
exotic things such as bringing over non-standard versions of system files, try to put everything back to
normal when you leave ere you cause whoever follows you to become hopelessly confused.

Local file systems

The local file system in the Alto world is called either the ‘‘Alto file system’’ or the ‘‘BFS’’, the latter
being an acronym for Basic File System. The biggest that a BFS can be is 22,736 pages. This is
substantially bigger than the entire disk on an Alto. However, Dolphins and Dorados have much bigger
local disks. Hence, when a Dolphin or Dorado is emulating an Alto, its local disk is split up into separate
worlds called partitions , each containing a maximum-sized BFS. Dolphin disks can hold two full
partitions, while Dorado disks can hold five. What partition you are currently accessing is determined
by the contents of some registers that the disk microcode uses. There is a command called ‘‘partition’’
in the Executive and the NetExec that allows you to change the current partition.

When operating in the Pilot world, a disk pack is called a physical volume, and it is divided into
worlds called logical volumes. (Pilot, you will recall, is the new operating system written in SDD.) The

1983 EDITION

THE BRIEFING BLURB 15

area of the disk devoted to Pilot volumes must be disjoint from the area devoted to Alto-style partitions.
Most Dolphins that run Cedar are set up with a half-sized Alto partition, and the other three-quarters
of the disk devoted to Pilot; most Dorados that run Cedar have one full-sized Alto partition, and the
other four-fifths of the disk devoted to Pilot.

In current Cedar, many programs still restrict you to working with files in the local file system,
which is maintained by Pilot in the appropriate logical volume. The editor Tioga, for example, will let
you read remote files specified by a full path name, but it won’t let you edit them; only local files may
be modified. In subsequent Cedar’s, there will be a new local file system and directory package, the
Nucleus and FS respectively, to go along with the new virtual memory manager (also part of the Nucleus).
These wonders will make it somewhat easier to ignore the existence of the local file system, except for
its beneficial effects on performance; that is, they will make clean living more nearly automatic.

All of our local file systems use a representation for files that drastically reduces the possibility of a
hardware or software error destroying the disk’s contents. The basic idea is that you must tell the disk
not only the address of the sector you want to read or write, but also what you think that sector holds.
This is implemented by dividing every sector into 3 parts: a header, a label, and a data field. Each field
may be independently read, written, or compared with memory during a single pass over the sector. The
Alto file system stuffs a unique identification of the disk block, consisting of a file serial number and
the page number within the file, into the label field. Now, when the software goes to write a sector, it
typically asks the hardware to compare the label contents against data in memory, and to abort the
writing of the data field if the compare fails. This makes it pretty difficult, though not impossible, to
write in the wrong place. Furthermore, it distributes the structural information needed to reconstruct
the file system over the whole disk, instead of localizing it in one place, the directory data structures,
where a local disaster might wipe it out. Each local file system also has a utility program called a
Scavenger that rebuilds the directory information by looking at all of the disk labels.

Remote file systems

The most important local file servers are IFS’s, an acronym for Interim File System (one of the
crown jewels of the BCPL programming environment). Like I always say, ‘‘temporary’’ means ‘‘until it breaks’’, and

‘‘permanent’’ means ‘‘until we change our minds’’. Indigo and Ivy are two prominent local IFS’s; Indigo stores
mostly project files, while Ivy stores mostly personal files. MAXC also serves as a file server for some
specialized applications. Juniper was CSL’s first attempt to build a distributed transactional file server;
it was one of the first large programs written in Mesa. Alpine is a new effort to build such a beast in
the context of Cedar, in support of distributed databases and other such wonderful things. Some Walnut
users have been storing their mail databases on Alpine for a month or more.

There is no coherent logic to the placement of ‘‘general interest’’ files and directories, nor even to
the division between Maxc, Indigo, and Ivy. Browse through the glossary at the end of this document
to get a rough idea of what’s around. If something was made available to the universities in the University Grant

program, then it is probably on Maxc (or archived off of Maxc), since Maxc is the machine that the university folk can access.

IFS supplies a general sub-directory structure which the Maxc file system lacks, and as a result there
are lots of place to look for a file on an IFS. For example, on Maxc you might look for

[Maxc]<AltoDocs>MyFavoritePackage.press

while on IFS you would probably look for

[Indigo]<Packages>Doc>MyFavoritePackage.press, or

[Indigo]<Packages>MyFavoritePackage>Documentation.press,

or perhaps some other permutation. This requires a bit of creativity and a little practice. However, if
you get in the habit of using ‘‘*’’sin file name specifications, you will find all sorts of things you might

1983 EDITION

THE BRIEFING BLURB 16

not otherwise locate. Note that a ‘‘*’’in a request to an IFS will expand into all possible sequences of
characters, including right angle brackets and periods. Thus, for example, a request for

<Packages>*press

refers to all files on all subdirectories of the Packages directory that end with the characters ‘‘press’’. A

‘‘*’’won’t match a left angle bracket, by the way. Thus, if you ask for ‘‘*.press’’, you are referring to all Press files on the current

directory. If you ask for ‘‘<*.press", you are referring to all of the Press files on the entire IFS (expect such a search to take a

long time!).

Warning : Once you have gotten used to the IFS conventions about ‘‘*’’s in file names, you will
find the TENEX rules quite restrictive and unnatural. On TENEX, asterisks can be used for only two
purposes: either to wildcard the entire prefix of the filename or to wildcard the entire extension. If you
want to refer to all of the files on a TENEX directory, you must say ‘‘*.*’’,not just ‘‘*’’; if you want to
refer to all of the files whose names start with an ‘‘H’’,you are simply out of luck. This lack of ‘‘forward
compatibility’’ (the opposite of backward compatibility?) has tripped up many a searcher.

There is a movement afoot in the Cedar world to simplify our file naming conventions by replacing
the various flavors of brackets with a UNIX-like slash. Thus, in some Cedar systems, such as the
FileTool, the documentation file mentioned above could be referred to as

/Indigo/Packages/MyFavoritePackage/Documentation.press.

File Properties

The ‘‘size’’of a file is its length measured in disk pages; the ‘‘length’’ of a file is its length measured
in bytes. The ‘‘create date’’ of a file is the date and time at which the information in that particular
version of the file was ‘‘created’’, that is, the date when this that sequence of bytes came into being.
Copying a file from one file system to another does not change the create date, since the information in
the file, the sequence of bytes, is not affected. The create date is almost always what you want to know
about a file. Some of our systems also maintain a ‘‘write date’’ or a ‘‘read date’’, but they are less well
defined, and not as interesting.

Editing and Typesetting

In the outside world, document production systems are usually de-coupled from text editors. One
normally takes the text that one wants to include in a document, wraps it in mysterious commands
understood by a document processor, feeds it to that processor, and puzzles over the resulting jumble of
characters on the page. In short, one programs in the document processor’s language using conventional
programming tools�an editor, a compiler, and sometimes even a debugger. Programmers tend to think
this is neat; after all, one can do anything with a sufficiently powerful programming language. (Remember,

Turing machines supply a sufficiently powerful programming language too.) However, document processors of this sort
frequently define bizarre and semantically complex languages, and one soon discovers that all of the time
goes into the edit/compile/debug cycle, not careful prose composition.

Bravo is the editor and typesetter in the Alto world, and it represented a modest step away from
the programming paradigm for document production. A single program provided both the usual editing
functions and a reasonable collection of formatting tools. You can’t program Bravo as you would a
document ‘‘compiler’’, but you can get very tolerable results in far less time. The secret is in the
philosophy: what you see on the screen is what you get on paper. You use the editing and formatting
commands to produce on the screen the page layout you want. Then, you tell Bravo to ship it to a print
server and presto! You have a hardcopy version of what you saw on the screen. Sounds simple, right?

Of course, it isn’t quite that easy in practice. There are dozens of subtle points having to do with
fonts, margins, tabs, headings, and on and on. Bravo was a success because most of these issues are

1983 EDITION

THE BRIEFING BLURB 17

resolved more or less by fiat�someone prepared a collection of configuration parameters and a set of
forms that accommodated most document production. Many of the configuration options aren’t even
documented, so it is hard to get enough rope to hang yourself. The net effect is that one spent more
time composing and less time compiling.

In Bravo’s wake, several new editors of unformatted text appeared: the Laurel editor, and the editor
in the Tools Environment are prominent examples. The Laurel editor is particularly noteworthy in that
it pioneered the development of a modeless (or at least less modal) user interface for an editor. The
Star product editor and Tioga are more recent local editors in the full Bravo tradition: they can handle
formatting and multiple fonts. Tioga is the editor within Cedar, and its user interface is very close to
the widely beloved Laurel modeless interface�try going back to Bravo after using Tioga for a while,
and see how horrible it feels to have to remember to type ‘‘i’’ and ‘‘ESC’’ all the time. Tioga shows
formatted text on the screen. To get a hardcopy of that text, the current path involves running a
companion program called the TSetter, which will compose your pages for printing and send them to a
print server. Tioga’s documentation is particularly convenient, since it usually available in iconic form
at the bottom of the Cedar screen <29>.

Dealing with editor bugs

All text editors have bugs. Furthermore, you are often most likely to tickle one of the remaining
bugs in an editor when you are working furiously on a hard problem, and hence, have been editing for
a long time without saving the intermediate results. As fate would have it, these are exactly the times
when it is most damaging and most upsetting to lose your work. There is nothing quite like the sinking
feeling you get when a large number of your precious keystrokes gurgle away down the drain. Both
Bravo and Tioga have mechanisms that can, in some cases, save you from the horrible fate of having to
do all those hours of editing over again. Bravo attempts to safeguard you by keeping track of everything
that you have done during the editing session in a log file; in case of disaster, this log can be replayed
to recapture most of the effects of the session. If you have a disaster when editing in Bravo, be careful
NOT to respond by running Bravo again to assess the damage. By running Bravo again in the normal
way, you will instantly sacrifice all chance of benefiting from the log mechanism, since the log allows
replay only of the most recent session. What you want to do instead is run the program ‘‘BravoBug’’
(‘‘Bravo/R’’ is not an adequate substitute). It wouldn’t be a bad idea to ask a wizard for help also.
While you are looking for a wizard, try and think of some good answer to the question ‘‘Why are you
using Bravo, anyway?’’, which said wizard will almost certainly ask.

The most common�perhaps I should really say ‘‘the least rare’’�source of editing disasters in Tioga
is problems with monitor locks. Unfortunately, this class of problem usually makes further progress in
any part of Cedar impossible, since Tioga is so basic to the Cedar system. If you can get to the CoCedar
debugger, you might be able to save your edits by calling the procedure

_ ViewerOpsImpl.SaveAllEdits[]

Rumor has it that Cedar versions from 4.2 on will allow you to invoke this procedure by hitting a special
collection of keys in Cedar itself, even after Tioga has become wedged. A further rumor has supplied more

details: holding down both the left and the right shift keys and the Swat key for more than 1 second will invoke SaveAllEdits[].

While the saving is taking place, the cursor will become a black box.

Printing

In general, our printers are built by taking a Xerox copier and adding electronics and a scanning
laser that produce a light image to be copied. There are many different types of such printers, and there
are multiple instances of each printer type as well. There are also many different programs that would
like to produce printed output. The Press print file format was our first answer to the problem of
allowing every printing client to use every printer. Press files are the Esperanto of printing. Most print

1983 EDITION

THE BRIEFING BLURB 18

servers demand that the documents that you send to them be in Press format. This means you have to
convert whatever you have in hand (often text) to Press format before a server will deign to print it.

Press file format <30> is hairy, and some print servers don’t support the full generality of Press.
Generally, however, such servers will simply ignore what they can’t figure out, so you can safely send
them any Press file you have.

A Press file can ask that text be printed in one of an extensive collection of standard fonts.
Unfortunately, you must become a wizard in order to print with your own new font. You can’t use a
new font unless it is added to the font dictionary on your printer, and adding fonts to dictionaries is a
delicate operation: a sad state of affairs. If the Press file that you send to a printer asks for a font that
the printer doesn’t have, it will attempt a reasonable substitution, and, in the case of Spruce, tell you
about the substitution on the break page of your listing. If you have chronic font difficulties of this sort,
contact a wizard.

There is a new print file format under development, called Interpress. The print servers that are
part of the Star product speak a dialect of Interpress. A print file in Interpress format is called a master.
Our local plans for printing Interpress masters involve converting them first into a printer-dependent
print file in so-called PD format (with conventional extension ‘‘.pd’’). From there, a relatively simple
driver program on each printer should be able to produce the final output.

The rest of this section was contributed by Julian Orr of ISL:

PARC has a variety of printers available for your hardcopy needs. We have high volume printers
for quantities of text, listings, and documentation; we have slower printers with generally higher quality
for more complex files; and we have very slow printers for extremely high quality. All of our current
printers except Platemaker offer 384 spots per inch and share a common font dictionary. We use two
different software systems for printing Press files, both running on Altos: one is called Spruce, and the
other is called (confusingly) Press. Spruce offers speed and spooling, but it can only image characters
and rules, and not too many of them. This makes it limited in graphics applications. Furthermore,
Spruce is limited to the particular sizes of fonts that it has stored in its font dictionary: it does not know
how to build new sizes by converting from splines. Press is slower, but can handle arbitrary bitmaps,
and can produce odd-sized fonts from splines.

ISL is developing Interpress printing capabilities. Printing ‘‘.pd’’ files is now an option on most
Press printers (that is, on printers running the program Press as opposed to Spruce). Just ship your
‘‘.pd’’ file to the printer in the standard way: it is smart enough to figure out whether what you have
sent it is in PD or Press format, and it will invoke PDPrint or Press as appropriate. Documentation on
these two printing programs is available, by the way <31, 32>. PD printing should not be undertaken
without consultation with a wizard.

