BCPL

Reference Manual

James E. Curry
and PARC staff

Compiled on: September 14, 1979

Computer Sciences Laboratory

Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

¢ Xerox Corporation 1979

Revised BCPL Manual

TABLE OF CONTENTS

SECTION
1 INTRODUCTION
2 A SAMPLE PROGRAM
2-1 TheQueensProblem
2-2 SourceCode--QUEENS
2-3 SourceCode--QUEENSL
2-4 NotesontheSourceCode
2-5 Compilingand Loading QUEENS
3 DECLARATIONS AND PROCEDURES
31 BCPL Variables
32 ScopeRules
33 Manifest Constants
34 Structure Declarations L
35 Static and External Variables
3-6 Procedure Declarations
3-7 Procedure Execution
3-8 DynamicVariables
4 EXPRESSIONS
4-1 Memory References L
4-2 Constants.
4-3 Precedenceof Expressions
4-4 BCPL EXpressions.o oo v v iii i
5 STATEMENTS
51 Assignment Statements: L.

PAGE

Revised BCPL Manua TABLE OF CONTENTS
5-2 RoutineCalls: 51
5-3 Conditionalsand Iterative Statements: 51
5-4 Conditional Compilation Statements: 53
5-5 Labelsand Goto Statements: 5.4
5-6 Returns: 54
5-7 Switches: 54
5-8 SingleWord Statements 5.6
6 STRUCTURES
6-1 Structure declarationsand references L 6.1
6-2 Nestedfields 6.2
6-3 Subscriptedfields 6.4
6-4 Overlays o o 6.7
6-5 Left-lump structurereferenceso 6.8
6-6 Heffalump structurereferences o o oL 6.9
6-7 Other structureoperators oo 6.10
6-8 Syntax of structuredeclarations 6.10
7 SOURCE FILE CONVENTIONS
7-1 Declarationfiles 7.1
7-2 Labeledbrackets 7.1
7-3 Semicoloninsertion 7.1
7-4 Do/Theninsertion 7.2
7-5 Comments 7.2
7-6 Uppercasevs.LowerCase.ottt i 7.2
8 COMPILATION
81 Normal compilation 8.1
8-2 Global switches 82
8-3 Local switches. 83
9 LOADING

Revised BCPL Manual

9-1 Normal loading
9-2 Errors
9-3 Global switches
9-4 Local switches--group1l . ..
9-5 Local switches-- group2 . . .
9-6 NovaSavefileimage
9-7 Overlays
9-8 Alto Operating System Linkage
10 RUNTIME ENVIRONMENT
10-1 Procedure Frame Format . . .
10-2 ProcedureCdls
10-3 Frame Allocation on the Nova
11 NOVA 1/O and UTILITY ROUTINES
11-1 Introduction
11-2 Global Names.
11-3 Procedures
12 APPENDICES
12-1 BCPL Reserved Words . . .

TABLE OF CONTENTS

Revised BCPL Manual

SECTION 1
INTRODUCTION

BCPL isagenera purpose recursive programming language which is particularly suitable for
programming applications. Versions of BCPL exist on various computer systems, including CTSS at
MAC, the GE635 under GE COS, the TX-2 at Lincoln Lab, and the PDP-11, as well as for the Nova.
Nova version of BCPL was bootstrapped from the TX-2 implementation, and incorporates most of
features introduced into BCPL at Lincoln, including aversion of structures.

This manual uses an informal syntactic notation. Ellipsis ("...") indicates repetition. Lower-case words
reserved words. Upper-case words represent syntactic classes, the most common of which are:

NAME: an identifier

EXP; aBCPL expression

CONST: an expression involving only constants
REF: amemory reference expression

STAT: aBCPL statement or compound statement

11

systems
Project
The
the

are

Revised BCPL Manual

SECTION 2
A SAMPLE PROGRAM

2-1....... The Queens Problem

The following program is a complete, working example of BCPL. It solvesthe "8-Queens’ problem,
generating all 8*8 chessboard configurations of eight queens such that no queen can capture any of the
others. The central procedure "Queens(Col)" is called with a column number as its argument; it assumes
that there are no conflictsin the columns to the left, and tries to place a queen in the current column.
"Queens' callsitself recursively to iterate over the columnsto the right, or prints a picture of the board if a
solution has been found. Three global vectors, "Horiz", "UpDiag", and "DnDiag", are maintained to
indicate whether a queen has already been placed in a particular row, upward-diagonal, or
downward-diagonal; an attempt to place a queen in an occupied line resultsin rejection. A solution vector

"Row" is maintained for typeout, remembering which row the queenisin for each column.

The program consists of two source files: "QUEENS" and "QUEENSL1". Thefirst file containsthe main
program and some | O procedures; the second contains the "Queens' procedure.

21

Revised BCPL Manud A SAMPLE PROGRAM

2-2....... Source Code -- QUEENS
/1 Solution of 8 Queens problem-- Min Program

get "iox" /1 Include definitions for |0O package

mani f est boardsize = 7 // Rows & Columms are nunbered 0-7

ext er nal
Sol uti ons [l Total number of solutions
Row /[l Rowll = occupied colum in row I
Hori z [l Horiz!l :true if rowl is occupied
UpDi ag [/ UpDiag!l= true if up-diagonal | is occupied
DnDi ag /!l DnDiag!l=true if down-diagonal | is occupied
ext ernal Queens /1 The procedure that does the work
ext er nal /1 Some extra | O procedures
[WiteS
WiteN
WitelL
]
static
Solutions = 0 /1 No solutions initially
Row = ni | /'l G obal vectors -- set up by Miin
Horiz = nil
UpDiag = nil
| DnDiag = nil
static TTYstream /1l The streamused by WiteS, etc.
et Main() be
[main
[l Initialize the global vectors
|l et v = vec boardsize; Row = v
let v = vec boardsize; Horiz = v
for i = 0 to boardsize do Horiz!i = fal se
let v = vec boardsize*2; UpDiag = v
|l et v = vec boardsize*2; DnDiag = v
for i = 0 to boardsize*2 do UpDi agI , DnDiag!i = false, false

/[l Initialize output to TTY
i ni tbepli o()
TTYstream = open("")

/1 Do the work
Queens(0)
[l Print nunber of solutions
Wi teN(Sol utions)
o Wit S " solutions found*n"
] main
and WiteS(S) be witestr(TTYstream S)
and WiteN(N) be witedec(TTYstream N)

and WitelL() be witestr(TTYstream "*n")

22

Revised BCPL Manual

A SAMPLE PROGRAM

2-3....... Source Code -- QUEENS1
/1 Solution of 8 Queens problem -- Queens procedure
mani f est boardsize =7 // Rows & Columms are nunbered 0-7
ext er nal
Sol uti ons [/ Total number of solutions
Row // Rowll = occupied colum in row I
Hori z [l Horiz!l = frue if rowl is occupi ed
UpDi ag [/ UpDiag!l= true if up-diagonal | is occupied
DnDi ag /1l DnDiag!l=true if down-diagonal | is occupied
ext ernal Queens /1 The procedure that does the work
external /1 Some extra | O procedures
WiteS
WiteN
WitelL

]

| et Queens(Col) be
[queens

/] There are no conflicts in colums |eft of Col

l et UpDi ag2, DnDi ag2 = UpDi ag+boardsi ze- Col, DnDi ag+Col
/1 UpDi ag2, Dndi ag2 are the di agonal vect ors for this col um

for n = 0 to boardsize do

[row oop

[l Try to put a Queen in each row of this colum

if Horiz!n % UpDi ag2!n % Dnbi ag2!n loop // Can’t - go on

/] There are no conflicts to the left, so we can

Row! Col
test Col

=n /1 Renenber for typeout

eq boardsi ze /1 Done?

ifnot [Horiz!n, UpDi ag2! n, DnDi ag2!n = true, true,true

ifso

] rowl oop
] queens

/1 Now a Queen is in this colum _
QJeens(OoI +1) // Find all solutions to the right
/'l Now renpve the Queen

Hori z! n, UpDi ag2! n, DnDi ag2! n = fal se, fal se, fal se

/'l Print the solution
WitelL()
for r = 0 to boardsize do
[for ¢ = 0 to boardsize do
WiteS(Rowir eqc ? " Q, " .")
WitelL()

Solutions = Solutions + 1

/1 Do the next row

2.3

Revised BCPL Manud A SAMPLE PROGRAM

2-4....... Notes on the Source Code

Thefile"IOX" contains external declarationsfor abasic 10 library; "QUEENS" uses "initbcplio"”, "open",
"writestr", and "writedec" from thislibrary.

The manifest and external declarations appear in both source files. These declarations would usually be put
into a separate file; each source file would "get" thisfile in order to include the declarations.

The static declarations appear only in "QUEENS"; static variables must be declared as static only once,
although they may be declared external in many files. "Solutions" isinitialized to O; the statics for the
global vectorswill beinitialized by the main procedure, so they areinitialized to "nil". "TTY stream" is
declared static but not external, so it islocal to "QUEENS', asis"Main".

The main program allocates the vector space for the global vectors by declaring four local vectors (all named
"v") and storing the address of the first elements in the external variables for the vectors. Thisis the
simplest way to get space which is global to severa procedures (or to arecursive procedure); the space is

global to "Queens' sinceit is allocated by the procedure which calls " Queens".

Note that declarations may be intermixed with statements.