Dover printers run Spruce for high volume printing, producing a page per second. CSL’s Dover,
named Clover, is found in room 2106; ISL’s Dover, named Menlo, is in room 2305. Samples of the
Dover font dictionary may be found next to Clover and Menlo. Instructions for modifying the queue
and generally running these Spruce printers are to be found next to their Alto terminals.

Lilac is our color Press printer and may be found in 2106 with Clover. It is a three color,
composite-black machine; it generally produces good quality output, but is occasionally temperamental.
Anyone interested in color printing or the state of Lilac should join the distribution list LilacLovers^.pa.

In the ISL maze area, room 2301, we have an assortment of black and white Press printers, answering
variously to the names of RockNRoll, Quoth, and Stinger. The printers are two Ravens (Raven is a
Xerox product), one Hornet, and one Gnat (the latter two are prototypes). The print quality is normally
excellent. Instructions for interpreting status displays are posted locally. To be informed of which
printer is functioning and where, join the list ISLPrint^.pa. There should be three printers up for most
of the summer. Periodically one or another of these or Lilac are pre-empted for debugging.

1983 EDITION

THE BRIEFING BLURB 19

Our best quality printer is Platemaker, which is normally operated at 880 spots per inch, but can be
run up to 2200 spi; it is not normally useful to go beyond 1600. Platemaker uses a laser to write on
photographic paper or film. Color images can be done in individual separations, which are then merged
using the Chromalin process. The Platemaker printing process is used for final prints of fine images or
for printing masters for publication. If you wish to have something printed, speak to Julian Orr, Eric
Larson, or Gary Starkweather.

Sending and Receiving Mail

We rely very heavily on an electronic mail system. We use it for mail and also for the type of
announcement that might, in other environments, be posted on a physical or electronic bulletin board.
In our environment, a physical bulletin board is pretty useless, since people spend too much of their
days staring at their terminals and too little wandering the halls. Electronic bulletin boards might work
satisfactorily. But a bulletin board, being a shared file to which many people have write access, is a
rather tricky thing in a distributed environment. It probably presupposes a distributed transactional file
server, for example. Mumble. For whatever reason, the fact remains that we don’t have an electronic
bulletin board facility at the moment. As a result, announcements of impending meetings, ‘‘for sale’’
notices, and the like are all sent as messages directed at expansive distribution lists. If you don’t check
your messages once a day or so, you will soon find yourself out of touch (and saddled with a mailbox
full of obsolete junk mail). And conversely, if you don’t make moves to get on the right distribution
lists early, you may miss lots of interesting mail. This business of using the message system for rapid distribution of

announcements can get out of hand. One occasionally receives notices of the form: ‘‘meeting X will start in 2 minutes�all

interested parties please attend’’.

Grapevine is the distributed transport mechanism that delivers the local mail [33]. When talking to
Grapevine, individuals are referred to by a two-part name called an ‘‘R-name’’, which consists of a prefix
and a registry separated by a dot; for example, ‘‘Ramshaw.pa’’ means Ramshaw of Palo Alto. In
addition to delivering the mail, Grapevine also maintains a distributed database of distribution lists. A
distribution list is also referred to by an R-name, whose prefix conventionally ends in the character
up-arrow, as in ‘‘CSL^.pa’’. Distribution lists are actually special cases of a construct called a Grapevine ‘‘group’’. Groups

can be used for such purposes as controlling access to IFS directories. There is a program named Maintain that allows
you to query and update the state of the distribution list database. In fact, there are two versions of
Maintain: the documented one with the unfortunate teletype-style user interface is used from within
Laurel or the Mesa Development Environment <34>; the undocumented one with the futuristic menu
interface is used from within Cedar. Some distribution lists are set up so that you may add or remove
yourself using Maintain. If you try to add yourself to Foo^.pa and Maintain won’t let you, the proper
recourse is to send a message to the distribution list Owners-Foo^.pa, asking that you please be added
to Foo^.

At the moment, Grapevine pretty much has a monopoly on delivering the mail. But there are
several different programs that give users access to Grapevine’s facilities from different environments.
From an Alto, one uses Laurel, which is mentioned elsewhere as a pioneer of modeless editor interfaces.
Even if you aren’t a Laurel user, I recommend that you read Chapter 6 of the Laurel Manual [35], which
is an enlightening and entertaining essay on proper manners in the use of the mail system. In the Mesa
Development Environment, the program Hardy provides services analogous to Laurel’s. From within
Cedar, most folk use Walnut, whose documentation appears as part of the Cedar Manual <25>. Walnut
represents a step towards the future in some respects, since Walnut uses Cypress, the Cedar database
management system, to store your mail in a database. Access to Grapevine from within Cedar can also
be had without the database frills through a program called Peanut, which stores your messages in a
structured Tioga document instead of in a database. Finally, in case travel should take you away from
your multi-function personal workstation, there are servers on the Internet known by the name ‘‘Lily’’
to whom you can connect from any random teletype in order to peruse the mail sitting in your Grapevine
mailbox.

1983 EDITION

THE BRIEFING BLURB 20

Packaging Systems and Controlling Versions

In the BCPL world, the primary facility for packaging up a group of related files and either handing
them out or storing them for later recall was the dump file. A dump file, given conventional extension
‘‘.dm’’, is simply the concatenation of the dumpees, together with enough header information to allow
the dumpees to be pulled apart again. Dump files have fallen out of favor.

In the Alto/Mesa world, and more strongly, in the Cedar world, a collection of software called ‘‘DF
files’’ has grown up that attacks the problem of describing and packaging systems, detailing their
interdependencies, and controlling the versions of things. You can find out a lot about DF files by
reading Eric Schmidt’s dissertation [36]. You can find the answers to detailed questions about the
behavior of the various programs that deal with DF files by reading the reference manual for DF files
<37>. All that I will try to do here is to give you some idea of what DF files are good for, and how, in
a general sense, they are used. One way or another, all Cedar programmers must make their peace with
DF files: they perform valuable functions, and they have no current competition.

In the simplest case, a DF file just consists of a list of the names of a related set of files. At this
level, a DF file is something like a dump file: given the DF file, you can get at each of the files that it
describes. Of course, you want to be sure that you get the right versions of the described files, so just
having the DF file list their names isn’t quite enough. If there were an Internet-wide notion of version
number that made sense, we could get around this problem by specifying the version number along with
the file name. But there isn’t. The closest thing to a Internet-wide unique identification stamp that we
have is the create date of the file. Thus, what a DF file really contains is a list of file names and
associated create dates.

The first program that you will meet that deals with DF files is Bringover. Bringover’s job is to
retrieve to your local file system the set of files described by a particular DF file. This would be
something of a challenge unless the DF file included some hint to Bringover concerning where in the
great, wide Internet the correct versions of these files might be found. So DF files do indeed include
such hints: in particular, they include specifications of remote directories on which to look. These
directories are just hints, in the sense that Bringover will always verify by checking the create date that
it is getting you the correct version of the specified file. If Bringover can’t find the correct version on
the specified directory, it will issue a sprightly error message. Bringover has lots of bells and whistles.
For example, you can point it at either a local or a remote DF file; you can ask it to retrieve just a
selected subset of files to your local disk, rather than the entire set described by the DF file; or you
can individually consider the files one by one, deciding which you would like to retrieve and which you
wouldn’t.

Suppose that I am working on a collection of files, such as the sources for this Briefing Blurb. I
have made a DF file that describes them, and I can use Bringover to retrieve them from their remote
and permanent home to my local file system, where I can edit them. The next thing that I need is a
service that is symmetric to Bringover: after doing my editing, I want to put the new versions back on
the remote file server, along with a new DF file that describes the new versions. This function is
performed by SModel. I run SModel, and point it at the old DF file. SModel considers each file in
turn, and looks to see if I have edited it; that is, it looks to see if the create date of that file in my local
file system is now different than the create date stored in the old DF file. If so, SModel deduces that I
have edited the file. It stores the new version that I have made out onto the remote directory. After
doing this for each file in turn, SModel writes a new version of the DF file itself, filling in all of the
create dates correctly to describe the new version of the entire ensemble. If the DF file describes itself, as most

DF files do, SModel is smart enough to make sure that the new version of the DF file is stored out to the remote server as well.
SModel also has lots of bells and whistles, but let’s not go into them.

If that were the whole story, mere mortals could figure out DF files without straining their brains.
But there’s more. So far, we have only discussed DF files as descriptions of ensembles of files. In fact,

1983 EDITION

THE BRIEFING BLURB 21

these ensembles are often components of large programs. And this has consequences.

First, there are two distinctly different reasons that you might have for retrieving a program: you
might want to change it, or you might just want to run it. In the latter case, you don’t need to bring
over all of the sources; all that you need is the runnable ‘‘.bcd’’. We could handle this by having two
DF files: one for the users and the other for the maintainers. But that would be a disaster: the two
DF files would never agree! Instead, each DF file distinguishes between files that it ‘‘exports’’ and the
rest. The exported files are the ones that users need, while maintainers are assumed to need the entire
ensemble. You can warn Bringover that you are a user rather than a maintainer by giving it the ‘‘/p’’
switch (which stands for Public-only).

Secondly, some programs are going to depend upon other programs: that is, the programs themselves
will be ‘‘users’’(‘‘clients’’ is a better word here). This suggests that one DF file should be able to contain
another DF file. In fact, there should be several different kinds of containment, corresponding to such
phrases as:

‘‘They who maintain me also maintain the stuff described by the following DF file.’’

‘‘They who maintain me are also users (but not maintainers) of the stuff described . . .’’

‘‘They who use me are also users of the stuff described . . .’’

You get the point? For more details on the ways that these things are done (‘‘includes’’ and
‘‘imports’’), check out the reference manual.

In case you still aren’t convinced that things are complicated, it is now time to mention the fact that
DF files are used for yet another purpose: they describe components of the Cedar release. During the
Cedar release process, all of the new versions of Cedar components, which are sitting out on development
directories, must be checked for consistency, and then moved en masse to the official release directory.
And an entire new set of DF files must be produced, describing the released version of the system (as
opposed to the development version). This means, among other things, that some DF files must specify
two different remote directories: the development directory and the release directory. In addition, there
is a third DF file program, called VerifyDF, whose purpose is to perform certain consistency and
completeness checks on a DF file. By insisting that all component implementers have successfully run
VerifyDF on their components, the Cedar Release Master ensures that the release process has at least a
fighting chance of succeeding <38>.

In fact, there are several other programs related to DF files that are sometimes useful. DFDisk, for
example, looks at all of the files on your local disk and classifies them according to where they may be
found on remote servers. This is a convenient way to determine what local files need to be backed up
before erasing the local file system for some reason. For more on DFDisk, an introduction to DFDelete,
and more, see the DF files reference manual <37>.

DF files grew up over time in response to a mixed bag of needs. As they became more popular,
features were added one by one to make them more useful in these varying contexts. The resulting
system as a whole is rather hard to grok, but I hope that this introduction has given you a leg up on the
problem, at least.

1983 EDITION

THE BRIEFING BLURB 22

Some Tidbits of Lore

About CSL

CSL has a weekly meeting on Wednesday afternoons called Dealer, starting at 1:15. The name
comes from the concept of ‘‘dealer’s choice’’�the dealer sets the ground rules and topic(s) for discussion.
When someone says she will ‘‘give a Dealer on X’’, she means that she will discuss X at some future
weekly meeting, taking about 15 minutes to do so (plus whatever discussion is generated). Generally,
such discussions are informal, and presentations of half-baked ideas are encouraged. The topic under
discussion may be long-range, ill-formed, controversial, or all of the above. Comments from the audience
are encouraged, indeed, provoked. More formal presentations occur at the Computer Forum on Thursday afternoons;

the Forum is not specifically a CSL function, and it is open to all Xerox employees, and sometimes also to outsiders. Dealers
are also used for announcements that are not appropriate for distribution by electronic mail. Members
of CSL are expected to make a serious effort to attend Dealer.

On occasions of great festivity, Dealer is replaced by a picnic on the hill (that is, Coyote Hill, across
Coyote Hill Road), with Mother Xerox picking up the tab.

The CSL Archives (not to be confused with TENEX archiving) are a collection of file cabinets and
3-ring binders that provide a continuing record of CSL technical activities. The archives are our primary
line of defense in legal matters pertaining to our projects. They also make interesting reading for anyone
curious about the history of any particular project.

There is also an institution known as the CSL Notebook, which exists to make all of the potentially
interesting documentary output of CSL folk easily accessible to all CSL folk. Trip reports, design
documents, immigration manuals (like this one): they should all be submitted to the CSL Notebook
<39>. If you thought that it was worth writing down, it is pretty likely that there are other folk in CSL
who would consider it worth reading, and submitting it to the CSL Notebook is one easy way to get it
read. (I believe that likely looking submissions to the CSL Notebook are considered for entry into the
CSL Archives as well.)

About ISL

ISL also has a weekly meeting, on Tuesdays starting at 11:00 am. This meeting has no catchy name
at the moment.

1983 EDITION

THE BRIEFING BLURB 23

Some Code Phrases

You may occasionally hear the following incomprehensible phrases used in discussions, sometimes
accompanied by laughter. To keep you from feeling left out, we offer the following translations:

‘‘Committing error 33’’

(1) Predicating one research effort upon the success of another. (2) Allowing your own research
effort to be placed on the critical path of some other project (be it a research effort or not). Known

elsewhere as Forgie’s principle.

‘‘You can tell the pioneers by the arrows in their backs.’’

Essentially self-explanatory. Usually applied to the bold souls who attempt to use brand-new
software systems, or to use older software systems in clever, novel, and therefore unanticipated ways ...
with predictable consequences. Also heard with ‘‘asses’’replacing ‘‘backs’’.

‘‘We’re having a printing discussion.’’

Refers to a protracted, low-level, time-consuming, generally pointless discussion of something
peripherally interesting to all. Historically, printing discussions were of far greater importance than they are now. You

can see why when you consider that printing was once done by carrying magnetic tapes from Maxc to a Nova that ran an XGP.

Fontology

The body of knowledge dealing with the construction and use of new fonts. It has been said that fontology

recapitulates file-ogeny.

‘‘What you see is what you get.’’

Used specifically in reference to the treatment of visual images by various systems, e.g., a Bravo
screen display should be as close as possible to the hardcopy version of the same text. Also known is
some circles by the acronym ‘‘WYSIWYG’’, pronuonced ‘‘whiz-ee-wig’’.

‘‘Moving right along’’, ‘‘Pop!’’, or ‘‘Hey guys, up-level!’’

Each of these phrases means that the conversation has degenerated in some respect, often by
becoming enmeshed in nitty-gritty details. Feel free to shout out one or more of these phrases if you
feel that a printing discussion has been going on long enough. If two participants in a large meeting
begin discussing details that are of interest to them but not of interest to the group as a whole, shout
‘‘Off-line!’’ instead.

‘‘Life is hard’’

Two possible interpretations: (1) ‘‘While your suggestion may have some merit, I will behave as
though I hadn’t heard it.’’ (2) ‘‘While your suggestion has obvious merit, equally obvious circumstances
prevent it from being seriously considered.’’ The charm of this phrase lies precisely in this subtle but
important ambiguity.

‘‘What’s a spline?’’

‘‘You have just used a term that I’ve heard for a year and a half, and I feel I should know, but
don’t. My curiosity has finally overcome my guilt.’’ Moral: don’t hesitate to ask questions, even if they
seem obvious.

1983 EDITION

THE BRIEFING BLURB 24

Hints for Gracious Living

There are a couple of areas where life at PARC can be made more pleasant if everyone is polite
and thoughtful enough to go to some effort to help out. Here are a few words to the wise:

Coffee

Both ISL and CSL have coffee alcoves where tea, cocoa, and several kinds of coffee are available.
All coffee drinkers (not just the secretaries or some other such barbarism) help out by making coffee. If
you are about to consume enough coffee that you would leave less than a full cup in the pot, it is your
responsibility to make a fresh pot, following the posted instructions. There are lots of coffee fanatics
around, and they get irritated beyond all reason if the coffee situation isn’t working out smoothly. For
those coffees for which beans are freshly ground, the local custom is to pipeline grinding and brewing.
That is, you are expected to grind a cup of beans while brewing a pot of coffee from the previous load
of ground beans. This speeds up the brewing process for everyone, since a load of ground beans is�at
least, had better be�always ready when the coffee pot runs out.

Sharing Office Space

Be warned as well that some lab members are unbelievably picky about the state of their offices.
The convention is that any Alto in an empty office is fair game to be borrowed. Private Dolphins and
Dorados may be borrowed only by prior arrangement with their owners, because of the problems of
sharing disk space. If you use someone’s office for any reason, take care to put everything back exactly
the way it was. Don’t spill crumbs around, or leave your half-empty cocoa cup on the desk, or forget
to put the machine back in the state that you found it, or whatever. Of course, lots of people wouldn’t
mind even if you were less than fanatically careful. But some people do mind, and there is no point in
irritating people unnecessarily.

Sharing printers

When you pick up your output from a printer, it is considered antisocial merely to lift your pages
off the top of the output hopper, and leave the rest there. Take a moment to sort the output into the
labelled bins. Sorting output is the responsibility of everyone who prints, just as making coffee is the
responsibility of everyone who drinks (coffee) . Check carefully to make sure that you catch every break
page: short outputs have a way of going unnoticed, and hence being missorted, especially when they
come out right next to a long output in the stack. The rule for determining which bin is to use the first
letter that appears in the name on the break page. Thus, ‘‘Ramshaw, Lyle’’ should be sorted under ‘‘R’’,
while ‘‘Lyle Ramshaw’’ should be sorted under ‘‘L’’. A trickier question is what to do with output for ‘‘Noname’’,

or the like. Following the rule would suggest filing such output under ‘‘N’’,but that doesn’t seem very helpful, since the originator

probably won’t find it. Check the contents and file it in the right box if you happen to recognize whose output it is; otherwise,

either leave it on top of the printer or stick it back in the output hopper.

1983 EDITION

THE BRIEFING BLURB 25

The phone system

When the Voice Project has had its way, our phone system will be a marvelous assemblage of
computers talking to computers, and this section of the Briefing Blurb will have to be expanded to tell
you all about it. At the moment, however, we are simply customers of Pacific Telephone, so there isn’t
too much to say. First, a little preaching.

If you make a significant number of personal long-distance phone calls from Xerox phones, it is
your responsibility to arrange to reimburse Xerox for them. This may not be that easy, either, since
phone bills take quite a while (six weeks or so) to percolate through the bureaucracy upstairs, and the said
bureaucracy also has a lot of trouble figuring out where to send the phone bills of new people, and
people who move around a lot. Just because it is easy to steal phone service from Xerox doesn’t make
it morally right; if you think you aren’t being paid enough, you should start agitating for a raise. If

enough suspicious calls are made without restitution, PARC (being a bureaucracy) will impose some bureaucratic ‘‘solution’’ on all

of us.

So as not to end on a sour note, let’s discuss how the phone system works, anyway. The offices
within PARC have four-digit extensions within the 494 exchange, a system known as Centrex; to dial
another office, those four digits suffice. Dialing a single 9 as the first digit gives you an outside line,
and you are now a normal customer of Ma Bell: see a phone book for more details (Oh, come now,
surely you know about phone books!). Dialing a single 8 gives you different sounding dial tone, and
puts you onto the IntelNet (not to be confused with the InterNet). The IntelNet is a Xerox-wide
company phone system, complete with its own phone book, and its own phone numbers. If you are
calling someone in some remote part of Xerox, you can save Mother Xerox some bread by using the
IntelNet instead of going straight out over Ma Bell’s lines. On the other hand, you may not get as good a circuit

to talk over�although this situation is frequently said to be improving. Furthermore, through the wonders of modern
electronics, you can dial any long-distance number over the IntelNet. Just use the normal area code and
Ma Bell number: the circuitry is smart enough to take you as far as possible towards your destination
along IntelNet wires, and then switch you over to Ma Bell lines for the rest of the trip. Using the IntelNet

doesn’t start to save money until the call is going a fair distance; therefore, the IntelNet doesn’t let you call outside numbers in

area codes 408, 415, and 916�better to just dial 9.

One more thing: after you have dialed a number on the IntelNet, you will hear a funny little
beeping. At that point, you are being asked to key in a four-digit number to which the call should be
billed. You should use the four-digit extension number for your normal office phone under most
circumstances. Calls made by dialing 9 instead of 8 are always charged to the phone from which they are placed.

The first three rings (roughly speaking) of an incoming call occur only in your office. The next
roughly three rings happen both at your office phone and at a receptionist’s phone, centrally located in
the laboratory. During normal business hours, the receptionist’s phones are staffed; thus, someone will
at least take a message for you, and leave it on a little slip of paper in your physical message box. If
the second three rings go by without either of those two phones answering, the call is then forwarded to
the guards desk downstairs (I believe).

If you are expecting a call but won’t be near your normal phone, a call forwarding facility exists:
dial 106 and then the number to which you want your calls to be forwarded. Later on (try not to forget),
you dial 107 on your normal phone to cancel the forwarding. When I forward my phone, I turn the
phone around physically, so that the touch-pad faces the wall. This helps me to remember to cancel the
forwarding again later, at which point I turn the phone back the normal way. There is also a way to
transfer incoming calls to a different Xerox number: Depress the switch hook once, and dial the
destination number; when the destination answers, you will be talking to the destination but the original
caller won’t be able to hear your conversation; depressing the switch hook again puts all three of you
on the line; then you can hang up when you please. If the destination doesn’t answer, depressing the switch hook

once again will flush the annoying ringing or busy signal.

1983 EDITION

THE BRIEFING BLURB 26

References

Reference numbers in [square brackets] are for conventional hardcopy documents. Many of them
are Xerox reports published in blue and white covers; the CSL blue-and-whites are available on
bookshelves in the CSL Alcove. Reference numbers in <angle brackets> are for on-line documents. The
path name for such files is given herein in the form

[FileServer]<Directory>SubDirectory>FileName.Extension

for backward compatibility with earlier systems. Recently, the simpler alternative form

/FileServer/Directory/SubDirectory/FileName.Extension

has begun to come into local currency, but some systems still demand brackets rather than slashes.

<n>: The generic form for a reference to an on-line document.

[n]: The generic form for a reference to a hardcopy document.

[1]: Sunset New Western Garden Book. Lane Publishing Company, Menlo Park, CA, 1979. The
definitive document on Western gardening for non-botanists; 1200 plant identification
drawings; comprehensive Western plant encyclopedia; zoned for all Western climates; plant
selection guide in color.

[2]: John E. Warnock. The Display of CharactersUsing Gray Level Sample Arrays. blue-and-white
report CSL-80-6.

[3]: Richard F. Lyon. The Optical Mouse, and an Architectural Methodology for Smart Digital
Sensors. blue-and-white report VLSI-81-1.

[4]: The Ethernet Local Network: Three Reports. blue-and-white report CSL-80-2.

[5]: John F. Shoch, Yogen K. Dalal, Ronald C. Crane, and David D. Redell. Evolution of the
Ethernet Local Computer Network. blue-and-white report OPD-T8102.

<6>: [Maxc]<AltoDocs>NetTopology.press. Contains a picture of the entire internetwork
configuration in seven pages. It is out of date. All such documents are always out of date.
A copy is posted on the wall opposite the Alcove in CSL.

[7]: David R. Boggs, John F. Shoch, Edward A. Taft, and Robert M. Metcalfe. Pup: An
Internetwork Architecture. blue-and-white report CSL-79-10.

[8]: Internet Transport Protocols . Xerox System Integration Standard report XSIS 028112,
December 1981.

[9]: Courier: The Remote Procedure Call Protocol . Xerox System Integration Standard report
XSIS 038112, December 1981.

[10]: C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs. Alto: A
personal computer. blue-and-white report CSL-79-11.

<11>: [Maxc]<AltoDocs>AltoHardware.press. Everything that you need to know to write your own
Alto microcode.

[12]: The Dorado: A High-Performance Personal Computer; Three Papers. blue-and-white report
CSL-81-1.

<13>: [Indigo]<DoradoDocs>DoradoBooting.press. Describes how to boot a Dorado, and how to
configure it to boot in various ways.

[14]: Myer, T. H. and Barnaby, J. R. TENEX Executive Language Manual for Users. Available
from Arpa Network Information Center as NIC 16874, but in the relatively unlikely event
that you need one, borrow one from a Tenex wizard.

<15>: [Maxc]<AltoDocs>BCPL.press. The reference manual for the BCPL programming language.

<16>: [Maxc]<AltoDocs>OS.press. The programmer’s reference manual for the Alto Operating
System, including detailed information on the services provided and the interface
requirements.

1983 EDITION

THE BRIEFING BLURB 27

<17>: [Maxc]<AltoDocs>Packages.press. A catalogue giving documentation for the various BCPL
packages that other hacker’s have made available.

[18]: James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual, Version
5.0. blue-and-white report CSL-79-3. A cross between a tutorial and a reference manual,
though much closer to the latter than the former.

<19>: [Ivy]<Mesa>Doc>Compiler60.press. Describes the changes in the Mesa language and the
compiler that occurred in moving from Mesa 5.0 to Mesa 6.0.

[20]: Morris, J. H. The Elements of Mesa Style. Xerox PARC Internal Report, June 1976.
Somewhat out of date (since Mesa has changed under it), but a readable introduction to some
useful program structuring techniques in Mesa.

[21]: Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.
book published by Addison-Wesley, 1983.

[22]: Warren Teitelman. Interlisp Reference Manual. Published in a blue and white cover,
although not officially a blue-and-white. October, 1978.

[23]: The Interlisp-D Group. Papers on Interlisp-D. blue-and-white report CIS-5 (also given the
number SSL-80-4), Revised version, July 1981.

[24]: L. Peter Deutsch and Edward A. Taft, editors. Requirements for an ExperimentalProgramming
Environment. blue-and-white report CSL-80-10.

<25>: [Indigo]<Cedar>Documentation>Manual.df. Hardcopies are entitled The Cedar Manual.
[26]: Alto User’s Handbook. Internal report, published in a black cover. The version of September,

1979 is identical to the version of November, 1978 except for the date on the cover and title
page. Includes sections on Bravo, Laurel, FTP, Draw, Markup, and Neptune

<27>: [Maxc]<AltoDocs>SubSystems.press. Documentation on individual Alto subsystems, collected
in a single file. Individual systems are documented on [Maxc]<AltoDocs>systemname.TTY,
and these files are sometimes more recent than SubSystems.press.

[28]: Jerome, Suzan. Bravo Course Outline. Internal report, published in a red cover. Oriented
to non-programmers.

<29>: [Indigo]<Tioga>Documentation>TiogaDoc.tioga, or TiogaDoc.press. How to use the Tioga
editor.

<30>: [Maxc]<PrintingDocs>PressFormat.press. Describes the Press print file format.

<31>: [Maxc]<PrintingDocs>PressOps.press. Describes the Press printing program.

<32>: [Maxc]<PrintingDocs>PDPrintOps.press. Describes the PDPrint printing program.

[33]: Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder. Grapevine:
an Exercise in Distributed Computing. blue-and-white report CSL-82-4.

<34>: [Ivy]<Laurel>Maintain.press. Documentation for the teletype version of Maintain, the version
that is used from within Laurel or Tajo.

[35]: Douglas K. Brotz. The Laurel Manual. blue-and-white report CSL-81-6.

[36]: Eric Emerson Schmidt. Controlling Large Software Development in a Distributed Environment.
blue-and-white report CSL-82-7.

<37>: [Indigo]<Cedar>Documentation>DFFilesRefMan.press. The reference manual for the use of
DF files.