2-5....... Compiling and Loading QUEENS

To compile the source file QUEENS, just type
BCPL QUEENS

(Only one source file may be compiled at atime.) The compiler will print
BCPL 2.0 -- QUEENS.BR = QUEENS

and begin compiling the program. If no errors are detected, the BCPL relocatable binary file QUEENS.BR
will be created, and the compiler will print

QUEENS.BR -- 217 (143) WORDS
The numbers are the length of the code generated in octal (decimal). QUEENSL is compiled similarly.
To load the program, type

BLDR/D/L/V QUEENS QUEENS1 101 102

Thiswill create the file QUEENS.SV, an executable Nova save file, from the BCPL rel ocatable binary files
QUEENS.BR, QUEENSL.BR, IO1.BR, and I02.BR. (Thelatter two files are the input-output routines.)
The /D switch causes the Nova debugger to be loaded into the save file. The/L/V switches create a symbol
table file named QUEENS.BS, containing information about where things will be in core when the program

runs; alisting of thisfileisincluded in the section on Loading (Section 9). The loader prints
BLDR 2.0 -- QUEENS.SV, QUEENS.BS

at the beginning of the loading process, and when it is done,
QUEENS.SV -- 14162 (6256) WORDS

The numbers give the size of the savefile in octal (decimal).

24

Revised BCPL Manual

To run the program, just type QUEENS. It will print out 92 solutions.

25

Revised BCPL Manual

SECTION 3
DECLARATIONS AND PROCEDURES

31....... BCPL Variables

BCPL isavaguely ALGOL-like language (it is block-structured; it allocates procedure space dynamicaly, S0
recursion is permissible; and most BCPL statements correspond roughly to ALGOL statements, although
there are syntactic differences). The mgjor difference between BCPL and ALGOL isthat all ALGOL
variables are declared with data-types (integer, real, boolean, string, array, procedure, label, pointer, etc.),
whereas all BCPL variables have the same data-type: a 16-bit number. In ALGOL, the meaning of an
expression is dependent both on its context and on the data-types of the entities involved, and only
expressions with certain data-types may appear in agiven context. In BCPL, any expression may be used in
any context; the context alone determines how the 16-bit value of the expression isinterpreted. BCPL never
checksthat avalueis "appropriate” for usein agiven way. For example, an expression which appearsin a
"goto" statement is assumed to have as its value the address of someplace which is reasonable to jump to;
the thing following a"goto" need not be alabel. The advantages of this philosophy about data-types are
that it allows the programmer to do almost anything, and that it makes the language conceptually simple.
The disadvantages are that the user can make errors which would have been caught by data-type checking,
and that some things must be done explicitly which ALGOL -type languages would do automatically
(implicit indirection on pointer variables, operations on multi-word values such as real numbers and strings,
type conversion, etc.).

Although BCPL has only one data-type, it does distinguish between two kinds of variables. static and
dynamic. They differ asto when and where the cells to which they refer are allocated. A static variable
refersto acell which isallocated at the beginning of program execution (i.e., by the BCPL loader); it refers
to the same memory cell for aslong as the program runs. A dynamic variable refersto a cell which is
(conceptually) alocated when the block in which it is defined is entered, and exists only until execution of
that block terminates. The space from which the dynamic variable is allocated is created dynamically when

the procedure containing its defining block is called.

Asin ALGOL, variable names (and other names) are defined in declarations. The lexical scope of a
declared name (the portion of the source text in which the name is defined) is governed by BCPL's block
structure.

32....... Scope Rules

At the outermost level, a BCPL source file consists of a sequence of global declarations followed by a

multiple procedure declaration. The possible global declarations are:
external [NAME; ...; NAME]
static [NAME = CONST:; ..., NAME = CONST]
manifest [NAME = CONST; ...; NAME = CONST]
structure NAME : [...]

31

Revised BCPL Manua DECLARATIONS AND PROCEDURES

The external and static declarations define static variables; the manifest declaration defines literals; the
structure declaration defines templates for symbolic references to partial-word and multi-word data.
A multiple procedure declaration has the form

let NAME(ARG, ..., ARG) BODY

and NAME(ARG, ..., ARG) BODY

and NAME(ARG, ..., ARG) BODY
where BODY iseither "be STAT" or "= EXP".
The NAMEs in external, static, manifest, and structure declarations at the outermost level are defined from
the point of declaration to the end of the sourcefile; all of the NAMEsinthe"let ... and ..." sequence at the
outermost level are defined in al of the BODY's. These are the only names which are globally defined. All
other names are defined either as ARGs in the procedure declarations, or in local declarations within
compound statements in the BODY's.
A compound statement is a sequence of statements and declarations, separated by semicolons, and enclosed
within the brackets "[" and "]". (If a carriage return separates two statements, the semicolon can be
omitted.) The brackets have a function similar to that of the words "begin" and "end" in ALGOL. A
compound statement may be used wherever asimple statement can be; in thismanual, "STAT" aways
means either a simple statement or a compound statement. Compound statements are used when two or
more statements are needed in a context in which BCPL expects a single statement (e.g., as the body of a
procedure, or as one of the arms of a conditional statement). Compound statements delimit the scope of
locally declared names.
Loca declarations may be intermixed with statements (unlike ALGOL, in which declarations may appear
only at the beginning of a compound statement). "Declaration” here includes dynamic variable declarations
("let NAMEL, ..., NAMEN = EXPL, ..., EXPn"), aswell as the external, static, manifest, structure, and
procedure declarations mentioned above. The following rules govern the scope of local declarations:

1) A local declaration may appear in acompound statement only in the following contexts: at the
beginning of a statement, or after a semicolon (including a semicolon implicitly inserted by the
compiler between statements on different lines), or following a statement label that follows a
semicolon. The effect of thisruleisto disalow thingslike"if x eqOthenlety =0 (athough
"ifxeqOthen[lety =0...] isperfectly legal). A declaration may be labeled.

2) A declaration startsa block; the block ends at the end of the compound statement containing
the declaration. A name defined in the declaration is known only within the block introduced
by the declaration, and in sub-blocks contained within that block if the name is not redeclared.

3) (Exception to rule (2).) A dynamic variable is not known in any procedure body other than the
oneinwhich it was declared. Thus, if the procedure"g" is declared inside of the body of
procedure "f", the dynamic variables defined in "f* are not known to "g". (Thisis because the
dynamic variables of "f" reside in space which is dynamically alocated when "f" is called.
When "g" is called, it does not know where this spaceis; in fact, there might be more than one
execution of "f" in progress when "g" is called, or there might not be any active execution of
"f")

4) A statement label ("NAME: ...") appearing within ablock istreated as if it were a static variable
declared immediately after the declaration which begins the block. So alabel is known

throughout its enclosing block, but not outside that block.

3.2

Revised BCPL Manud DECLARATIONS AND PROCEDURES

33....... Manifest Constants

The declaration

manifest [NAMEL = CONST1J; ...; NAMENn = CONSTn]

defines NAMEL1 through NAMERN as manifest constants. (If there is only one NAME, the brackets are not
necessary.) The expressions CONST1 through CONSTn must be constant expressions; that is, their values
must be computable by the compiler. The meaning of a program would be unchanged if each manifest
name were replaced by a string of digits representing its value. In particular, manifest names do not have
addresses.

34....... Structure Declarations

(Structures are described in Section 6 of this manual.)

35....... Static and External Variables

Static variables may be declared in four ways: by astatic or external declaration, by a procedure declaration,
or by a statement label assignment.

The declaration

static [NAMEL = CONST1; ...; NAMEn = CONSTn]

defines NAME1 through NAMER as static variables, and causes them to beinitialized with the values
CONST 1 through CONSTn at the beginning of program execution (i.e., in the "savefile" created by the
loader). (If thereisonly one NAME, the brackets are not necessary.) The CONSTs must be expressions

whose values are computable by the compiler. If it doesn’t matter what the variable isinitialized to, the” =
CONST" should beleft out, or " = nil" should be used.

Any of the NAMEsthat are preceded by an " @" will be alocated by the loader in page zero. Such variables

are caled "common" variables. They can be addressed directly by the compiled code, whereas normal static
variables must be addressed by indirection through aliteral; so common variables are more efficient.
However, thereisroom in page zero for only about 150 (decimal) common variables; the loader will

complain if too many common variables are assigned.
The procedure declarations

let NAME(ARG, ..., ARG) be STAT

let NAME(ARG, ..., ARG) = EXP

declare NAME as a static variable which isto be initialized by the loader to the address of the code compiled
for the procedure.

The procedure declaration is discussed fully in the sections on procedure and dynamic variable declarations.

A statement label assignment

3.3

Revised BCPL Manud DECLARATIONS AND PROCEDURES

NAME: STAT
declares NAME as a static variable which isto be initialized by the loader to the address of the code
compiled for STAT. A label assignment does not begin a block; the name is treated asiif it were declared
immediately after the declaration which begins the smallest enclosing block. Thus, alabel is defined

throughout the block in which it appears.
The declaration

external [NAMEL; ...; NAMERN]

declares NAMEL through NAMER as external static variables. (If thereis only one NAME, the brackets are
not necessary.) The purpose of the external declaration isto allow separately compiled pieces of a program
to reference the same variables. Within a given source file, the scope of an external variableis the same as
that of other types of variables; but if two or more separately compiled source files declare a given name
external, the loader will make each refer to the same cell. In (exactly) one of the source filesin which a
given name is declared external, the name should also be declared as a static variable (by a static declaration,
aprocedure declaration, or a statement label assignment) someplace within the scope of the external
declaration. (Note that the static declaration must follow the external declaration.) Thisisnot a re-definition
of the name, but rather tells the loader how to initialize the external static variable. The loader will
complain about an external variable which is not declared static someplace, or about one which is declared

static more than once.

NAMEs that are preceded by an "@" in an external declaration will be defined as common variables. A
NAME that is declared both external and static may be designated as common in either or both declarations.

Note that only static variables may be external .

36....... Procedure Declarations
There are two kinds of BCPL procedures. "functions', which return a value upon completion, and
"routines’, which do not. A function is defined by a declaration of the form
let NAME (ARGL, ..., ARGn) = EXP
A routineis defined by
let NAME(ARGYL, ..., ARGn) be STAT

NAME is the name of the function or routine being defined. (Actually, NAME becomes a static variable
which will be initialized with the address of the procedure, as noted in the section on static variables.) ARG1
through ARGn are the formal parameters (dummy arguments) of the procedure. They are either NAMEs,
or the special symbol "nil", indicating an unnamed argument. ARG1 through ARG become the first n
dynamic variables declared in the procedure body. If there are no dummy arguments, the declaration is of
theform "let NAME() be STAT" or "let NAME() = EXP".

In the function declaration, EXP is the expression whose value is returned when the function is called. EXP
may be asimple BCPL expression; but for most functionsit will be an expression of the form "val of STAT",
where STAT may be a compound statement. The STAT in a"valof" expression should contain at least one
"resultis’ statement. The STAT is executed until a statement of the form "resultis EXP" is encountered;
then EXP becomes the value of the "valof" expression, and therefore the result of the function. The "valof"
expression will also terminate when control would otherwise pass to the statement following STAT. If this

happens, the value of the "valof" expression is garbage.

34

Revised BCPL Manud DECLARATIONS AND PROCEDURES

In the routine declaration, STAT isthe statement which is executed when theroutineis called. STAT may
be a compound statement. STAT may contain one or more "return” statements; the routine returns when a
"return” statement is executed, or when control would otherwise pass to the statement following STAT.
A multiple procedure declaration has the form

let NAMEL(ARG, ..., ARG) be STAT (=EXP)

and NAME2(ARG, ..., ARG) be STAT (=EXP)

and NAMEN(ARG, ..., ARG) be STAT (= EXP)

This declares the procedures NAMEL through NAMERN "simultaneously”; that is, al of the NAMEi’s are
known in each of the procedure bodies. (So, for example, NAMEL can call NAME2 and NAMEZ2 can call
NAMEL.) The ARGs, of course, are defined only in their corresponding procedure bodies.

A procedure body may contain procedure declarations; the names of such procedures will be local to the
defining body (unlessthey are declared external). But remember rule (3) in the section on the scope of
dynamic variables. dynamic variables are defined only in the body of the defining procedure, and not in
sub-procedure bodies. For thisreason, all proceduresin a BCPL program are usually defined at the top
level.

37....... Procedure Execution

A procedureis called by a statement or expression of the form

EXP(EXPL, EXP2, ..., EXPn)

EXP determines the procedure to be executed; EXP1 through EXPn are the actual parameters. If there are
no actual parameters, the formis"EXP()". A procedure call isan expression if it appearsin a context in
which avalue is expected (e.g., in the right-hand side of an assignment statement); otherwise, it is a
statement. The calling mechanism isthe samein either case. The only differenceisthat in the context of an
expression, the procedure is expected to return avalue; if it doesn’t (because it isa"routine" rather than a
"function™), a garbage value will be used. A value which isreturned by afunction called in the context of a
statement is discarded.

EXP will usually be aNAME which is either declared in a procedure declaration in the current source file,
or declared external in the current file and declared as a procedure in another file. But in general, EXP may
be an arbitrary BCPL expression; for example: "(neq 0 ?f, g) (X, y)". Theformal ruleisthat the location
referenced by the expression "rv EXP" isthe location to which control isto be transferred (viaa "JSR").
The section on Runtime Environment goes into more detail on this.

When a procedure is entered, it first allocates some "frame" space from someplace in memory. This
"frame" isablock of memory which the procedure will use for the actual parameter values, for any dynamic
variables and vectors declared within the procedure, and for any temporary storage needed by the
procedure. The space is de-allocated when the procedure executes the "return” or "resultis’ corresponding
to the call that allocated the frame.

After the frame space is allocated, the values of EXP1 through EXPn are stored in the first n words of the
frame. These n words are those referenced by the n formal parameters ARGL, ..., ARGn in the procedure
declaration, assuming that the procedure is called with exactly the number of actual parameters asit was
declared to have. (No check is made to seeif actual and formal parameters match. If there are fewer actual
parameters, the formal parameters with no corresponding actual parameters will have garbage values. If
there are more actual parameters than formal parameters, the actual parameters with no corresponding

3.5

Revised BCPL Manud DECLARATIONS AND PROCEDURES

formal parameterswill be lost; but this may create havoc by clobbering memory words beyond the end of
the newly created frame.)

Note that each formal parameter takes on the value of its corresponding actual parameter at the beginning
of the procedure call. Thisimpliesthat procedure calls are implemented by the "call by value" mechanism
(inthe ALGOL sense); assigning avalue to aformal parameter within a procedure does not affect the value
of the corresponding actual parameter in the calling routine, although it does change the value of the formal

parameter for the remainder of the procedure execution. Suppose the function "next" is defined by:
let next(x) = valof [x =x + 1; resultisx]

and called asfollows:
a=0; b=next (a)

After the call of next, "a" will still be 0, but "b" will be 1. We can write "next" in such away asto alow it to
change the value of "a" by using the address-manipulation primitives of BCPL:

let next (xaddr) = valof
[rv xaddr = rv xaddr + 1; resultis rv xaddr]

Then calling "next" asfollows:
a=0;b=next(lva

will cause both "a" and "b" to have the value 1.

After the procedure frame has been allocated and the actual parameters have been stored in the frame, the
procedure body is executed. If the procedure terminates normally (with "return” or "resultis’, or by faling
through the last statement), the frame space is deallocated and control returnsto the caler. If the procedure
exits with a"goto", the frame space is not deall ocated, and the frame pointer is not changed. Thisisa bad
thing to do.

38....... Dynamic Variables

A dynamic variable refersto a cell at some fixed position in the frame associated with the current execution
of the procedure in which it isdefined. This cell isonly allocated to the variable while the block defining
the variable is active (e.g., while the block is being executed, or while a procedure called from within the

block is being executed). Outside of the block, the cell is used for something else.

Dynamic variables are declared in two ways: in adynamic variable declaration, and as formal parameters in
aprocedure declaration.

The dynamic variable declaration

let NAMEL, ..., NAMEn = EXPL1, ..., EXPn

allocates n consecutive frame cells to NAME1 through NAMER, and compiles code to assign the values of
EXP1 through EXPn to NAMEL through NAMERN. Unlike other declarations, this declaration is
executable; for agiven execution of a procedure, NAMEL through NAMEn always refer to the same frame
cells, but the values stored in these cells are recomputed each time the declaration is executed. The

assignment is done left-to-right.

The EXPs may be any BCPL expression. In addition, there are two special cases: "nil" and "vec CONST".

3.6

Revised BCPL Manua DECLARATIONS AND PROCEDURES

If EXPi isthe symbol "nil", the variable NAME: is declared, but no valueis assigned to NAMEi. Thus, "let
x = nil" declares x, but compiles no code; "x" will have some garbage value until something is assigned to
it.

If EXPi isthe special expression "vec CONST" (where CONST is an expression that can be evaluated by
the compiler), the value assigned to NAMEi will be the address of the first word of a block of CONST+1
consecutive frame cells. This"vector" of CONST+1 cellsis allocated from the frame space, and NAME is

initialized to point to that vector. These cells exist aslong as NAMEi exists; they are used for something else
outside of the block in which the declaration appears.

In aprocedure declaration

let NAME(ARGL, ..., ARGN) be STAT

or
let NAME(ARGYL, ..., ARGn) = EXP
ARGL through ARGn are declared as dynamic variables; their scope is the entire procedure body. (Recall
that the declaration defines NAME as a static variable.) The declaration is equivalent to
let NAME() be
[let ARGY, ..., ARGn =nil, ..., nil; STAT]
or to
let NAME() = valof
[let ARGL, ..., ARGn =nil, ..., nil; resultis EXP]
That is, ARG1 through ARGn are the first n dynamic variables declared in the procedure body, and
therefore refer to the first n cellsin the frame. The procedure call "NAME(EXPL, ..., EXPm)" stores the
values of the m actual argumentsin the first m cells of the newly created frame. Soif m>n, cells n+1
through m will be clobbered. If m=n, al iswell. If m<n, ARGsm + 1 through n will have garbage
values. This permits proceduresto be called with a variable number of actual arguments, aslong as enough
formal arguments are declared to provide space for the largest actual argument list. For example, if we

define a procedure something like

let f(x0, X1, X2, ..., x20) be

[letarg=1Ivx0
.oargh ..

then the expression "arg!i" references the ith argument.
The ARGs are usually NAMES, but the special symbol "nil" isalso legal asan ARG. The "nil" has the
effect of leaving space for an argument, but not declaring a name for that argument. So the procedure "f
above might also have been defined as

let f(xO, nil, nil, ..., nil) ...
Argument i can still be referenced by "arg!i”.

In procedures which are called with a variable number of arguments, the "numargs" facility may be useful.
An argument list in a procedure declaration may take the form

let NAME(ARG], ..., ARGN ; numargs NAME) ...
The NAME following " ; numargs' is declared as a dynamic variable in the procedure body; when the

procedure is entered, NAME is set to the number of actual argumentsin the procedure call. Note the
semicolon preceding "numargs'.