<38>: [Indigo]<Cedar>Documentation>ReleaseProcedures.press. Describes the policies and
procedures that individuals who contribute to Cedar releases need to understand and observe.

<39>: [Indigo]<CSL-Notebook>Docs>HowToUseCSLNotebook.press.

1983 EDITION

The Briefing Blurb Glossary:

Terms, Acronyms, Directories, Files, and Protocols

of either Current or Historical Interest

1983 Edition

By Lyle Ramshaw of PARC/CSL

Try reading me in Tioga, using the ‘‘Def’’ command to get around!

June 7, 1983

Filed on: [Indigo]<Cedar>Documentation>Glossary.tioga, Glossary.press

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Internal Use Only

THE BRIEFING BLURB GLOSSARY 2

abstract machine: A set of low-level functions and capabilities, provided by some combination of
hardware and software, that forms the underpinnings of a system sitting above. For example,
the Interlisp-D system, which runs on various machines, consists of a lot of
machine-independent stuff sitting on top of a small amount of machine-dependent code. The
goals of the machine-dependent part were specified by describing an abstract machine that it
must implement. As another example, part of the Cedar project has been the specification
of a ‘‘Cedar computer’’ as an abstract machine.

Alcove: See CSL Alcove.

Alpine: A transactional file server being built within CSL on top of Cedar for use by database
systems and other distributed computing applications. Some folk are now storing their Walnut
mail databases on Alpine.

Alto: (On its way to being archaic.) A small personal computer with a bitmap display and mouse,
designed at PARC; the precursor to D-machines. See the blue-and-white report titled ‘‘Alto:
A personal Computer’’, number CSL-79-11.

Alto world: An environment created by running an Alto emulator on a D-machine.
AltoFontGuide.Press: A file, available on [Indigo]<Fonts>, that tells all about the existing families

of display-screen raster fonts, and describes how they are organized on different subdirectories
of [Indigo]<AltoFonts>. Note that the name ‘‘AltoFonts’’ is an anachronism, and should
really be changed to ‘‘DisplayFonts’’, or ‘‘ScreenFonts’’, or the like; the same rasters that
were drawn for use on Altos work just fine on today’s D-machines.

AM: Acronym for the Cedar abstract machine.

ARPA: Acronym for the Advanced Research Projects Agency of the United States Department of
Defense. They support, among other things, a network linking research computers: our
ARPANET address is PARC-MAXC.

atom: (or ATOM:) Unique identifiers implemented over a global naming space. Two occurrences
of the same atom will evaluate to the identical value, rather than just to equivalent values.
Atoms have always been part of Interlisp; they were added to Mesa on the way to Cedar.
In Cedar, an atom literal is written with a prefixed dollar sign, as in ‘‘$foo’’. Each atom has
a list of <name, value> pairs associated with it, called its property list.

Auditorium: A lecture hall in the new wing of Building 35.

bank: A unit of measurement of primary storage in an Alto world, equal to 64K 16-bits words,
that is, 128K bytes. An Alto II has four banks, while Dorados have at least eight.

bar: A generally thin, generally rectangular, generally invisible region of the screen in which certain
generally display-related actions occur, e.g., the scroll bar, the line-select bar.

baseboard: A microcomputer that lives on the lowest printed-circuit board of a Dorado. The
baseboard listens to the terminal’s boot button, and to various thermometers. Its job is to
supervise the rather complex booting sequence necessary for bringing a Dorado up from a
cold start. The baseboard announces its state to the outside world by flashing a number
(encoded in unary) on a little green light on the Dorado chassis. Signs near each bank of
Dorados explain what various numbers of flashes mean.

Bayhill: Another name for Building 96, occupied by part of SDD . The Bayhill building is located
on Hillview just before it runs into Arastradero.

BCD: A compiled object program module in Mesa or Cedar; an acronym for Binary Configuration
Description.

BCPL: A free-wheeling and typeless system programming language used as the environment for
much early Alto programming. Also, the compiler for that language.

BFS: An acronym for Basic File System; the contents of a disk or partition used by an Alto
world. Also a standard software package for low-level management of an Alto file system.

Binder: BCD’s export services to their clients, and, in turn, import various services from other

1983 EDITION

THE BRIEFING BLURB GLOSSARY 3

BCD’s. The process of resolving these inter-module references is called binding , and the
Binder is the program that does it. Actually, the loader can handle many of the easy cases
of binding on the fly, as part of the loading process; but for complex stuff, you need the
Binder. The Binder accepts compiled modules (with extension ‘‘.bcd’’)and binding instructions
in the form of a configuration description (with extension ‘‘.config’’); it produces another
‘‘.bcd’’ as output.

BITBLT: (pronounced ‘‘bit-blit’’). A complex instruction used for moving and possibly modifying
a rectangular bitmap. The ‘‘BLT’’part is an acronym for BLock Transfer.

bitmap: Generally refers to a representation of a graphical entity as a sequence of bits directly
representing image intensity at the points of a raster. The display hardware and microcode
on an Alto or D-machine process what is essentially a bitmap of the image to be displayed.
At PARC, bitmaps are normally stored word-aligned, and in row-major order.

blue-and-white: A report that has been cleared for distribution outside Xerox, and published in a
blue and white cover. Such reports have identifying numbers formed by concatenating the
laboratory acronym, the year, and a small integer. One of my favorites is the Laurel Manual,
by Douglas K. Brotz, number CSL-81-6; I especially recommend Chapter 6. CSL
blue-and-whites are stored on bookshelves in the CSL Alcove. A list giving the titles and
numbers of all of the blue-and-whites is available from the PARC Library.

Bluejay: The Etherphone voice file server.

boot: Short for ‘‘bootstrap’’, which is in turn short for ‘‘bootstrap load’’. Refers to the process of
loading and starting a program on a machine whose main memory has undefined contents.

boot button: The small button behind the keyboard used (sometimes in conjunction with the
keyboard) to boot some program into execution. On Dolphin’s or Dorado’s, there are other
more potent boot buttons on the chassis, in addition to the boot button behind the keyboard.

boot file: A file that contains a bootable program. Used to start Cedar, as well as various games
and other useful programs available from the NetExec in the Alto world.

boot server: A computer on the network that provides a retrieval service for certain stand-alone
programs (which are encapsulated as boot files). See NetExec .

Bravo: (archaic) An integrated text editor and document formatting program that runs on the
Alto.

BravoBug: (archaic) A program used when Bravo crashes to replay the editing actions up to the
point of the crash .

BravoX: A successor to Bravo written in Butte with somewhat greater functionality and a somewhat
richer interface. Warning!: BravoX source files are stored in a weird and wonderful format that almost NO

programs other than BravoX can handle. Also, BravoX runs, at the moment, only on Alto II’s and (perhaps?)

Dolphins.

break page: A header page that divides one printed file from another in the output of a Spruce
printer. If Spruce encountered any difficulties during the printing run, it will inform you of
them on the break page.

Bringover: A program that retrieves files from remote file servers to one’s local disk; Bringover
reads ‘‘.df’’ files in order to figure out what versions of what files should be retrieved, and
where in the great wide electronic world they might be found. Use of Bringover (confusing
as it may be at the outset) is to be recommended over use of either FTP (in the Alto world)
or the FileTool (in Cedar), since the version control and system-description features of ‘‘.df’’
files are very valuable.

bug: A computing term for a non-feature, something that is not as intended. Sometimes used in
a different sense to refer to the act of pointing at something with the mouse, and then clicking
a mouse button; but this usage is frowned upon by 100% of our Usage Panel�namely me.
I recommend using the verb ‘‘click’’instead in this context, since I think that ‘‘bug’’ is already
an overloaded word. I have also seen the verb ‘‘hit’’ used to refer to this action; I consider

1983 EDITION

THE BRIEFING BLURB GLOSSARY 4

it an acceptable alternative to ‘‘click’’.

bug award: Refers to a occasional custom within CSL and ISL wherein those brave souls responsible
for ferreting out the cruelest and most intricate bugs in critically important systems are
rewarded for their efforts by being presented with a cute little bug-shaped sticker that they
can then display on their office nameplate or elsewhere. A bug award is the moral equivalent
of a gold star. If the sticker consists of a background from which a bug has been excised,
then the award is an ‘‘inverse bug award’’, and serves to praise its recipient for producing
code that is notably free of insect infestations.

BugBane: A package that implements the basic primitives necessary for high-level debugging in
the Cedar world; the UserExec is a client of BugBane, and, in turn, provides debugging
services to users of Cedar.

Building 32: A part of OSD , located on Hanover Street, north of Page Mill. Once called
PARC-place, when it was occupied by parts of PARC.

Building 34: A part of PARC, located on Hillview, just across Coyote Hill from the Building 35,
the home of the ICL.

Building 35: The main building of PARC, located at the intersection of Coyote Hill and Hillview.
The site of the cafeteria.

Building 37: A part of PARC, located on Hanover Street, north of Page Mill, and just south of
Building 32. The site of the CSL Electronic Model Shop.

Building 96: A part of OSD , located where Hillview runs into Arastradero; also called the Bayhill
building. Current home of some parts of SDD.

Butte: A compiler for BCPL that outputs Mesa-style byte codes instead of Nova assembly code;
also, the byte codes themselves, and the microcode that implements them.

button: A small area on the screen that reacts when clicked with the mouse. In Viewers, buttons
are rectangular areas labelled with a word or phrase; they are organised into menus.

byte code: Lisp, Mesa, Cedar, Smalltalk, and Butte at PARC compile into directly executable
languages that are stack oriented, and whose op codes are usually one byte long. Such an
instruction is called a byte code. These byte codes are in turn interpreted by special microcode
on each of our various machines.

Cabernet: A particular mail server that is part of the Grapevine distributed transport mechanism,
located in the CSL machine room.

caret: A blinking pointer, indicating where keyboard characters will appear when typed.

catch phrase: A chunk of Mesa or Cedar code that is prepared to handle a certain type of
exceptional condition. One way to think of a catch phrase is as the body of a procedure
variable that is dynamically bound. Such procedures variables are called signals. If you
suspect that an exceptional condition might arise, and you think that you know what to do if
it does, you specify this response as a catch phrase; that is, you bind a procedure value to
the signal, which is a procedure variable. If any procedure that you call notices that the
condition has in fact arisen, it will notify the world by ‘‘raising the signal’’, which should be
thought of as a procedure call to the catch phrase that you specified. (This method of
explaining signals is a minor facet of the religion espoused in the CLRM.)

Cedar: A large project in CSL to build a programming environment for CSL’s future applications.
Also the name of that environment. Also the name of the programming language upon which
it is built. The Cedar language is a variant of Mesa augmented by garbage collection, atoms,
and run-time types. The design of the Cedar environment was strongly influenced by the
programming environment and services available in Interlisp and Smalltalk. For a discussion
of the goals of Cedar, see the blue-and-white report titled ‘‘Requirements for an Experimental
Programming Environment’’, number CSL-80-10.

CedarGraphics: A subroutine package of graphic primitives, built within ISL, that forms an

1983 EDITION

THE BRIEFING BLURB GLOSSARY 5

important part of Cedar. Its design was heavily influenced by the results of experimental
systems written in JaM. Soon to be replaced by the Imager.

Chardonnay: A Grapevine server.

Chat: A program that provides teletype-like ‘‘interactive’’ access to a remote computer on the
network. Most programming environments include this capability in some form; both Alto
and Cedar include programs actually named ‘‘Chat’’. Chat is mainly used to communicate
with Maxc and IFS servers.

Checkpoint: A method used in Cedar to preserve the state of your computing world. Taking a
Checkpoint involves preserving a shapshot of the current state of the virtual memory, but not
of the file system. If, after taking a Checkpoint, something bad happens and your Cedar
system gets wedged, the command RollBack will return you to the earlier clean state of your
virtual memory; but changes to the file system made between the Checkpoint and the
subsequent RollBack, such as storing edited versions of files, will not be undone.

Cheshire: A subsidiary of Xerox. They make a machine that binds stacks of paper into booklets
by melting glue and letting it be absorbed by the edges of the paper. There are Cheshire
binders in CSL and in the PARC TIC.

Chromalin: The trade name of a fancy color printing process used with the PlateMaker for creating
high-resolution color prints from Press files or PD files.

Chipmunk: A D-machine Mesa program for interactively creating and editing integrated circuit
designs. Chipmunk makes use of a color display in addition to the normal black-and-white
one. It is a successor to Icarus.

Cholla: A Laurel-based IC fabrication line control program, which is used in ICL.

CIFS: An acronym for Cedar Interim File System. CIFS is currently used within Cedar to manage
a portion of the local disk as a cache containing readonly copies of remote files. This
function and others will someday be provided by FS. CIFS was the first CSL system to
allow the components of a hierarchical file name to be separated with simple slashes instead
of with square brackets and angle brackets; the clumsier brackets are being used in this
document (sigh) for compatibility with the past.

CIS: An acronym for Cognitive and Instructional Sciences Group. A part of PARC, and the home
of many of the builders of Interlisp-D.

Clearinghouse: The analog of the Grapevine registration database in the NS world. That is, a
machine running Star talks to the local Clearinghouse in order to find out how to talk to a
particular file server or print server.

click: A manipulation of a mouse button. Pushing and releasing a mouse button several times in
quick succession is sometimes called a ‘‘double-click’’, ‘‘triple-click’’, etc. as appropriate. The
phrases ‘‘click-hold’’ and ‘‘double-click-hold’’ are also sometimes heard.

client: A program (as opposed to a person) that avails itself of the services of another program or
system. Laurel is a client of Grapevine. See user.

Clover: A Dover located in CSL.

CloverFonts.Press: A file, available on [Indigo]<Fonts>, that lists by family name, face, size, and
rotation all of the fonts in Clover’s font dictionary. That is, this file lists the fonts that you
can print with; for the fonts that you can see on your screen, see AltoFontGuide.Press
instead. To see the characters of the fonts in all their glory, check out the book located on
top of Clover called CloverCharacters.Press.