3.7

Revised BCPL Manual

SECTION 4

EXPRESSIONS
4-1....... Memory References
There are four kinds of BCPL expressions which refer to memory cells: variable names, rv-expressions,
vector reference expressions, and structure reference expressions. These are the only things that can appear
asthe left-hand side of an assignment statement "REF = EXP" or as the argument of an Iv-expression "lv
REF". In an assignment statement, REF specifies the cell to be modified. The value of an lv-expression is
the address of the cell specified by REF. (These two contexts are the only ones in which the form of the
expression isrestricted.) In al other contexts, the value of a memory-reference expression isthe value
contained in the specified cell.
Memory reference expressions are described below in terms of the Novainstructions compiled. There are
six Nova op-codes that reference memory: LDA ac, STA ac, IMP, JSR, ISZ, DSZ. The symbol "OP" in the
description below designates one of these op-codes; the address of the op-codeisin standard Novaform (@
displacement, index). In general, an assignment statement generates a STA; a procedure call generates a

JSR; and other contexts generate a LDA.

dynamic variable names:

Dynamic variables are allocated cellsin the first 200 (octal) words of the frame for the
procedure in which they are declared. While a procedure is being executed, AC2 aways
points at the procedure’ s frame; so dynamic variables are referenced by "OP n,2", where"n" is
the offset of the dynamic variable in the frame. Thisimposes alimit on how many dynamic
variables a procedure may declare; the practical limit is about 100 (decimal) dynamic names in
agiven scope. (Because the frame is alocated dynamically when a procedureis called,
dynamic variables cannot be accessed directly from any procedure other than the onein which

they are declared, as noted in scoperule (3) in Section 3.)

static variable names:

Static variables are allocated space by the loader, either in "common" (page zero) or in another
area of memory which isfixed during loading. Common variables are accessed by "OP n,0",
where 0 < n< 377. Other static variables are not directly addressable, since they arein some
arbitrary area of core, so they are addressed through indirection by "OP @n,1" (that is, "OP
@.+n"), where nisthe PC-relative offset (-200 < n < 177) of aword containing the address of

the static variable.

vector references. EXPL! EXP2

This expression references a memory cell whose address is given by the value of
(EXP1 + EXP2). Thereason for calling an expression like "A!l" a"vector reference” is the
following. Suppose that the value of the variable "A" is the address of the first word of a
zero-origin one-dimensional array (a"vector"). Then the expression "A!l" references the Ith

word of the vector A, since the value of the expression "A+I" isthe address of this word.

Note that the "!" operator is commutative.

In general, vector references generate code to compute the sum of EXP1 and EXP2in AC3
(eg., "LDA 0,EXP1; LDA 3,EXP2; ADD 0,3"), and then reference the vector element with

4.1

Revised BCPL Manud EXPRESSIONS

"OP0,3". Inthe case where EXP2 (or EXP1) isasmall constant (-200 < n < 177), EXP1 (or
EXP2) isloaded into AC3, and the vector element is accessed by "OP n,3". In any case, a
vector reference always uses indexing through AC3. See the note on rv-expressions below.

rv-expressions. rv EXP, @EXP:

This expression references amemory cell viaindirect addressing through EXP. In general, the
value of EXPis computed and stored in atemporary cell in the frame, and the reference is
done by "OP @n,2", where nisthe offset of thetemp cell. There are several special cases: If
EXPisadynamic variable name, "OP @n,2" is used, where n is the frame offset of the
variable. If EXPisacommon variable name, "OP @n,0" is used, where n isthe page zero
address of the variable. On the Nova, if EXP isastatic variable name, "OP @n,1" is used (that
is, "OP @.+n), where n is the PC-relative offset of aword containing the address of the static
variable with the indirect bit (bit 0) set. If EXPisavector reference, "OP @n,3" is used, after

loading AC3 appropriately.

The expression "rv EXP"' may also be written " @EXP".

An rv-expression always generates an indirect reference through amemory cell. A vector
reference always generates an instruction which isindexed by AC3. Therefore, on the Nova,
"rv EXP" is hot necessarily equivalent to "EXP1IEXP2" when the values of (EXP) and
(EXP1 + EXP2) are the same: the rv-expression will always cause amultiple indirection if

EXP has bit 0 set; a vector reference will never do so, since indexing ignores bit 0. On the Alto
the two are always the same, since all 16 bits are part of the memory address.

structure reference expressions:

These are described in the section on structures.

4-2 Constants

BCPL recognizes the following constructs as constants:

* A name which is declared "manifest” istreated asiif it had been replaced by its value.

* A string of digitsisinterpreted as adecimal integer. It may not exceed 2**15-1 (32767
decimal, 77777 octal).

* A string of digits preceded by a"#" isinterpreted as an octal integer. It must be less than
2**16-1 (177777 octal, 65535 decimal).

* A string of digitsimmediately followed by "B" or "b" is also interpreted as an octal integer. If
the"B" or "b" isimmediately followed by a (decimal) number n, the octal valueis shifted | eft
n bits. Thus, #1230, 1230B, and 123B3 all represent the same value. One-bits may not be

shifted out of bit O.

* The reserved words "true” and "false" are constants with values #177777 and O respectively.

* A "$" followed by any printing character other than "*" represents a constant whose value is
the 7-bit ASCII code of the character. "*" is an escape character; the following escapes are
recognized:

*s*S gpace (#40)
*t*T tab (#11)
4.2

Revised BCPL Manual

*n*N carriagereturn (#15)

*c*C carriage return (#15)

*|*L linefeed (#12)

* double quote (#42) [$" isalso O.K]

*nnn The octal number "nnn". [Exactly three digits.]
o * (#52)

Note: "*" followed by anything else gives an error.

The compiler evaluates most expressions that involve only constants, and treats the resulting value as
single constant. (The exceptions are "selecton” and "valof" expressions. Conditional expressions
"CONST ? CONST1, CONST2" are evaluated; the valueis CONST2 if CONST is 0, and

otherwise.) Throughout this manual, the symbol "CONST" (described as "an expression which can
evaluated by the compiler") means either one of the constant constructs above, or an expression

only constants.

....... Precedence of Expressions

In order of decreasing precedence, the legal BCPL expressions are:

NAME; constant; string literal; table literal; (EXP)
EXP(EXPL, ..., EXPn)

EXPLIEXP2

EXP>>NAME.NAME.... ; EXP<<NAME.NAME....
Iv EXP; rv EXP; + EXP; -EXP

EXP1 <mul> EXP2 (<mul>: *,/, rem, Ishift, rshift)
-EXPL + EXP2; EXP1 - EXP2

vec CONST

EXP1 <rel> EXP2 (<rel>: eqg, ne, Is, le, gr, ge)

not EXP

EXP1& EXP2

EXP1%EXP2

EXP1 xor EXP2; EXP1 eqv EXP2

EXP ? EXP1, EXP2

selecton EXPinto ...

4.3

EXPRESSIONS

a
like
CONST1
be
involving

Revised BCPL Manud EXPRESSIONS

valof STAT
Operators with the same precedence are |eft-associative, except for "<mul>", "&", "%", "xor", and "eqv",
which are right-associative. Precedence and associativity can be changed by parenthesizing. Some cases to
note:
"alb*c" is"al(b*c)"
"rv VIt is"rv(vii)"
"rv p>>ab" is"rv (p>>ab)"
"vip>>ab" is"(vip)>>ab"
"VIiH"is"(vli)+"
"a%b&c" is"a%(b&c)"
"a& begc'is"a& (beqo)"
Precedence only determines the way in which an expression is parsed; nothing isimplied about order of
evaluation. In general, the order in which the sub-expressions of an expression are computed is unspecified.
So, athough "f(X) + g(y) * h(z)" means "f(x) + (g(y) * h(z))", no assumption should be made about which
function is executed first.
4-4....... BCPL Expressions
string literals
A sequence of characters enclosed in double quotes (") isastring literal. Itsvalueis the
address of the first word of a block of memory containing the string. A BCPL string is stored
two bytes per word, left-hand byte first, with the left-hand byte of the first word containing the
number of charactersin the string. If the string has an even number of characters, the
right-hand byte of the last word is O; but if it has an odd number of characters, the last word of
the string contains the last two characters, not two 0 bytes. Note that BCPL strings are not
compatible with Nova DOS strings.
Strings have a maximum length of 255 characters. The character "*" appearingin a string

literal is an escape character, as described for character constants.

table [CONSTZ; ..., CONSTN]

The value of atable expression is the address of the first word of a block of memory containing
the CONST values.

EXP()

EXP (EXPL, EXP2, ..., EXPN)
The value of EXP is assumed to be the address of aBCPL function. Thisfunctionis caled
with the values of EXPL, ..., EXPN as arguments. The value of the function call isthe value
returned by the function viaa"resultis' statement. See the section on procedure execution for
details.
The call isimplemented by a Nova JSR instruction (a memory reference op-code) to
"rv EXP'. Soif EXP hashit O set, amultiple indirection will take place. If bit O is zero, the

value of EXP isthe address of the first instruction executed.
4.4

Revised BCPL Manud EXPRESSIONS

The empty argument list "()" is necessary if there are no arguments. "x =f()" calls a
function, but "x = f" puts the address of the function in "x". Forgetting the"()" isa common
error; be careful.

v REF
REF must be a variable name, a vector reference, an rv-expression, or a structure reference;
anything else gives an error message. The value of the Iv-expression is the address of the cell

which REF references (but see the note on "lv(rv EXP)" below).

The value of "lv NAME", if NAME is adynamic variable, is the sum of the current frame
pointer (which isin AC2) and the offset of the variable in the frame (a constant). This address
isvalid only while the block in which the variable was declared is active.

Thevaue of "lv NAME", where NAME is a static variable, isthe address of the static variable.
Thisis a constant throughout the execution of the program, since static variables never move.
(But "lv NAME" is not a compile-time CONST.)

The value of "Iv(EXPLIEXP2)" isthe sum of the values of EXP1 and EXP2.

Thevalue of "lv (rv EXP)" isthe address of the cell that "rv EXP" references. On the Nova, if
EXP has bit 0 set, "rv EXP"' would cause a multiple indirection; in this case, the value is
computed by following the indirection chain. Thereis nothing special about bit O on the Alto;

it isjust another bit of the address.

The value of "lv (EXP>>NAME.NAME....)" is the address of the word which contains the first
bit of the referenced field.

rv EXP
EXP1! EXP2

See the section on Memory References (Section 4-1).

+EXP
The value isthe value of EXP.

-EXP
The value is the two’ s-complement of the value of EXP.

EXP1* EXP2
The value isthe low-order 16 bits of the 32-bit signed product. If one of the EXPsisa constant
whose value is a power of 2, aleft shift is done; otherwise the standard Nova multiply
sequenceisdone. Thereis currently no way to get at the high-order part of the product, or to
detect overflow.

EXP1/EXP2

EXP2 rem EXP2
The standard Nova signed integer divide sequenceisdone. (Division by apower of 2is not
done by shifting.) The"/" expression gives the 16-bit signed quotient; the "rem" expression
gives the 16-bit remainder, which has the same sign as EXP1. If EXP2 is zero, the results are

undefined. Thereis currently no way to detect this.

EXP1 Ishift EXP2
EXP1 rshift EXP2

4.5

Revised BCPL Manud EXPRESSIONS

The value isthe value of EXP1 shifted left or right EXP2 bits. Vacated positions are filled with
0's. Bits shifted off either end of the 16-bit word are lost. The shiftsarelogical, not arithmetic,
in that the sign bit may be changed. There are currently no arithmetic- or circular-shift
operators.

EXP1 + EXP2
EXP1 - EXP2

The value isthe sum (difference) EXP1 and EXP2. The statement "EXP=EXP+1"
generates an 1SZ or DSZ followed by aNOP. Thereis currently no way to detect overflow.

EXP1 eq EXP2
EXP1 ne EXP2
EXP1 s EXP2
EXP1le EXP2
EXP1 gr EXP2
EXP1 ge EXP2

EXP1-EXP2 is computed and compared with O; the value of the relational expression is aways
either "true" (#177777) or "false" (0). Warning: This differs from a genuine signed comparison
of EXP1 and EXP2 if |EXP1-EXP2]| is greater than 2**15-1.

not EXP

The vaueisthelogica complement (one' s-complement) of the value of EXP. But seethe note
on"&" and "%" below.

EXP1 & EXP2

EXP1 % EXP2
In most contexts, the value is the logical-and or logical-or of EXP1 and EXP2. However, in the
context of the Boolean part of an "if", "unless’, "test", "while", "until", "repeatwhile", or
"repeatuntil” statement, or of a conditional expression, the evaluation of an expression
involving "not", "&", or "%" is optimized. This optimization can change the meaning of the
expression. For example, the sequence "if a& b then ..." is not always the same as the
sequence "x = a&b; if x then ...", even if the evaluation of "a" and "b" do not involve side

effects. See the section on conditional statements.

EXP1 xor EXP2
EXP1 eqv EXP2

The value of the "xor" expression isthe logical exclusive-or of EXP1 and EXP2. The value of
the "egv" expression isthe logical complement of thisvalue.

EXP ?EXPL, EXP2

The value isthe value of EXPL if EXP isnon-zero, or the value of EXP2 if EXP is zero. EXP
isoptimized if it involves "not", "&", or "%"; see the section on conditional statements.

valof STAT
This expression causes the statement STAT to be executed until a"resultis EXP" statement is
encountered or until control would otherwise pass to the statement following STAT. If a
"resultis EXP" is executed, EXP becomes the value of the "valof STAT" expression. If
execution of STAT terminates, the expression has a garbage value. The "valof" expression is

usually used as a function body; but it may be used anyplace an expression can be.

selecton EXP into
[case CONST1: EXP1

4.6

Revised BCPL Manud EXPRESSIONS

case CONSTn: EXPn
default: EXPO

]
This expression is equivalent to

valof switchon EXP into
[case CONSTL: resultis EXP1

case CONSTn: resultis EXPn
default: resultis EXPO

]

That is, itsvalue is EXPi if the value of EXP is CONSTI, or EXPO if EXP isnot equal to any of
the CONSTSs. If no "default" label appears, the "selecton” expression will have a garbage
valueif none of the casesis matched.

newname NAME
This expression evaluates at compile timeto "true" if the NAME is appearing in the source file
for thefirst time. It evaluatesto "false" if it has appeared before (including previous
"newname" constructs). This construct is useful in conjunction with conditional compilation

or the /M compiler switch (command-line declarations).

4.7

Revised BCPL Manual

SECTION 5
STATEMENTS

51....... Assignment Statements:
REF = EXP

The value of EXP is stored into the memory cell referenced by REF. See the section on
Memory References (Section 4-1).

REF1, ..., REFn = EXPL, ..., EXPn

This statement is equivalent to the sequence "REF1 = EXPJ; ...; REFn = EXPn". The
assignments are made left-to-right.

5-2....... Routine Calls:

EXP()
EXP(EXPL, EXP2, ..., EXPn)

A routine call differsfrom afunction call only in that a routine call occursin a context where a
statement is expected, whereas a function call occursin a context where an expression (a value)
is expected. The calling sequence for routinesisidentical to that for functions.

53....... Conditionals and Iterative Statements:

The evaluation of EXPin an "if", "unless", "test", "while", "until", "repeatwhile", or "repeatuntil”
statement is optimized if EXP involves "not", "&", or "%". In general, EXP "succeeds" if it is non-zero,
"fails" if itis0. But "EXP1&EXP2" istested by first testing one of the EXPs; if it "fails", the &-expression
"fails’, and the other expression is not evaluated. Similarly, in "EXP1%EXP2", one of the EXPs is tested; if
it "succeeds', "EXP1%EXP2" succeeds. A "not EXP" "succeeds' if EXP "fails', and "fails" if EXP
"succeeds'.

This optimization has two significant conseguences:

a) In a statement such as "if f(x) & g(x) do ...", it is not guaranteed that both functions will be
executed; so any side-effects of "f" and "g" cannot be depended on.

b) The statement "if x & y do ..." is not necessarily equivalent to the sequence "z = x&y; if z do
..". For example, if "X" hasthevalue 1 and "y" hasthe value 2, "z = #x&y" would assign the
value0to "z", because "1& 2" is zero; so "if zdo ..." will consider "Z" to "fail". But both X"
and "y" are nonzero, so "if x&y do ..." will consider "x&Yy" to "succeed”. In general, "&"
should be used in conditional statements only when its operands are known to take on only the
values"true" (#177777) or "false" (0). Notethat thisisthe casefor relations; so "if x ne0 & y

ne 0" does the right thing.
5.1

Revised BCPL Manua STATEMENTS

if EXPdo STAT
unless EXP do STAT
The"if" statement executes STAT if EXP succeeds. The "unless' statement executes STAT if
EXPfails. Theword "do" may be replaced by the word "then", but (unlike ALGOL) no
"else" clause is alowed; use the "test" statement for two-armed conditionals. The "do" or
"then" may be omitted if STAT appears on the same line as the "if" or "unless' clause, and if
STAT isone of the following types of statements:
"if" "unless" "test" "while" "until" "for" "goto" "return" "resultis’ "switchon" "break"
"loop" "endcase" "docase"
test EXPthen STAT1 or STAT2

test EXPifso STAT1ifnot STAT2
test EXPifnot STAT2ifso STAT1

Each of the above "test" statements executes STATL if EXP succeeds, or STAT2 if EXP fails.
Both clauses must be present; use the "if" statement or the "unless' statement for one-armed
conditionals. If "then" and "or" are used, they must appear in that sequence; the STAT
following "then" isthe true branch. If "ifso" and "ifnot" are used, they may appear in either

order; the STAT following "ifso" is the true branch.

while EXP do STAT
until EXP do STAT

The "while" statement executes STAT aslong as EXP succeeds. The "until" statement
executes STAT aslong as EXP fails. Thetest on EXP is done before the first execution of
STAT. Theword "do" may be omitted in the same contexts as for the "if" statement.
The "while" statement is equivalent to:

"goto M; L: STAT; M: if EXPgoto L"
The "until" statement is equivalent to

"goto M; L: STAT; M: unlessEXP goto L"

STAT repeatwhile EXP
STAT repeatuntil EXP

The "repeatwhile" statement executes STAT aslong as EXP succeeds. The "repeatuntil”
statement executes STAT aslong as EXPfails. STAT is executed once before the test on EXP
isdone. STAT may be asingle statement or a compound statement.
The "repeatwhile" statement is equivalent to:
"L: STAT;if EXPgotoL"
The "repeatuntil” statement is equivalent to:
"L: STAT; unlessEXPgotoL"
STAT repeat

The "repeat" statement executes STAT repeatedly (until terminated by a"break", "return”,
"resultis’, "endcase”, "docase”, or "goto" statement). It isequivalent to:

"L:STAT; goto L"
for NAME = EXP1 to EXP2 by CONST do STAT
52

Revised BCPL Manud STATEMENTS

NAME isalega variable name; EXP1 and EXP2 may be arbitrary expressions; "by CONST"
may be missing (1 is assumed), but if present, it must be a constant expression. The "for"
statement is (logically) equivalent to the following block:

[let NAME, lim, inc = EXP1, EXP2, CONST
gotoM
STAT
NAME = NAME +inc
M: testincgeO
ifsoif NAME gelim goto L
ifnot if NAME lelim goto L

]
Several things about the "for" statement should be noted:

1) The controlled variable isimplicitly declared as a new dynamic variable; it is defined
only in STAT, and not accessible after the loop terminates.

2) EXP2 is evaluated only once, at the beginning of the "for" statement.

3) Asnoted, CONST (if present) must be a constant expression. If it isnhegative, the
termination test is reversed.

4) STAT isnot executed if the initial condition fails the termination test (like ALGOL,
unlike FORTRAN).

5) STAT is executed when the controlled variable is equal to the limit.

break
loop

These are single-word BCPL statements which are legal only in the context of an iterative
statement. The effect of "break” isto jump to the statement immediately following the
smallest textually enclosing iterative statement. The effect of "loop" is to jump to the point a
which the next iteration starts: to thetest in a"while", "until", "repeatwhile", or "repeatuntil”
statement; to the increment of NAME in a"for" statement; or to the beginning of a "repeat”
statement.

54....... Conditional Compilation Statements:

compileif EXP then [<sequence>]

compiletest EXP then [<sequence> |

These constructs allow alternative code sequences to be chosen at compile time; they are
analogousto "if" and "test." There are severa restrictions on the use of these statements:
The EXP must be comprised of operations on manifest and numeric constants, S0
that it may be evaluated at compile time.
A conditional compilation construct can appear wherever a"let" would be lega
(Not, for example, within a statement or declaration, or directly following "then,"

"ifso," "ifnot," or "case").