CLRM: Acronym for the Cedar Language Reference Manual. This document isn’t exactly easy
bedtime reading, but it is the most authoritative description currently available of the behavior
of Cedar programs in interesting and subtle cases. The CLRM also attempts to convert you
to a particular religion regarding the proper design of a polymorphic language within the
Algol tradition. To get the good dope about current Cedar without spending the time

1983 EDITION

THE BRIEFING BLURB GLOSSARY 6

necessary to undergo religious conversion, skip immediately to Chapters 3 and 4 of the
CLRM.

CoCedar: A world-swap debugger for Cedar.
color display: A CRT display with red, green, and blue phosphors. Griffin and Chipmunk both

use the color display, and the color display is also available to users of Cedar with a minimum
of hassle through the good auspices of the Cedar ColorDevice. The public Dorados with color
displays are listed at the sign-up sheets.

ColorDevice: A component of Cedar that provides low-level support for a color display.
Com.cm: A file used by the Alto Executive to store the current command being executed. See

Rem.cm.

Commander: A ‘‘light-weight’’ command interpreter, providing the minimum of functionality
needed by Cedar implementers while they are developing a new release of the system. Most
users of Cedar can instead enjoy the more plentiful features of the UserExec.

component: Among many other things, a chunk of software that is distributed as part of a Cedar
release.

config: A source file that tells the Binder how to assemble modules into a complete system.

CoPilot: A world-swap debugger for Pilot.
CopyDisk: A stand-alone program used to transfer an Alto BFS , that is, the entire contents of an

Alto disk or partition. May be used between computers or on a single computer with multiple
disk drives.

create date: When said of a file, the date and time that the information contained in this particular
version of this particular file was created. Create dates are generally stored accurate to the
nearest second. This makes them sufficiently unique that the pair <file name, file version’s
create date> can generally serve as a unique identifier for a particular pile of bits.

credentials: Proof that you are who you say you are; usually your Grapevine R-name and the
corresponding password.

CSL: Acronym for Computer Science Laboratory, a part of PARC, located on the second floor of
Building 35.

CSL Alcove: A small meeting area containing a large round table that is located near Clover in
CSL.

CSL Notebook: A mechanism for distributing, indexing, and generally sharing the documentary
output of folk in CSL.

CSS: Acronym for Computing Seminar Series: talks, often by visitors, on various computing
topics, which are held in CSL on Tuesdays at 1:30.

cursor: A small picture on the display that tracks the motions of the mouse.

Cypress: A database package based upon an entity-value-relationship model of data, and written
in Cedar. Walnut, Hickory, and Squirrel are clients of Cypress.

czar: A general term for a person who functions as a benevolent dictator over some area of local
life; for example, we have a softball czar and a publications czar. In the latter case, the role
of the czar is largely that of an editor.

D-machine: A generic name, referring to any of the current machines within Xerox that implement
the PrincOps architecture: Dandelions, Dicentras, Dolphins, and Dorados are the primary
D-machines.

D0: (that is, ‘‘D-zero’’) An obsolete name for the Dolphin, a D-machine.
DA: Acronym for Design Automation, and the name of a project in CSL and IDL to produce

tools that help people build hardware of various sorts.

Daffodil: An inexpensive D-machine using custom VLSI, being designed by local folk. Since the
Daffodil may become the hardware base of future OSD products, certain details concerning

1983 EDITION

THE BRIEFING BLURB GLOSSARY 7

the Daffodil project are rather sensitive.

Daisy: A Dover located in the Bayhill building.

Dandelion: The name of the processor that is in the Star products; an example of a D-machine.
dead: Either not currently operational (said of a piece of hardware), or operational but not currently

undergoing continued development and support (said of bodies of software).

Dealer: The name of CSL’s weekly meeting, occurring on Wednesday afternoons from 1:15 until
2:45 (or so); also used to refer to the person speaking at that meeting. Giving such a
presentation is referred to as ‘‘giving a Dealer’’ or sometimes ‘‘Dealing’’. See also weekly meeting.

DDS: (archaic) Acronym for Descriptive Directory System. An Alto subsystem providing
sophisticated manipulation of the Alto file directory system. See also Neptune.

DF files: A collection of programs for describing the files needed to build a complicated system,
for automatically retrieving these files from remote file servers to the local disk (Bringover),
and for storing them back later (SModel). Unlike the more grand and glorious system models
to come, DF files primarily addresses the problems engendered by our current feudal collection
of file systems. The letters ‘‘DF’’ are an acronym for Description Files, which suggests that
the phrase ‘‘DF files’’ is redundant.

Dicentra: A recent and inexpensive D-machine. The Dicentra essentially consists of the Dandelion’s
CPU minus the tasking stuff squeezed onto one Multibus card, and communicating with
memory and with I/O device controllers over the Multibus.

dirtball: A small, perhaps struggling outsider; not in the major or even the minor leagues. For
example, ‘‘Xerox is not a dirtball company’’.

distribution list: A list of R-names to which mail can be addressed. In some cases, Maintain can
be used to add oneself to interesting DL’s, such as ‘‘MesaFolklore^.pa’’. If Maintain responds
that you aren’t allowed to do that, the correct recourse is to send a polite message to
‘‘Owners-MesaFolklore^.pa’’, asking that they please add you to their list. For more details
about distribution lists, try either the Laurel manual or the document
[Ivy]<Laurel>Maintain.Press, which describes the Alto and Tajo versions of Maintain.

DiskDescriptor: A file that contains the disk allocation information used by an Alto file system.

DL: Acronym for Distribution List.
DLS: Acronym for Data Line Scanner: an Alto equipped with lots of modems plus other hardware

and microcode to allow dialing into and out of the Internet.
DMT.boot: Acronym for Display Memory Tester. A memory diagnostic for the Alto world. DMT

is automatically booted from the network by the Alto Executive after the Alto has been idle
for about 20 minutes. DMT accepts various commands; try pushing the "S" key, and also try typing shift-swat.

Designing cursors for DMT is a popular sport: send your suggestion as a list of 16 octal numbers to David Boggs

(Boggs.PA), along with a suggested title line and an indication of whether you want to be credited by name.

Dolphin: A D-machine; once called the D0. More flexible than a Dandelion, but also slower and
more expensive.

Dorado: A high-performance D-machine, designed by CSL and coveted by all and sundry. See
the blue-and-white report titled ‘‘The Dorado: A High-Performance Personal Computer’’,
number CSL-81-1.

Dover: Generic name for a type of 384 bpi laser-scan printer built on the Xerox 7000 xerographic
engine and connected to an Alto by means of a Orbit interface. Successor to EARS. Dovers
are normally driven by the program Spruce.

Dragon: Generic name of a new, custom-chip processor being designed by a team in CSL; it is
hoped that the Dragon will satisfy our ambitions to have ‘‘a Dorado in a shoe box’’.

Draw: (archaic) An Alto subsystem that permits interactive construction of pictures composed of
lines, curves, and text. Draw users may be interested to note that a program ReDraw exists
that converts Draw source files into Press files that will print without the jaggies on a Dover.

1983 EDITION

THE BRIEFING BLURB GLOSSARY 8

Users of Alto emulators on D-machines must use DDraw and ReDDraw instead.

Dumper.boot: (archaic) A file used for desperation debugging in an Alto world. Dumps (most of)
the current core image to Swatee for subsequent inspection by a debugger.

DWIM: Acronym for Do What I Mean: a facility intended to help the programmer by making
LISP do what you mean, rather than what you say.

EARS: (archaic) Acronym for Ether Alto Research SLOT. An obsolete prototype laser-scan
printer built on the Xerox 7000 xerographic engine and equipped with a hardware character
generator. (Interesting to some as an example of a third level acronym: the S in EARS stands for SLOT, and

the L in SLOT stands for LASER, and LASER itself is an acronym!)

EditTool: A menu-oriented command interface to the Tioga editor, providing complete access to
Tioga’s functionality, including the commands that you can’t type (either because they can’t
be typed, or because you have forgotten how to type them).

EFTP: A venerable PUP -based protocol now mostly used to transfer print files to print servers
and boot files to Altos.

Electronic Model Shop: An arm of CSL located on Hanover street in Building 37; this group of
folks do small-scale production runs of computer equipment for CSL. Frequently called the
Garage.

EmPress: An Alto subsystem used to convert text files to Press format and ship them to a Press
print server.

emulator: A technique in which one computer is programmed to imitate another. Fast imitations
are called emulators, while sufficiently slow ones are called simulators. In particular, the
microcode in an Alto or D-machine that implements either Mesa, Lisp, or Smalltalk is known
as the emulator microcode.

EOS: Acronym for Electro- Optical Systems; an organization located in Pasadena that was formerly
a part of Xerox. The defense contracting portion of EOS was recently sold by Xerox for 40
megabucks. The portion of EOS that built Scientific Information Systems is now SIS; they
are the ones who are marketing D-machines running Interlisp and Smalltalk to the outside
world.

Ernestine: A particular Lily server located in Building 35.

Ethernet: The communication line connecting many computers (with compatible interfaces) together.
Strictly speaking, an Ethernet is a single, continuous piece of co-axial cable, but the term is
sometimes applied to the entire network accessible through the cooperation of Gateways
(which is more correctly called an InterNet). Ethernets come in two flavors: the original
Ethernet, now called the Experimental Ethernet, was built within PARC and runs at 3
MBits/sec. The Ethernet that has been proposed as a communication standard is a
re-engineering that runs at 10 MBits/sec. PARC currently has Ethernets of both these flavors
running around, as well as a special 1.5MBits/sec Ethernet used by the Etherphones. See the
blue-and-whitereport titled ‘‘The Ethernet Local Network: Three Reports’’, number CSL-80-2.

Etherphone: A box of magic widgets that can replace your office telephone, giving you much
greater functionality by taking advantage of the power of computing in general, and of your
personal multi-function workstation in particular. An Etherphone has a microphone, a
speaker, digital-to-analog and analog-to-digital converters, a connection to Ma Bell, an Ethernet
interface, and several microprocessors to tie them all together. The Etherphone is a recent
product of the Voice Project within CSL. The existence of the Etherphone should make it
easy to write lots of exciting experimental systems (any volunteers to write a CedarVoice
interface?).

Executive: A distinguished Alto subsystem that provides simple commands to inspect and manipulate
the file system directory, and to initiate other subsystems.

export: A Mesa or Cedar program that provides (either some or all of) the services described in
an interface is said to export that interface.

1983 EDITION

THE BRIEFING BLURB GLOSSARY 9

face: The interface that an I/O device presents to the Pilot operating system; for example, there
is a disk face and a display face. Each face is codified as an interface module. Particular
implementations of this interface for particular devices are called heads.

file extension: The portion of a file name that appears following a period (possibly null). By
convention, a number of extensions are reserved to indicate the type of data in the file, though
not all subsystems are consistent in their use of extensions. Some commonly encountered
extensions are:

~ an Alto Executive command (not really an extension)

.al: screen font rasters in the original format

.bcd: Mesa object program module

.bcpl: BCPL source program module

.bfs: an entire Alto file system gathered into a file

.boot: program invokable by booting

.br: BCPL object program module

.bravo: text file containing Bravo formatting information

.cm: Executive command file

.config: Mesa source that describes how to combine modules

.df: description of a system for use with DF files software

.dl: distribution list (in a file as opposed to in Grapevine’s database)

.dm: (archaic) dump file, i.e., several logical files stored as one

.errors: Swat error message file

.icons: file containing displayable Icon images

.image: executable Alto/Mesa program

.jam: JaM interpretable code

.ks: screen font rasters in a fancy format

.laurel: special flavor of .bcd that can be run within Laurel

.log: history of certain program actions

.mail: Laurel mail file

.mail-dmsTOC: Laurel table-of-contents file

.mesa: Mesa source program module

.pd: file in PD (=printer dependent) print file format, usually produced from an Interpress
master

.press: print file in Press format

.profile: records a user’s preferred values of various user interface parameters in
Cedar

.run: executable Alto program, that is, a subsystem

.sil: SIL source file for a drawing

.st: Smalltalk source program text

.strike: screen font rasters in a compact and efficient but limited format

.style: Tioga document style rules for formatting

.symbols: Mesa symbol table (for debugging)

.syms: BCPL symbol table (for debugging)

.tex: TEX source text

.tfm: font metric information

.tip: TIP interaction description

.tioga: Tioga text document

1983 EDITION

THE BRIEFING BLURB GLOSSARY 10

file name: See file extension and path name for information about the local conventions for file
names.

file server: A computer on the network that provides a file storage and retrieval service. MAXC,
IFS, and Alpine are three different types of file servers.

FileTool: A program in Cedar that allows the user to store and retrieve files from and to remote
file servers. Use of the FileTool to retrieve portions of large systems to one’s local file system
is fraught with peril, since it is quite important that one retrieve consistent versions of things
if the large system is to work, and the FileTool doesn’t include any scheme of version control.
Cautious programmers use Bringover and ‘‘.df’’ files from the beginning; everyone uses
Bringover and ‘‘.df’’ files eventually.

Finch: The program that runs in your workstation and helps to control your Etherphone.
FLG: (pronounced ‘‘flug’’) In LISP programs, a switch that customizes a program’s behavior to

an individual user’s working habits.

fog index: A measure of prose obscurity. Units are years of education required in order to
understand the measured prose.

font: An assortment of characters all of one size and style; more precisely, a mapping from a set
of character code numbers to a consistent collection of graphic images.

Fonts.widths: A file containing character-width information for a large number of fonts. Used by
some programs that do text formatting while producing Press files. The standard source is
[Indigo]<Fonts>Fonts.Widths. Other programs appeal to separate ‘‘.tfm’’ files, one for each
font, as their source of information about character metrics.

foo: The first meta-syntactic variable. The second is ‘‘bar’’. There is a tie for third between ‘‘fum’’
and ‘‘baz’’. The words ‘‘foo’’and ‘‘bar’’ are cognates, both derived from ‘‘fubar’’, an acronym
popular in the U.S. Navy and used by early computer programmers employed by the Navy,
possibly as a technical term describing the state of a system.

Football: A two-person game in Cedar.
format: An attribute of a node in a Tioga document. Examples might be ‘‘long quotation’’, or

‘‘item in a bulletted list’’. The effect of the various formats is defined by the style.

Forum: A series of talks on topics of general interest to folk at PARC, held on Thursday afternoons
at either 3:45 or 4:00 p.m. in the Auditorium.

FS: A file directory system that will emerge in Cedar along with the Nucleus; FS will replace
CIFS and the Common Software Directory (a part of Pilot).

FTP: Acronym for File Transfer Protocol (or Program). An Alto world program that provides a
convenient user interface to the file transfer protocol, enabling the transfer of files between
co-operating computers on the Internet.

Garage: A nickname for the Electronic Model Shop, a part of CSL.

Gateway: A computer serving as a forwarding link between separate Ethernets. Gateways may
also perform certain server functions, such as name lookup.

germ: A small part of Pilot that runs first; the germ handles bootstrap loading, inloading and
outloading memory images during worldswaps, teledebugging, and the like.

Grapevine: The distributed electronic message transport system; it has a set of protocols all its
own, and provides various server functions such as authentication. See the blue-and-white
report titled ‘‘Grapevine: an Exercise in Distributed Computing’’, number CSL-82-4.

Griffin: A Mesa illustration program, a successor to Draw. Excellent on filled areas, and handles
color. Griffin was the source of many of the pretty pictures hanging near Lilac.

group: (when referring to Grapevine) A set of R-names. The standard interpretation of a group
is a distribution list. For example, CSL^.PA is the group of all people in CSL, in case they
all should get copies of a message. Groups can also be used for other purposes, such as
access control. The R-names that constitute a group are called its members. In addition, a

1983 EDITION

THE BRIEFING BLURB GLOSSARY 11

group has friends and owners: a friend is someone who may add or delete herself from the
group, while an owner may add or delete anyone from the group .

Hardy: A Tool that provides the functionality of Laurel, that is, mail sending and receiving, within
Tajo; a client of Grapevine.

head: The program module within Pilot that controls a particular I/O device. For example, each
particular model of disk drive has an associated head. All of these heads export the disk
face.

Hickory: A reminder and calendar system based on the Cypress database in Cedar.
Hornet: Generic name for a family of 300 bpi laser-scanned printers, built on top of 2600 copiers.

Ibis: An IFS server in SDD / Palo Alto.

Icarus: (archiac) An Alto-based program for creating and editing integrated circuit designs
graphically and interactively.

icon: A small image representing some concept. Used extensively in Star and Cedar.
Idun: An IFS server in SDD / Palo Alto: the home file server of the Pilot group.

ICL: Acronym for Integrated Circuit Laboratory, a part of PARC, located in Building 34.
IDL: Acronym for Integrated Design Laboratory, an incipient part of PARC. Once formed, IDL

(to be pronounced ‘‘ideal’’ rather than ‘‘idle’’) will be located somewhere in Building 35.

IFS: Acronym for Interim File System. An Alto-based file server. Many IFS servers exist on
various Ethernets, including Ivy, Indigo, Ibis, Iris, Idun, Igor, Phylum, and Erie.

IFU: Acronym for Instruction Fetch Unit; many computers have them.

Igor: An IFS server in SDD / Palo Alto: the home file server of the Mesa group. This name
should be pronounced ‘‘Eye-gore’’, as in the movie Y oung Frankenstein .

Imager: A new implementation of the CedarGraphics package that is under development.

implementation module: A Mesa or Cedar module that actually provides a set of services, as
opposed to an interface module, which simply specifies exactly what those services are to be.

Indigo: An IFS server in PARC, used by CSL and ISL to store project software files.

[Indigo]<AltoDocs>: A directory on which documentation for various Alto subsystems are stored
(generally with extension .press).

[Indigo]<AltoFonts>: A directory on which screen fonts for the Alto are stored (extensions .al,
.strike, or .ks). Subdirectories are used on this directory to distinguish various families of
display screen fonts that have accumulated over the years.

[Indigo]<BasicDisks>: A directory on which the standard starting configurations for Alto disks are
stored, as files with extension ‘‘.bfs’’. The normal way to initialize a new Alto world is to use
CopyDisk to retrieve one of these disk images.

[Indigo]<Cedar>: A directory containing the Cedar source code and documentation.

[Indigo]<Cedar>Documentation>: A directory containing the on-line documentation for the latest
version of Cedar.

[Indigo]<Cedar>Top>: A directory containing top level .df files for components of the current Cedar
release.

[Indigo]<Fonts>: A directory containing various documents of printing interest, including
Fonts.widths. You might be interested in CloverFonts.Press, or AltoFontGuide.Press.

[Indigo]<ISL>: A directory of packages released by ISL for use within Cedar. Contains mainly
interactive graphics software and document formatting tools.

[Indigo]<PreCedar>: A development directory for [Indigo]<Cedar>; that is, this is where components
of a new release of Cedar are stored while they are being developed. One of the jobs of the
release process is to move things from <PreCedar> to <Cedar>.

[Indigo]<PreISL>: The analogous development directory for [Indigo]<ISL>.

1983 EDITION

THE BRIEFING BLURB GLOSSARY 12

input focus: Suppose that the user types a key, while operating in an environment that supports
multiprogramming�lots of things going on at once, each in their own window. Which
program was the keystroke intended for? Different systems have different conventions on
this important point. In Tajo, the window in which the cursor is currently located gets the
keystroke. But in several other systems, including Cedar, there is a concept called the ‘‘input
focus’’ that is passed around among the running programs; whatever program has the input
focus gets the keystrokes. Left clicking a mouse button inside of a window often has the side
effect of giving that window the input focus.

Inscript: A mechanism for keeping track of user input to a program in a general way (key strokes,
mouse clicks, and the like), used within Cedar.

install: A term applied to the Alto Operating System and a number of subsystems (notably Bravo),
referring to a procedure whereby certain configuration options are established. Frequently, what

is really going on is that the program being installed is salting away somewhere the current hard disk addresses of

the pages of important files, so that later access to those files can avoid the tedious operations of looking up the file

in a directory and chaining through disk headers to get to the right place within the file.

Intelnet: The Xerox corporate phone system, accessible by starting your dialing with the digit 8.
Not to be confused with the Internet.

interface: A formal contract between pieces of a system describing a collection of services to be
provided. A provider of these services is said to ‘‘implement the interface’’; a consumer of
them is called a ‘‘client of the interface’’.

interface module: In Mesa and Cedar, interfaces are written down as a special kind of source file,
starting with the word ‘‘DEFINITIONS’’ instead of ‘‘PROGRAM’’. This explicit encoding
of an interface is called an interface module.

Interlisp: A dialect of Lisp with a large library of facilities, as witnessed by Interlisp’s famous
15-pound reference manual (would that Cedar were so well documented!).

Interlisp-D: An implementation of Interlisp on D-machines, done by a group within PARC . It
provides network facilities and high-level graphics primitives. See the blue-and-white report
entitled ‘‘Papers on Interlisp-D’’, number CIS-5 (SSL-80-4) Revised.

Internet: Many Ethernets connected by Gateways form an Internet.

InterPress: A print file format standard that is currently under development: a second cut at the
same issues addressed by Press format.

InterScript: A standard format for the interchange of editable documents that is currently under
development.

Iris: An IFS server in SDD / Palo Alto, which serves as the official source of released Pilots.
ISL Acronym for Imaging Sciences Laboratory, a part of PARC located on the second floor of

Building 35.
Ivy: An IFS server in PARC, used by CSL and ISL mainly to store personal files.

jaggies: The annoying sharp corners visible when smooth curves are imaged on a raster device
without sufficient resolution.

JaM: Acronym for John (Warnock) and Martin (Newell). An interactive language, similar to the
language Forth, with a simple, stack-oriented execution model and equipped with lots for
graphic operations as primitives; implemented in Mesa.

JaMGraphics: A component of an ISL release which provides JaM commands for all the
CedarGraphics features. Creating JaM pictures with JaMGraphics can be very addictive.

Jedi: A Hornet at PARC.

Juniper: (archaic) An Alto-based distributed file system, built within CSL.

Juno: A constraint-based system for interactive graphics in Cedar.
junta: A technique for eliminating layers of the Alto Operating System that are not required by a

particular subsystem.

1983 EDITION

THE BRIEFING BLURB GLOSSARY 13

Kanji: A Dover in Building 34.
Klamath: A forthcoming version of Pilot and other Mesa system software.

Lampson: A unit of speech rate. 1 Lampson is defined to be Butler’s maximum sustained speed.
For practical applications, the milliLampson is a more appropriate unit.

Larch: A family of specification languages.

Lark: The Etherphone processor, as well as the program that it runs.

Laurel: An Alto-based, display-oriented program that provides access to the facilities of Grapevine
for sending and receiving mail. Succeeded by Walnut in the Cedar enviroment.

Leaf: A page-level file access protocol supported by some IFS’s.

level: There is a tree structure imposed upon the nodes that make up a Tioga document, and the
Tioga editor can be informed to suppress the display of all nodes deeper than a certain level.
In combination with scrolling, the levels commands in Tioga provide a convenient way to
navigate in a well-structured document.

level i system: (for i B [1..3]). A terminology for classifying (software) systems according to their
intended user community:

1 implementers only

2 implementers and friendly users

3 naive users

Librarian: A Tajo program for check-in/check-out of the modules of a large Mesa system, used
in SDD ; also, a server for this program.

Lilac: A Puffin located in CSL, right next to Clover.
Lily: A program that provides teletype-style access to the mail sitting in one’s Grapevine mailbox.

Lily is designed to help out those folks who, because of travel or whatever, are unable to use
their personal computers and either Laurel, Hardy, or Walnut. Also, a server that runs this
program.

logical volume: A portion of a physical volume that is being used to support a Pilot environment:
the Pilot equivalent of a partition.

look: An attribute of a character or string of characters in various editors, including Bravo and
Tioga. ‘‘Bold’’and ‘‘italic’’are examples of Bravo’s typographic looks, while ‘‘emphasis’’ and
‘‘quotation’’ are examples of the functional looks espoused by Tioga. The meaning of looks
in Tioga, like the meaning of formats, is defined by the style.

Loops: A layer of software on top of Interlisp that turns it into an object-oriented environment
tailored for building rule-based expert systems.

Lotus: Internal development name for the 1075 Xerox copier.

Lupine: The translator used to generate RPC stubs so that Cedar modules can call procedures
located on remote machines.

Maggie: A tape server; that is, a machine on the Internet with tape drives that it will let a
requesting machine use.

Magic: Acronym for Multiple Analyses of the Geometry of Integrated Circuits. A system for
dealing with VLSI designs: printing them, converting them among formats, examining them
with various programs.

Maintain: A program for updating Grapevine registration information. There are two versions of
Maintain. One, with a widely reviled teletype-style user inteface, is available within Laurel,
or as a �Tool in Tajo. It is documented in the file [Ivy]<Laurel>Maintain.Press. The other,
with a nifty buttons-style interface, is available in Cedar. It is not yet documented.

maintenance panel: An area on the chassis of a Dolphin or Dandelion that sometimes displays a
three or four digit number. On Dorados running Pilot, the maintenance panel number

1983 EDITION

THE BRIEFING BLURB GLOSSARY 14

appears in the cursor.

MakeConfig: A program that reads Mesa configs and bcds and produces a collection of commands
that will compile and bind the many modules of a system in the correct manner to build a
consistent system.

Marion: A Librarian server in SDD / Palo Alto.

Markup: A dead Alto subsystem for editing Press files.

MAXC: Acronym for Multi-Access Xerox Computer (pronounced ‘‘Max’’). A locally produced
computer that is functionally similar to the DEC PDP-10. At one time, there were two
MAXC’s, named Maxc1 and Maxc2, but Maxc1 has gone away forever. From now on,
‘‘Maxc1’’,‘‘Maxc2’’,and ‘‘Maxc’’are all names for the same machine, which used to be called
Maxc2.

[Maxc]<Alto>: A directory on which standard Alto (BCPL) programs and subsystems are stored.
Only object code files (extension .br) and runnable files (extension .run) are stored here;
source files and documentation are stored on [Maxc]<AltoSource> and [Maxc]<AltoDocs> ,
respectively.

[Maxc]<AltoDocs>: A directory on which documentation for Alto programs is stored. Common
extensions are .press (for files directly printable by Press or Spruce), and .tty (plain text).

[Maxc]<AltoSource>: A directory on which source versions of standard Alto programs are stored.

[Maxc]<Forms>: (archaic) A directory containing files that are usable as templates (in Bravo) for
various kinds of documents (e.g., memos, letters, reports).

[Maxc]<Printing>: A directory containing Alto printing and graphics programs.

[Maxc]<PrintingDocs>: A directory containing documentation related to printing and graphics
facilities such as Press files and font file formats.

[Maxc]<SubSys>: A directory containing standard TENEX subsystems.

MDG: Acronym for Methodology Discussion Group. A series of seminars or discussions on issues
related to programming methodology that is held in CSL on Thursdays at 11 a.m.

Menlo: A Dover located in ISL.

menu: A collection of text strings, buttons, or icons on a display screen generally used to represent
a set of possible actions.

Mesa: A PASCAL-like, strongly typed, system programming language developed by CSL and
SDD .

Mesa Development Environment: The package of software used by SDD to develop other software
in Mesa; combines the Tajo user interface with the compiler, binder, packager, and other
system software running on top of Pilot. The name ‘‘Mesa Development Environment’’ is
often used when the plans to market this body of software running on Dandelions are being
discussed.

MesaNetExec: A Mesa implementation of the NetExec ; valuable because it knows how to load
Othello .