53

Revised BCPL Manud STATEMENTS

Although the syntax of conditional compilation parallels that of conditional
statements, the brackets ([]) are mandatory. A <sequence> isalegally Separated
sequence of commands and declarations. The <sequence> may contain

declarations which will apply to commands which follow the conditional construct,
aslong as the uses of the variable are also conditionally compiled.

Conditional selections are done at atime after "get" files have been read. As a
result, "get" commands are unaffected by conditionals -- the files are always read.

The auxillary constructs "ifso," "ifnot,” "then," "do," and "or" may all be used with the
conditional compilation tests:

compiletest EXP then [<sequencel>] or [<sequence2> |

55....... Labels and Goto Statements:

NAME: STAT
Any BCPL statement may be labeled. A label is effectively a declaration of a static variable
which isinitialized with the address of the labeled statement. It differs from other declarations
in that it does not implicitly start anew block. Instead, it istreated asif it appeared at the
beginning of the smallest textually enclosing block. See the section on static declarations for
details.

goto EXP
A NovaJMPisdoneto "rv EXP'. The EXPisusually alabel, but need not be. Control is

transferred to the memory location which is referenced by "rv EXP".

56....... Returns:

return
resultis EXP

These statements cause a return from the procedure in which they appear. "return” is only
legal in aroutine body; "resultis EXP" is only legal in afunction body.

switchon EXP into CASEBL OCK

CASEBLOCK isaBCPL block which contains labels of the form "case CONSTi:", where the

CONSTI are constant expressions. CASEBLOCK may also contain alabel of the form
"default:". The effect of a"switchon" statement is asfollows: If the CASEBLOCK contains a
"case" label whose constant CONSTI is equal to the value of EXP, ajump is done to that label.
If no CONSTi matches the value of EXP, ajump is done to the "default” label if thereis one,

or to the statement immediately following the CASEBLOCK if thereis no default label.

54

Revised BCPL Manua STATEMENTS

The appearance of a"case" label does not terminate the preceding case. That is, in

switchon Char into
[case$AX =1

case $B:x =2
default:x =0
]
"x" will be 0 no matter what "Char" contains. The statements'x = 1" and "x = 2" should be
followed by ajump to the end of the CASEBLOCK. The single-word BCPL statement
"endcase" would accomplish this.
Case labelsarelega only in CASEBLOCKS, and not in any sub-blocks of a CASEBLOCK. In
connection with this, recall that a declaration implicitly begins anew block. Therefore the
sequence
switchon x into
[case 0: lettemp=0
case 1
]
will cause the compiler to complain that "case 1:" does not appear in a CASEBLOCK. The
code which uses "temp" must be enclosed in ablock of its own which does not span other case
labels.
Switches are implemented by grouping the case valuesinto one or more value rangesin which
listed values are fairly dense, and doing an indexed branch on each of these ranges. Case
values which do not fall into these clusters are checked individually if all of the indexed
branchesfail.
endcase

This single-word statement is legal only within the scope of a"switchon" statement. It causes a
transfer to the end of the smallest enclosing "switchon™ statement.

docase EXP

This statement islegal only within the scope of a"switchon" statement or "selecton”
expression. It causes atransfer to the case label denoted by EXP within the smallest enclosing
CASEBLOCK, by performing the switching activities again using EXP as an index. This
construct allows one to merge several cases with aterminating case, or to generate flexible
looping constructs. The unlikely sequence

i =5;s="STR0"

switchoni into

[case 0: write(s); endcase

case 1: s="STR1"; docase 0
case 5:s="STR5"; docase 0
]

would cause the string "STR5" to be written.

55

Revised BCPL Manud STATEMENTS

58....... Single-Word Statements

These single-word statements terminate execution of the program (on the Nova by a DOS
".RTN" system call). The "abort" statement causes a message to be typed on the terminal.

return
break
loop

These statements are described above.

56

Revised BCPL Manual

SECTION 6
STRUCTURES
6-1....... Structure declarations and references
The structure facility allows the user to define templates for symbolically referencing partial-word fields of
variables, and individual words and partial-words of vectors. (A "vector" in BCPL means any block of
consecutive memory words). For example, a program which manipulates rectangular areas on a display
might be using four-word blocks in memory to represent the center coordinates, width, and height of the
significant areas on the screen. This program could declare a structure for referencing these blocks as
follows:
structure rectangle : [x word

y word

width word

height word

]

The structure is used in conjunction with the ">>" operator. For example, if the program has a variable
cursor which points at (i.e., contains the address of the first word of) afour-word block, the expression
cursor>>rectangle.width references the width field of that block, and is equivalent to the expression cursor! 2.

So the program can contain statements like

cursor>>rectanglewidth = 1

and

let cursortop = cursor>>rectangle.x + cursor>>rectangle.height
The declaration defines rectangle as a four-word structure, with fields named x, y, width, and height, each of
which isoneword wide. Thefields of a structure are positioned sequentially, so the x field refersto the first
word of areferenced block, they field to the second word, etc.
The operator ">>" (pronounced "right-lump") expects an expression on the left, and a description of the
field to be referenced on theright. The value of the left-hand expression is taken as the address of the block
of memory to be referenced. The right-hand side, in the simplest cases, consists of the name of the structure
describing the block, followed by ".", followed by the name of the field to be referenced. The | eft
precedence of ">>" is higher than that of all expression operators except procedure calls and vector
subscripts; so

a(b)>>sf means (a(b))>>sf

alb>>sf means (alb)>>sf

but all other left-hand operands of ">>" must be parenthesized.

It is often convenient to define a structure consisting of afield list at the outermost level, without a single
top-name. For example:

6.1

Revised BCPL Manud STRUCTURES

structure [x word
y word
width word

height word
]

This structure describes a configuration of fieldsidentical to that of rectangle. However, references to the
fields of the structure require only the field name, as in cursor>>width.

Structures may also contain partial-word fields, asin the following example:

structure area: [visible bit 1

blinking bit 1

color bit 5

X bit 9

blank bit 2

border bit 5

y bit 9

width byte

height byte

]

This structure describes three-word blocks which hold various pieces of information about rectangular areas
of thedisplay. The field-size specifier bit N, where N is a constant expression, defines afield whichis N bits
wide; the specifier byte defines afield which is 8 bitswide. A bit field may not overlap aword boundary;
the specia name blank (areserved word) is used in the above declaration to leave an unnamed two-bit field
in the second word in order to prevent such an overlap. A byte field must begin on a byte boundary. A
word field must begin on aword boundary. No automatic filling-out to boundaries is done; blank fields
must be supplied explicitly when needed.
With the above definition of area, assuming that cursor points at an area block, we reference the width field
with cursor>>area.width, just asfor rectangle. But the definition of area makes this areference to the

leftmost 8 bits of the third word of the vector cursor. The statement
cursor>>areawidth = w

isequivalent to
cursor!2 = ((w Ishift 8) & #177400) + (cursor!2 & #377)

(The structure reference generates much better code than this). The rightmost 8 bits of cursor!2 are
unchanged. Similarly, the statement

w = cursor>>areawidth
stores the left-hand byte of cursor!2 into w, right-adjusted, with 8 leading zero bits; it is equivalent to
w = (cursor! 2 rshift 8) & #377

6-2....... Nested fields

A structure may contain substructures nested to any reasonable depth. For example, we might define a
structure for vectors representing displayed lines of text asfollows:

6.2

Revised BCPL Manud STRUCTURES

structure textline : [string word
color byte
linenum byte
margin : [left byte
right byte
font : [templates word
charsize: [width byte

height byte
]

]

Now if the variable title is a pointer to a five-word block of memory containing textline data, its fields are
referenced by:
title>>textline.string
title>>textline.color
title>>textline.linenum
title>>textline.margin.l eft
title>>textline.margin.right
title>>textline.font.charsize.width
title>>textline.font.charsize.height
title>>textline.font.templates
That is, afield is specified to ">>" by a sequence of substructure names separated by ".", ending with the
field name.
A substructure name may be used as afield name; that is, it may be the last name on the right-hand side of
II>>II . &)
title>>textline.margin
isalegal structure reference expression, referring to the full word titlel2. However, a">>" expression may
not refer to afield that islonger than 16 bits, or to one that overlaps aword boundary; so
title>>textline.font
isillegal, since thetotal length of font’s subfieldsis 32 hits.
It is often the case that a group of fieldsin a structure are identical to those in another structure or
substructure. For example, we might want to define a structure for vectors which represent rectangular
display areas containing aword of text asfollows:
structure sign : [text word
textsize byte
textcolor byte
visible bit 1
blinking bit 1
color bit 5
]
That is, asign contains all of the information for aarea (visible, blinking, etc.), plus three additional fields.

We can define sign as above without having to copy the field definitions of area as follows:

6.3

Revised BCPL Manud STRUCTURES

structure sign : [text word
textcolor byte
textsize byte
@area

]

Within a structure declaration, an "@" followed by a previously defined structure nameis replaced by the
body of that structure’ s definition. So the above definition of sign is equivalent to:

structure sign : [text word
textcolor byte
textsize byte

[visble bit 1
blinking bit1l
color bit 1
]
]
The brackets surrounding the inner field list have no effect, like unnecessary parentheses surrounding

expressions. So references like stop>>sign.color are legal with either definition.
We could alternatively have made the areafields part of a substructurein sign as follows:

structure sign : [text word
textcolor byte
textsize byte
textarea: (@area

]

or even
structure sign : [text word
textcolor byte
textsize byte
area: @area

]

In the latter case, references to the area fields look like stop>>sign.area.color.

6-3....... Subscripted fields

It is possible to have structure fields which are replicated, with individua replications referred to in structure

reference expressions by integer subscripts. A simple example is a structure which describes BCPL-format
strings:
structure string : [length byte

char*1,255 byte
1

A "N following afield name in a structure declaration indicates that the field is to be replicated; the " is
followed two constants, separated by "," , which specify the subscripts of the first and last replications. So in
the above example, the field char is replicated 255 times, with the replications numbered from 1 thru 255.