MetaFont: A font-designing language built by Don Knuth at Stanford, and used to generate fonts
for use with TEX. Metafont is available as MF.Sav on Maxc.

Microswitch keyboard: Microswitch is a company that makes keyboards. The standard Alto
keyboard, also in use at PARC on D-machines, is made by Microswitch.

MIG: An acronym for Master Image Generator: a high-resolution laser-scanning printer, based
on a photographic process. The MIG-1 can run up to 2000 bpi, while the slightly different
MIG-3 runs at about 800 bpi. Also called the Platemaker.

Mockingbird: A music system that runs on a Dorado with an attached audio synthesizer and its
keyboard. The goal of Mockingbird is to relieve the serious composer of some of the clerical
burden of writing out scores for music as it being composed. For more details, see the

1983 EDITION

THE BRIEFING BLURB GLOSSARY 15

blue-and-white report ‘‘Mockingbird: A Composer’s Amanuensis’’, number CSL-83-2.

mode: A special state through which certain user interfaces must pass in order to perform certain
functions. For example, in order to insert characters into a document in �Bravo, one must
type the ‘‘I’’ key, which invokes the ‘‘Insert’’ command. The effect of this command is to
put Bravo into ‘‘insert mode’’, in which typing the ‘‘I’’ key has a quite different effect (to
whit, it inserts an ‘‘I’’into the document). One must then hit another special key, ‘‘ESC’’, in
order to leave ‘‘insert mode’’. Modes are locally viewed as generally evil.

modeless: Describes a user interface that is free of modes. In such an interface, pressing a particular
key always has essentially the same effect. Laurel was the first local system with an
approximately modeless editor interface; the Tioga editing interface is very similar.

mouse: A type of pointing device with which many personal computers come equipped. The
switches on the mouse are called ‘‘buttons’’ to distinguish them from the ‘‘keys’’ on the
keyboard.

mouse-ahead: Analogous to typeahead, except refers to mouse clicks rather than to key strokes.
Can become very confusing to non- wizards, as there is no analog of the backspace key for
mouse clicks, that is, no way to cancel unwanted mouse clicks.

Multibus: An Intel standard specifying the physical and electrical characteristics of a bus by which
various boards in small computers can communicate. Many useful boards that plug into a
Multibus are available, such as Ethernet cards and disk controller cards. The Dicentra is a
D-machine that uses the Multibus.

name lookup: In the context of network communications, the process of mapping a string of
characters to a network address. Also, the protocol that defines the mechanism for performing
such a mapping.

name lookup server: A computer that implements the name lookup protocol.

Nebula: A time server on the Internet that is equipped with an antenna to listen to time broadcasts
made by a synchronous satellite, and hence has excellent long-term reliability. There is a
display showing Nebula’s opinion of the time in the same room as Clover: just the thing for
setting your digital watch.

Neptune: An Alto subsystem providing more sophisticated manipulation of the file directory system
than is available with the Executive. See also DDS .

NetExec.boot: A mini- Executive usable on an Alto without a spinning disk and obtainable directly
over the Ethernet (from a boot server). The NetExec makes available a number of useful
stand-alone programs, including CopyDisk, Scavenger, FTP, a number of diagnostics, and lots
of neat games.

network address: A pair of numbers <network number, host number> that uniquely identifies any
computer in an Internet.

nine-wire interface: A specification of how certain printers talk to their controllers.

node: A chunk of text in a Tioga document: each heading and paragraph in a document froms a
node, and the nodes are hierarchically structured. Node-structured documents are easier to
browse, using the levels commands in Tioga. Note: you can’t have two nodes on the same
line.

NS: An acronym for Network Systems: the protocols for using the Ethernet in the Star world.
NS packets are analogous to PUP ’s, and the NS protocols include analogs to such higher-level
protocols as FTP.

Nucleus: A new virtual memory and file system base that is being built for Cedar, to replace
portions of Pilot; it will emerge in Cedar 5.0.

Nursery: A large room in CSL, across from the Commons; so named because it was to be where
new printers would be nursed to life, and also where fresh blood (summer interns and the
like) would be housed. Does this mean that Bob Taylor thinks of graduate students as infants? I don’t think

1983 EDITION

THE BRIEFING BLURB GLOSSARY 16

so; course, I could be wrong... The funny windows were intended to make it convenient to hold
demonstrations in the Nursery with some of the audience on the outside, looking in.

object-oriented: Describes a philosophy about how programs should be structured that finds its
purest expression in the Smalltalk system. An object is a little pile of private data together
with a collection of procedures by which other folks are allowed to ask the object to do
something. Other folks must not play with the data directly, but instead are required to
interact with the object only by calling its procedures (or, in Smalltalk parlance, sending it
messages.) Think about complex numbers as a trivial example: A non-object-oriented
programmer would probably represent a complex number as a record containing two real
numbers. An object-oriented programmer would be tempted to represent a complex number
as a record containing public fields and private fields. The values of the public fields would
be procedures, with field names such as: AddToMe, MyXCoord, MyYCoord, NegateMe,
MyMagnitude, and the like. The private fields in the standard implementation of complex
number would be simply two reals, named X and Y. The advantage of the object-oriented
approach is that someone else can come along later and implement a new flavor of complex
number that uses polar coordinates in the private fields, and previous programs that dealt
with complex numbers will not have to be changed.

OIS: An acronym for Office Information Systems: a name for a concept, a type of product, and
(perhaps) a market, not a particular organization.

OPD: An acronym for Office Products Division, located mostly in Dallas. They make and sell
820’s and the like; see products.

Orbit: A high performance Alto-based image generator designed to merge source rasters into a
raster output stream for a SLOT printer (e.g., Dover). So named because it ORs bits into
buffers.

OS: Acronym for Operating System. Generally used to refer to the Alto Operating System, which
is stored in the file Sys.boot. Rarely used locally to refer to the operating system of the same
name that runs on IBM 360/370 computers.

OSD: An acronym for Office Systems Division, of which SDD is a part; they deal with the higher
end of the office market, in contrast to OPD .

Othello: A network-bootable Pilot utility, good for initializing logical volumes and the like.

page (on a disk): A unit of length: an Alto or Pilot page is 512 bytes, while an IFS page is 2048
bytes.

PARC: Acronym for Palo Alto Research Center.

partition: A chunk of a large local disk that is being used to emulate the largest system disk that
the Alto OS allows. A Dorado has five partitions, while a Dolphin has two. Partitions are
numbered starting at 1; the phrase ‘‘partition 0’’ refers to the current default partition. The
current partition in use is determined by the contents of some registers that belong to the
disk microcode. You can change these registers with the ‘‘partition.~’’ command available in
the Executive and in the NetExec. A (14-sector) partition has 22,736 Alto pages (11.6 MBtyes).
It took a little adroit shoehorning to fit two full partitions onto a Dolphin’s disk: it turns out that a Shugart 4000

has just one too few cylinders to squeeze in two full partitions. So we have to ask the heads to seek off the end of

the advertised disk (on the inside, it happens), and put one more cylinder in there! Ah, the joys of hardware

hacking...

PasMesa: A program that more or less compiles Pascal source into Mesa source, and hence assists
in importing Pascal programs into our environment; developed in CSL.

path name: The complete name of a file, including the �file server and directory or subdirectory on
which it is stored�everything you need to know to get the file. In the old style of writing
(Alto and IFS), a path name consists of a machine name in square brackets followed by a
directory name in angle brackets, optionally followed by one or more subdirectory names
separated with right angle brackets, followed by the file name itself, as in

1983 EDITION

THE BRIEFING BLURB GLOSSARY 17

[Indigo]<Cedar>Documentation>BriefingBlurb.press.
Starting with CIFS in Cedar, a simple slash may be used instead of the various flavors of
brackets, as in

/Indigo/Cedar/Documentation/BriefingBlurb.press.

PD files: A Printer Dependent print file format. The format and semantics of PD files are simpler
than those of Press files. Software exists to turn InterPress masters into PD files, and also
to print PD files on various marking engines, including Lilac, Stinger, and the Platemaker.

Peanut: A mail program in Cedar that fetches your messages into a structured Tioga document,
rather than storing them in the Cypress database as does Walnut.

Penguin: Generic name for a type of 384 bpi laser-scan printer built on the Xerox 5400 xerographic
engine, and connected to an Alto by means of an Orbit interface. Penguins have better
solid-area development than Dovers, and can also print two-sided. They are normally driven
with Spruce.

Phylum: An IFS in PARC .
physical volume: The name for a disk pack in Pilot.
PIE: Acronym for Personal Information Environment. Implemented in Smalltalk, PIE uses a

description language to support the interactive development of programs, and to support the
office-related tasks of document preparation, electronic mail, and database management. For

more information, browse [Ivy]<PIE>.

Pilot: An operating system that runs on D-machines, and was produced in SDD for use by Star
and future products. Using Pilot instead of the Alto OS gives you the advantages of
multiprocessing and virtual memory. Pilot is the current base for Cedar, although parts of
Pilot will soon be replaced by the Nucleus.

pixel: A contraction of the phrase ‘‘picture element’’, referred to the tiny, usually square cells out
of which a raster image is built up.

plaid screen: Occurs when certain kinds of memory smashes overwrite the display bitmap area or
control blocks. The term "salt & pepper" refers to a different pattern of similar origin.

Platemaker: Another name for the MIG.
PolyCedar: A name for the polymorphic language in the Algolic tradition that is the subject of the

religious material in the CLRM. A possible future project in CSL to design and implement
such a language.

Poplar: An interactive programming language system implemented in Mesa, an experimental
system in the direction of programming by relatively inexperienced users. Useful for text
manipulation applications.

Poseidon: A Tool that provides the functionality of Neptune in the Tajo environment.

Press: A file format used to encode documents to be transmitted to a printer. Files in this format
are conventionally given the file extension .press. Also, a printing server program, written in
BCPL, that can print curves and raster images as well as characters and rules.

PressEdit: A subsystem that recombines Press files on a page-by-page basis; it can also merge
illustrations into documents, although requesting this is a somewhat arcane and delicate
operation.

primary selection: A chunk of text that has been distinguished, usually by mouse clicks, as an
argument to a future editing operation. The current primary selection is indicated in Tioga
by a solid underline, or by video reversal.

PrincOps: The Xerox Mesa Processor Principles of Operation, essentially a description of a
particular abstract machine. D-machines implement the PrincOps architecture by means of
hardware and microcode, and Pilot was constructed to run on PrincOps machines.

print server: A computer that provides printing services, usually for files formatted in a particular
way. The term also refers to the software that converts such files into a representation that

1983 EDITION

THE BRIEFING BLURB GLOSSARY 18

can be processed by a specific printer hardware interface. Spruce and Press are examples of
print server programs that accept the .press print file format.

proc: (or PROC:) An abbreviated form of the common and important word ‘‘procedure’’.

products: The following is a list of the most commonly encountered Xerox product numbers and
their distinguishing characteristics:

600’s Memorywriters; from smart typewriters up through terminals/printers

820 personal computer product

860 display-based, word-processing terminal

1000’s new series of copiers being advertised with Marathon theme

1100 a Dolphin, sold outside to run Smalltalk and Interlisp

1108 a Dandelion, sold outside to run Interlisp

1132 a Dorado, sold outside to run Smalltalk and Interlisp

2600 desktop copier

3100 3 sec/page copier, good solid black-area development

4500 1 sec/page copier, 2-sided copying

5400 1 sec/page copier, good resolution

5700 1 sec/page laser-scan printer

6500 20 sec/page copier, color copying

7000 1 sec/page copier

8000’s the parts of Star have numbers in this range

8700 offset-quality, 1 sec/page, laser-scan printer

9200 offset-quality, .5 sec/page copier

9700 offset-quality, .5 sec/page, laser-scan printer

PSG: Acronym for Printing Systems Group, a part of Xerox.

public interface: An interface that offers to provide services to all comers. Private interfaces, in
contrast, specify the services that various modules in a single program will supply to each
other.

Puffin: Generic name for a type of 384 bpi laser-scan color printer built on the Xerox 6500
xerographic engine, and normally driven by Press.

PUP: Acronym for PARC Universal Packet. The structure used to transmit blocks of information
(packets) on the Ethernet. Also, one such unit of information: a datagram. Bob Metcalfe once

remarked that this name was chosen since all prior PARC communication protocols were ‘‘real dogs’’. See the
blue-and-white report entitled ‘‘Pup: An Internetwork Architecture’’, number CSL-79-10.

Purple Lab: An air-conditioned machine room on the second floor of Building 35.

Quake: A Dover on the first floor of Building 35.
Quantum: Brand name of certain disk drives.

Quoth: A Raven in ISL (as in ‘‘Quoth the raven . . .’’).

R-name: A complete name from Grapevine’s point of view: R-names have two parts, a prefix and
a registry, separated by a dot as in ‘‘Anderson.PA’’. R-names that designate distribution lists
have prefixes that end in an up-arrow, as in ‘‘CSL^.PA’’.

Raven: A 300 bpi laser-scan printer on which the 8044 product print server is based, with good

1983 EDITION

THE BRIEFING BLURB GLOSSARY 19

solid-area development. Upgraded in ISL to 384 bpi and used as a Press printer.

registry: A concept used by Grapevine to partition the space of names. ‘‘PA’’ and ‘‘WBST’’ are
examples of registries.

release: A consistent set of versions of all of the files in a large software system. Cedar releases
occur whenever major enhancements in functionality become available or when sufficently
numerous or important errors (see show-stopper) have been corrected.

release master: The person in charge of coordinating a Cedar release, with the help of special
software (the ReleaseTool) based on DF files.

religious: Used locally to refer to a debate about which people have strong feelings, but for which
there is no easy technical resolution; when discussing religious issues, positions are advanced
based on belief rather than on understanding. For example, the question of whether or not
windows in a user interface should be allowed to overlap and partially obscure each other, as
pieces of paper do in the real world, is often the subject of religious debate. More experience
in user interface design, or sufficient advances in the cognitive psychology of user interfaces,
may someday make this question less religious.