Now if sisapointer to aBCPL string, the expression

6.4

Revised BCPL Manud STRUCTURES

s>>string.char*4

references the fourth character of the string, which isin the left half of sl2. A subscriptina structure
reference expression may be an arbitrary BCPL expression; the precedence of the " operator is higher

than any other operator, so any subscript other than a name or number must be parenthesized, e.g.,

s>>gtring.char™(i+)) =0

In references to a subscripted field, the user must be sure to remember what |ow-subscript value was
specified in the declaration. For example, in the above definition of string, the first character is referenced
by

s>>gtring.char™1
and the last meaningful character by
s>>gtring.char™(s>>string.length)
But if the char field had been defined as char0,254* byte, these references should be
s>>gtring.char*0
and
s>>string.char™(s>>string.length-1)

The low-subscript and high-subscript given in a structure declaration determine the number of bits
occupied by the replicated field:

(high-low+1)** (number of bitsin one replication)

Since a structure is only atemplate, and allocates no memory on its own, the only significance of this
number isthat it determines the position of subsequent fields, if any, in the structure. (It also determines
the value of the size expression, which will be described later). In the string example, char isthe last field, so
it makes no difference how many replications are specified. But suppose that we had chosen to include a
text string in sign blocks, rather than a pointer to the string in the first word. The definition of sign would
then be:

structure sign : [@string

textcolor byte
textsize byte
area: @area

]

(Note the uses of the"@" construct). We would then reference the ith character of asign with

stop>>sign.char’i

With this definition, space for the maximum-length string would have to be left in every sign block, since
the expression stop>>sign.textcolor would be complied as areference to the left half of stop!128. It would
be better to specify @string as the last thing in sign, so that variable-length blocks could be used.

Any structure name, substructure name, or field name may be declared as subscripted, subject to the
SUBSCRIPTED STRUCTURE RULE given below. For example, we might define a structure that

describes tables of area descriptors as follows:

structure areatable : [numareas word
area*1,100 : @area

6.5

Revised BCPL Manud STRUCTURES

A areatableisablock of storage which contains some number of three-word subblocks, each of which is
formatted as aareablock. Thefirst of the area blocks starts in the second word; the first word of a areatable
holds the number of areablocksin the table. If the variable screen points at a areatable block, the
expression
screen>>areatabl e.area*5.width

would reference the width field of the fifth three-word entry; that is, the left-half of screen!14. Note that the
subscript is applied to the name which isreplicated in the declaration (area), not at the end of the >
expression.

The above expression is somewhat unwieldy. There are two waysin which the structure could be modified
S0 as to shorten the references to its subfields. One way isto eliminate the numareas field, and attach the

subscript to the name areatable:

structure areatable*1,100 : @area
With this definition, the width field of the fifth entry would be referenced with

screen>>areatable5.width
Note that if the numareas field had been included, it would have been replicated along with the area fields.
(An extraword could be allocated above areatable blocks to hold the number of entries, and accessed as
screen!-1; but there is no way to reference this word as part of the structure).

The second way in which areatable could be redefined isto post-subscript the area field list:

structure areatable : [numareas word
@arex*1,100
]
This form of subscript declaration (subscript applied to a bracketed field list, which iswhat @area is
equivalent to) replicates the substructure defined by the field list (100 three-word blocksin this example),
but subscripts in references to the structure appear after the individual field names. So areference to the

width field of the fifth entry would be

screen>>areatable.width"5

Only the areafields are replicated; so it was possible to include the numareas field in this version of the
structure.
Subscripted substructures may contain subscripted fields or sub-substructures to any depth. For example,

we might describe atable of file names with:
structure filetable*1,50 : [length byte

char*1,15 byte
]

The length of theith name is referenced by
t>>filetableMi.length

and the jth character of the ith name by
t>>filetableMi.char?

Multiple subscripts are also allowable. For example, a4x3 matrix of double-precision numbers might be
described by:

6.6

Revised BCPL Manud STRUCTURES

structure matrix"1,3*1,4: [high word
low word
]
This structure describes a storage area which consists of a four-fold replication of athree-fold replication of
atwo-word block. In referencesto amatrix block, the first subscript specifies which of the four outer
replicationsisto be referenced, and the second indicates which of its three two-word blocks is wanted. So

elements of amatrix appear in memory in the following order:

m>>matrix*1°1.high
m>>matrix 1"1.low
m>>matrix*1°2.high
m>>matrix"1°2.low
m>>matrix"173.high
m>>matrix"1°3.low
m>>matrix"2"1.high
m>>matrix2"1.low

m>>matrix*4°3.high
m>>matrix"4"3.low

Note that the order of subscripts in the matrix structure reference is the reverse of the subscriptsin the
declaration.

SUBSCRIPTED STRUCTURE RULE: Thereplicated field or substructure must begin on a word
boundary and be a multiple of 16 bits wide, or begin on a byte boundary and be 8 bits wide. Subfields
within areplicated substructure need not satisfy this restriction; it applies only to the size and position of the

full replicated element. For example,
fA1,10[abit 3; b bit 13]
and
[abit3; bhit5]71,10
are both legal; but

a*1,10 bit 3
and
b"1,10 bit 13
are not.
6-4....... Overlays
It is often the case that a portion of a structure must be referenced with different sets of fields at different
times; therefore the compiler allows parallel field liststo be declared. For example, the following structure

is adescription of the Novainstruction format:

6.7

Revised BCPL Manud STRUCTURES

structure instr ; [logical bit 1
[acs bit 2; acd bit 2
func bit 3
shft bit 2; cry bit 2
nlod bit 1 ; skp bit 3

]
=[op bit 4
I bitl
X bit 2
d hit8
]
]
The bracketed field listsjoined by "=" refer to the same portion of the structure (bits 1 to 15). If p points to
an instruction, the expression p>>instr.logical references bit O of the instruction. On the Nova, this bit
distinguishes between arithmetic/logical instructions and memory-reference instructions; a program would

use this bit to determine whether it is appropriate to reference p>>instr.acs, etc. or p>>instr.op, etc.

Parallel substructures need not be of equal length; the position of subsequent fieldsis determined by the
longest of the overlaid substructures.

6-5....... L eft-lump structure references

The operator ">>" uses the value of its left-hand operand as the address of the data to be referenced. There
is another structure reference operator, "<<" (pronounced "left-lump"), which takes avariable asiits | eft-
hand operand, and loads data from or stores datainto the variable itself, rather than treating the variable as a

pointer. Toillustrate, suppose we have defined
structure [1h byte ; rh byte]

and that the value of the variable p is#001003. The statement
q=p>>rh

stores into g the right-hand 8 bits of the number contained in memory location #1003; it is equivalent to
q=p!'0& #377

The statement
g=p<<rh

stores into q the value #000003, which is the right half of the value of p; it isequivalent to
q=p& #377

Similarly, the statement
p>>rh=q

isequivalent to

pl0 = (p!0 & #177400) + (q & #377)

6.8

Revised BCPL Manud STRUCTURES

which stores avalueinto the right half of location #1003. The statement
p<<rh=q

isequivaent to
p = (p & #177400) + (q & #377)

which storesinto the right half of the variable p.

The "<<" operator should normally be used only with structures that are one word wide. The compiler will
interpret a statement like

p<<areawidth =w
(areferenceto the third word of a structure) to mean

(Iv p)>>areawidth =w
Thiswill store into the location which is two words below the place in memory where p happensto be
allocated. It isdangerous to assume anything about the allocation of BCPL variables, except in special cases
such as consecutively declared dynamic variables, so use this feature with care.

The left-hand operand of a"<<" expression may be a vector-subscript expression or an rv-expression,
instead of avariable name. The statement

vli<<areawidth = w

means
(v vli)>>areawidth=w ,or,equivaently, (v+i)>>area.width
and
(@p)<<areawidth =w
means

p>>areawidth = w

(Note where parentheses are needed in the above expressions).

6-6....... Heffalump structure references

The operator "=>" (pronounced "heffalump") is convenient for referencing structures that are accessed
indirectly. The expression

a=>s.x
is equivalent to the expression

(@a)>>s.x.

6.9

Revised BCPL Manud STRUCTURES

Here the variable a contains the address of amemory word (say, p) whose contents in turn address a block of
data that the structure s describes. The information in this block may be freely relocated, provided one aso
changes p to indicate the new location. Any variable, a, containing the address of p will till be ableto access

the data using the heffalump construct.

6-7....... Other structure operators
The"Iv" operator may take a structure reference expression (">>" or "<<" expression) as its operand. Its
value is the address of the memory word which would be referenced by the structure expression. The field
referenced need not be afull-word field.
It is sometimes necessary to determine the location or width of afield in a structure. Two special operators
are provided for this; "size" and "offset". Both are unary operators which take a field specification as an
operand (that is, a construct that can appear to the right of ">>" or"<<". The value of a"size" expression is
thesize, in BITS, of the specified field. For example:

size areawidth (valueis 8)

size area (value is 48)

size string.char”i (valueis 8)

size string.char (value is 2040)
A "size" expression is always a compile-time constant, even if avariable subscript expression is involved.
Note that if asubscript ismissing in the field specification, the size of the entire replication is returned.
The value of an "offset" expression isthe BIT number, counting from bit O at the beginning of the
structure, of the first bit of the specified field. For example:

offset area.width (valueis 32)

offset area (valueis0)

offset string.char*5 (value is 40)

offset string.char”i (valueis 8*i)

offset string.char (valueis 8)

An"offset" expression is a constant unless a variable subscript expression is involved.