Rem.cm: A file used by the Alto Executive to store commands to be interpreted after the current
one has completed. See Com.cm.

replay: Refers to a Bravo facility that permits recovery after a crash. See BravoBug.
Reticle Generator: A version of the MIG that prints directly on masks for integrated circuits.

reverse engineering: Designing something by taking measurements from an existing sample that
someone else designed.

Rigging: A component of Cedar that implements the various flavors of strings, including Ropes.

RockAndRoll: Another Raven printer in ISL.

Rockhopper: A Penguin in the Bayhill building.

RollBack: The way to return to a clean Cedar world saved by a checkpoint.
Rope: An immutable string of characters (a rope is a ‘‘thick’’ string). Ropes are the standard way

to pass strings around within Cedar; other types of strings, including REF TEXT and REF
READONLY TEXT, are available for places where performance is a big issue.

RPC: Acronym for Remote Procedure Call, a technique for calling a procedure from one machine
to be executed in another machine over a network. Also, a package of software supporting
Remote Procedure Calls within Cedar. RPC is the standard way for Cedar programs to
communicate over the network: Tank, Football, Alpine, and Etherphones all communicate
by means of RPC. For more details about the concept of RPC, as well as fascinating
references to life in the South Pacific, read Bruce Nelson’s thesis, which is available as the
blue-and-white number CSL-81-9.

Rubicon: The release of Pilot upon which Cedar is currently based.

rule: A printing term describing a rectangle whose sides are parallel to the coordinate axes; usually
thin enough in one dimension or the other to be thought of as a (horizontal or vertical) line.

Scavenger.boot: An Alto program available through the NetExec that checks for damaged file
structures in a BFS and tries to repair them.

SCG: Acronym for Software Concepts Group, a part of PARC. The builders of Smalltalk.

scroll: Refers to a method of repositioning text on a display as though as though one were moving
a window over a long, continuous sheet of paper.

scroll bar: A bar, usually located along the left edge of a window, with the property that left or
right clicking in this bar causes scrolling to happen (middle clicking causes thumbing).

SDD: Acronym for System Development Division; the technical (as opposed to marketing) portion
of OSD .

secondary selections: A chunk of text distinguished, usually by mouse clicks, as the second argument

1983 EDITION

THE BRIEFING BLURB GLOSSARY 20

to a future editing operation. The current secondary selection is indicated in Tioga by a gray
underline, or by a gray background.

Semillon: A Grapevine server in Building 35.

server: A computer dedicated to performing some collection of service functions for the communal
good (e.g., a print server).

seven-wire interface: Yes, Virginia, hardware people use the concept of interface as well as software
folk. The seven-wire interface describes how the microprocessor located in the terminal of a
D-machine (in the base of the CRT, to be specific) communicates with the parent computer.

show-stopper: A bug serious enough to prevent further progress.

Shugart: A subsidiary of Xerox that manufactures disk drives.

Sierra: A recent release of the Mesa Development Environment, based upon Trinity Pilot .

signal: A mechanism for handling exceptional conditions that arise in Mesa or Cedar programs.
See catch phrase.

SIL: Acronym for Simple ILlustrator. An illustrator program used for logic design and drawing
in general. A weird but efficient user interface; solid performance.

SIS: Acronym for Scientific Information Systems; the name of that part of EOS that is still a part
of Xerox.

SLOT: Acronym for Scanning Laser Output Transducer.

Smalltalk: An integrated programming system based on object-oriented style and message passing,
invented and developed by SCG. Described in great detail in a recently issued book(!).

SModel: A program that stores files back to remote file servers from one’s local disk; SModel
reads ‘‘.df’’ files in order to figure out what files have been changed, and which of these
should be stored, and where in the great wide electronic world to store them. Use of SModel
(confusing as it may be at the outset) is to be recommended over use of either FTP (in the
Alto world) or the FileTool (in Cedar), since the version control and system-description
features of ‘‘.df’’ files are very valuable.

solid-area development: The ability of a printer to produce large areas of black. Requests for large
black areas on printers like Dovers, which don’t have this ability, will result in a fringe of
dark gray around a sea of light gray.

SophtSpheroid: A small, round, white object usually found on diamonds. Consider joining a Xerox
softball team for more information on this indelicate topic.

Spruce: A program that takes Press files consisting of text and rules, converts them to a form
acceptable by an Orbit interface, and prints them. A print server.

Spy: A program to investigate another program’s performance when running in Cedar.
Squirrel: A personal database program based on the Cypress database in Cedar.
Star: An OIS product of Xerox, developed within SDD. Also referred to by various product

numbers in the 8000’s. The primary professional workstation of Star is the 8010, which uses
a Dandelion processor .

Stinger: A Hornet located in ISL, running Press.
STP: The Pilot interface to the FTP file transfer protocol.

style: A collection of little programs in a language very like JaM that define the meanings of the
various looks and formats of the text in a formatted Tioga document. Different style rules
exist for how things should look on the screen and for how they should look when printed
on paper (implemented by the TSetter).

subdirectory: File directories on an IFS can be divided into a hierarchical collection of subdirectories.
The subdirectory names are listed from the root of the tree down to the leaves, and are
separated by the single character ‘‘>’’(see path

subsystem: A program running under a specific operating system. Normally used to refer to Alto

1983 EDITION

THE BRIEFING BLURB GLOSSARY 21

programs that run under the Alto OS, but also used to refer to PDP-10 programs that run
under TENEX.

Swat: A debugger used primarily for BCPL programs. Also, the key used in conjunction with the
‘‘control’’ or ‘‘shift’’ keys to invoke this debugger, as well as various other debuggers. The
Swat key is the lowest of the three unmarked keys at the right edge of the keyboard. Used
as a verb to refer to the act of striking these keys or entering the debugger.

Swatee: A file used by debugging programs (both Swat and the Alto/Mesa debugger) to hold the
core image of the program being debugged. Also used as a scratch file by many Alto
subsystems. Not to be deleted under any circumstances.

Sys.boot: An Alto disk file containing the executable representation of the Alto Operating System.

SysDir: The Alto file directory. Roughly speaking, this file contains the mapping from file names
to starting disk locations.

SysFont.al: An Alto screen font used by the Executive and (generally) as a default by other
programs. The safest way to change your SysFont is with the Delete.~ and Copy.~ commands of the Alto

Executive. Simply FTP’ing a new font on top of SysFont will cause exotic behavior during the CounterJunta when

FTP is finished.

system models: A part of the Cedar project, aiming at giving programmers help is describing the
structure of large systems: getting consistent versions of files, replacing single modules within
a running system, and recompiling and rebinding just what has been changed, all in the right
order.

Tajo: The user interface portion of the Mesa Development Environment. Each facility in the Tajo
environment is called a Tool, and Tajo itself is sometimes called the Tools Environment.

Tank: An n-player video arcade game in Cedar. Get a tank game going and then close the tank
viewer and check out the wonderful icon that results.

tasking: The technique by which the processor of an Alto or of a D-machine is shared between
servicing various I/O devices and running the user’s program (the emulator). Each I/O
device is serviced by one or more tasks, which run at fixed priorities.

teledebug: Debugging one machine from another other the Internet. The prefix ‘‘tele-’’ is used in
general for doing things remotely.

Telnet: A PUP -based protocol used to establish full-duplex, teletype-like communication with a
remote computer. (The term is borrowed from a similar protocol used on the Arpa network.)
Chat speaks this protocol.

Tenex: An operating system for the DEC PDP-10 computer, which also runs on MAXC.

TEX: A document compiler written by Don Knuth at Stanford; there are one and a half
implementations of TEX at PARC: one in Sail that runs on Maxc, the half in Cedar (waiting
on progress on the Imager). TEX can handle mathematical formulas, but doesn’t let you see
anything like what you get.

Thrush: The Etherphone control server; various Lark’s talk to Thrush in the process of setting up
a call over the Ethernet.

thumbing: A technique of positioning a file (usually text) to an arbitrary position for viewing on a
display. The name is intended to suggest the ‘‘thumb-index’’ with which some dictionaries
are equipped, which performs somewhat the same function: gets you to roughly the right
place quickly.

Thyme: An electrical-level dircuit simulator, used for evaluating the correctness and performance
of small pieces of the designs of integrated circuits.

TIC: Acronym for Technical Information Center; the fancy name for what is more generally
known as the PARC library.

Tioga: The document editor in Cedar, which was built by folk in ISL. Tioga formatting uses the
concepts of level, node, look, format, and style; for more details, read TiogaDoc.tioga.

1983 EDITION

THE BRIEFING BLURB GLOSSARY 22

Documents formatted with Tioga can be printed with the TSetter.

TiogaDoc.tioga: Documentation for the Tioga editor. At one point, the official home of this file
was the directory [Indigo]<Tioga>Documentation>.

TIP: A system for interpreting keyboard and mouse actions and turning them into sequences of
commands. You may customize your Tioga user interface by layering your own TIP table
on top of the standard Tioga TIP table.

Tool: A facility available in the Tajo environment, or the program that makes that facility available.
For example, one speaks of the ‘‘File Tool’’, which can perform file transfers for you.

Tools Environment: Former name for Tajo.
transaction: A collection of reads and writes of shared data that is guaranteed to be atomic: either

all of the writes happen (the transaction commits) or none of them do (it aborts). Furthermore,
the reads will see consistent data in that either all of the writes made by some other transaction
will be visible, or none of them will.

Trident: The brand name of a type of disk drive that is quite common around here. There are
T-80’s (that is, 80MByte Trident drives) and T-300’s. Tridents are manufactured by Century
Data Systems, a subsidiary of Xerox.

Trinity: The version of Pilot and other Mesa system software between Rubicon (the current base
of Cedar) and Klamath.

TSetter: The typesetting program for Tioga documents; converts foo.tioga into foo.press, and
optionally sends the latter to your favorite print server.

typeahead: An ability to type characters to a program before that program has asked for them.
Useful for wizards; essential when using slow machines. See also mouse-ahead.

typescript: A file used to back-up information (usually text) appearing in a region of the display.

Twinkle: A Gateway in Building 35 of PARC.

uncaught signal: An exceptional condition (perhaps an error indication) that no current program
other than the Mesa or Cedar debugger has expressed a willingness to deal with. The
debugger is willing to deal with anything, of course: it deals with these exceptional events
by halting the offending process and then informing the user. In the language of the CLRM,
an uncaught signal should be thought of as an invocation of a dynamically bound procedure
that turns out not to have been bound at all; see catch phrase.

user: A person (rather than a program) who avails herself of the services of some program or
system. At the moment, the author is a user of Tioga. See client.

user.cm: A file in the Alto world containing a number of logically distinct sections that each define
certain configuration parameters (e.g., the location of a preferred print server for a particular
file format). Programs that interpret such parameters are often organized to read user.cm
only at installation time (e.g., Bravo).

user.profile: A file in Cedar that specifies the default values of a collection of configuration
parameters. Each user may modify these values however she wishes. The resulting personal
profile information is stored in a file that is named ‘‘<user’s name>.profile’’.

UserExec: The command interpreter for Cedar.
Versatec: A subsidiary of Xerox that makes electrostatic printers, as well as the ‘‘Expert 1000’’

computer-aided design system, which runs on a Dandelion.

viewer: The name for a window in the Viewers window package.

ViewerDoc.tioga: Documentation for the Viewers window package. You might try looking for this
file on the directory [Indigo]<Cedar>Documentation>.

Viewers: A screen management and window package for Cedar providing buttons, menus, and
windows.

ViewRec: A software package in Cedar that produces convenient user interfaces to fairly arbitrary

1983 EDITION

THE BRIEFING BLURB GLOSSARY 23

programs automatically.

Viking: A Dover on the first floor of Building 35.
VLSI: Acronym for Very Large Scale Integration of electronic circuits on chips.

VM: Acronym for Virtual Memory.

Voice: A small but mighty project in CSL to tame the telephone and otherwise make full use of
voice communications in our personal information systems. The Voice Project recently
produced the Etherphone.

Walnut: A mail system for Cedar. Walnut uses the Cypress database to store and organize
messages, and it calls upon Grapevine to transport them.

Watch: A Cedar performance monitoring tool displaying computing activity.

WaterLily: A Mesa program that does source compares: compares two text files and reports the
differences. Available in Alto/ Mesa, Tajo, and Cedar.

wedged: Describes the state of a program when there is no response to input from either the
keyboard or the mouse. May affect the whole system (my system is wedged) or just some part
thereof.

weekly meeting: The (unimaginative) name of ISL’s weekly meeting, held on Tuesdays starting at
11:00 am. See also Dealer.

whiteboards: A package in Cedar for arranging and accessing information graphically.

Winchester: Originally, this was the name of a project within IBM. But the name leaked out, and
it is now used industry-wide to refer to a particular rigid disk technology. In a Winchester
disk drive, the heads and platters come all hermetically sealed; that is, Winchester drives do
not use removable disk packs.

window: A display region, usually rectangular, used to view (a portion of) an image that generally
exceeds the bounds of the region.

wizard: One who knows a programming system inside and out.

Wonder: A Dover on the third floor of Building 35.
world-swap: The process of writing out the complete state of a machine’s processer and memory

onto a disk file, and of swapping in a different state. Some debuggers work by means of
world-swaps, which swap between the debugger and the program being debugged. Note that,

the more memory you have, the slower a world-swap will be.

XGP: (archaic) Acronym for Xerox Graphics Printer. An obsolete, CRT scanned, 200 bpi,
continuous paper, xerographic printer.

XM: Acronym for Extended Memory: an option on Alto II’s that allows the memory size to be
increased from one to four banks.

Yoda: A Dover in Building 35.

Zinfandel: An Alto mail server that is part of the Grapevine distributed transport mechanism.

1983 EDITION