Keep in mind that "size" and "offset" return valuesin BITS, not in words. To get avector for an area block,
for example, you must say

let cursor = vec (size area) / 16

6-8....... Syntax of structure declarations
STRUCTDECL structure STRUCTGROUP
STRUCTGROUP STRUCTITEM
STRUCTITEM = STRUCTITEM = ... = STRUCTITEM
STRUCTITEM NAME : FIELDDESCR

NAME * SUBSCR : FIELDDESCR
blank : FIELDDESCR

6.10

Revised BCPL Manual

STRUCTLIST
FIELDDESCR

SUBSCR

The colonsin STRUCTITEM arereally only necessary if acarriage return precedes a STRUCTLIST;
other places they may be omitted. The semicolons separating STRUCTITEMsina STRUCTLIST may

STRUCTLIST
STRUCTLIST ~ SUBSCR

[STRUCTITEM ; STRUCTITEM ; ... ; STRUCTITEM]

bit

bit CONST

byte

byte CONST

word

word CONST
STRUCTLIST
STRUCTLIST * SUBSCR

CONST , CONST
SUBSCR” CONST , CONST

omitted if a carriage return separates the STRUCTITEMSs.

6.11

STRUCTURES

be

Revised BCPL Manual

SECTION 7
SOURCE FILE CONVENTIONS

7-1....... Declaration files

The word "get" followed by afile name enclosed in quotes ("...") causesthefileto beincluded in the
compilation, asif the contents of the file appeared in the source text. The most common use of "get" files is
toinclude a common set of manifest, external, and structure declarations in a number of source files that
will be loaded together. The compiler will ignore a second "get" on a'get” file that it has already read (this

facilitates certain uses of the precompilation feature; see description of the /G compiler switch).

7-2....... Labeled brackets
Brackets may be labeled with a sequence of |etters and digits immediately following the "[" or "]". When a
labeled "]" is seen by the compiler, each unmatched "[" (whether it islabeled or not) isimplicitly matched

until the "[" with the same label is matched. Thus, in:

ifngrOdo[li=1
until i gr ndo
[2xli=0;i=i+1]1

the "]1" closes both compound statements. Note that a carriage return, space, or tab must be present
between an unlabeled "[" and a statement that starts with aname. Usually some error will be detected
quickly if no spaceisleft (asin"if ngrOdo[x =0..."). But sometimesthe resulting statement will be lega
(asin"ifngrOdo[rvx=0.."). Insuch cases, the error may not be detected until the end of the source

text; thisis often the cause of a non-obvious "unmatched section bracket" syntax error.

7-3....... Semicolon insertion

If two statements are separated by a carriage return, a semicolon is not required between them. This is
accomplished by having the lexical analyzer replace a carriage return by a semicolon if it is preceded by a
symbol which might end a statement and followed by a symbol which might begin a statement. Carriage
returns are ignored (treated as spaces) in other places. Thisimpliesthat a BCPL statement may extend over

two or more lines, with the carriage returns occurring anywhere in the statement except beforea"+" or
or before the "(" which begins afunction argument list. So

X=a-
(b*c)

will be interpreted properly (no semicolon inserted), but

X=a
- (b*0)

7.1

Revised BCPL Manud SOURCE FILE CONVENTIONS

and
X = af
(b,c)
will give aparsing error, because semicolons will be inserted at the carriage returns ("+", "-", and " (" might

begin a statement).

Semicolons will also be inserted at carriage returns in external, manifest, static and structure declarations,
and in the constant list of table expressions.

Carriage returns may no appear in string constants. To include a carriage return, use *N or *C.

74 Do/Then insertion

Thewords "do" and "then" are equivalent; so one may write

if X Is 0 then x=-x
or
if x Is0do x=-x

The"do" (or "then") inan "if," "unless," "while," "until," or "for" statement may be omitted if the symbol
which would follow the "do" is one of the following

if for break
unless switchon loop
while goto finish
until return abort
test resultis endcase

Thus one may write:

if x eq O resultis-1

whilex Is0 goto L

unless x gr 0 break

fori=1to 10 switchon v!i into[...]
7-5....... Comments
Comments may appear anywhere in the source text, and begin with a pair of slashes (//). The slashes and
the remainder of the line on which they lie are ignored.

7-6....... Upper case vs. Lower Case

Source files may be upper-case only, or upper- and lower- case. If lower-caseis used, reserved words must
be lower-case. The basic rulesfor case are as follows:

7.2

Revised BCPL Manua SOURCE FILE CONVENTIONS

If the first word of the source program (i.e., of the file named in the command line) consists of all lower-case
characters, the compiler will distinguish words on the basis of case; and reserved words must be typed in
lower-case.

If the first word is not entirely lower-case, the compiler will, in effect, convert everything to upper-case on

input. The global switch /U will also cause input to be converted, even if the first word isin lower-case.

Thisrule hasimplications for both compiling and loading. For compilation:

1 If your program is entirely upper-case, any "get" files specified in the program will be treated as
upper-casefiles, even if they were prepared in lower-case. So an upper-case program can use afile of
declarations (e.g., IOX for the 1O package), as long as that declaration file does not depend on case to
distinguish between names.

2. If your program wants to distinguish names on the basis of case, reserved words must be typed in
lower case, both in your program and in any "get" files which the program needs. So in order to use
a declaration file which was prepared in upper case, you must either use the /U switch (if you don"t
care about case) or change the declaration file' s reserved words to lower-case (if you do care about
case in your program).

The BCPL loader (BLDR) normally distinguishes external names on the basis of case. So if you want to

load upper-case and lower-case .BR files together, you must use the /U global switch on BLDR (or,

alternatively, recompile the lower-case programs with /U). In particular, you must use BLDR/U if you load
the 10 package (I01.BR, 102.BR) with upper-case programs, or recompile the source files (101, 102) with

BCPL/U.

7.3

Revised BCPL Manual

SECTION 8
COMPILATION
81....... Normal compilation
The BCPL compiler consists of six files, normally called BCPL.SV, BCPL.YL, BCPL.YC, BCPL.YS,
BCPL.YT, and BCPL.YG. The.SV fileisthe main program; the .Y* files contain the code for the five
passes of the compiler. The.Y* files must have the same name as the save file and the given extensions; S0

to rename the compiler, you must renamethe .Y* filesaswell asthe .SV file.
Normally, to compile asourcefile (e.g., QUEENS.3), just type
BCPL QUEENS.3

(Only one source file may be compiled at atime.) (No extension is automatically assumed for the source file
name.) The compiler will print

BCPL 2.0 -- QUEENS.BR = QUEENS.3

and begin compiling the program. (2.0 isthe current version of the compiler.) If no errors are detected, the
BCPL relocatable binary file QUEENS.BR will be created, and the compiler will print something like

QUEENS.BR -- 1426 (790) WORDS
The numbers are the length of the code generated in octal (decimal).
If an error is detected in the source text, the compiler will generally print each offending line and indicate
the error(s) found in that line. The compiler will continue to look for further errors aslong asit can do so
without getting confused, and finally print the message

n ERRORS IN QUEENS.3

Some errors are grounds for immediate termination of compilation. The most common ones are trying to
compile a source file that does not exit, or typing a command line that BCPL does not understand. Suitable
messages are printed to indicate such errors. It isalso possible to have a program which is "too big", in one
respect or another, for BCPL to handle. This usually resultsin a message like "FRAME SPACE
OVERFLOW" or "OUT OF FRAME SPACE". You must split the program into separately compilable
files when this happens.

The compiler normally assumes that the Nova console is a CRT terminal. Therefore, after producing 20
lines of terminal output, it rings the bell (if any), prints a colon, and waits for the user to type a carriage-
return or line-feed before proceeding. Carriage-return produces 20 more lines; line-feed produces one more

line; O followed by carriage-return or line-feed causes the compiler to proceed without further pauses.

8.1

Revised BCPL Manud COMPILATION

82....... Global switches
These switches can be attached to the name BCPL (or awhatever you call your compiler); eg.,
"BCPL/U/A QUEENS.3".

/U Treat the sourcefile asif it had been typed entirely in upper case. (See the section on
upper/lower case considerations.)

/P Turn off the "pause" feature described above.

/F Write error messages onto the file QUEENS.BT (if the source file name was
QUEENS.3) instead of printing them on the terminal. If /Fisgiven, the compiler
prints the message

BCPL 2.0 -- QUEENS.BR,QUEENS.BT = QUEENS.3
at the beginning of compilation.

/A Produce an assembly-language listing of the code generated. (Thisis useful if you want
to see what kind of code BCPL generates, or if you are having a hard time debugging a
particular piece of code. But thelisting fileis big -- it takes along time to generate and
print -- so you probably don"t want to make a habit of requesting it.) Thelisting is
written on the file QUEENS.BT, unless the /T switch is given; error messages still
appear on the terminal, unless/Fis given.

IT Causes al output (error messages and the /A listing, if requested) to appear on the
terminal. The file QUEENS.BT is not created.

Summary: /F alone sends error messages to QUEENS.BT. /A/F sends both errors and the
assembly listing to QUEENS.BT; /A/T sends both to the terminal. /A alone sends
errors to the terminal, and the assembly listing to QUEENS.BT. /F/T isillegd; IT
aone has no effect.

/D Causes the compiler to indicate when it starts a new compilation phase (LEX, CAE,
SAE, TRN, and NCG), and prints debugging information with error messages.

/H Causes the compiler to pause (by entering the Nova debugger) between compilation

phases and after error messages. To resume, type (ESC)R, not (ESC)P.

(/D and /H are generally useful only to compiler gurus.)

IG

/S

This switch is used to generate "precompiled” declarations files. Any sourcefile (which
may contain "get" statements) may be precompiled, using the /G global switch. For
example,

BCPL/G DECLDRIVER

will precompile DECLDRIVER and create the files DECLDRIVER.BD and
DECLDRIVER.BC. DECLDRIVER istypicaly just alist of "get" statements,
consolidating declaration files. Subsequently, the precompiled declarations may be
used with the local /G switch (see below); precompiling increases the speed of the

compiler dightly if the same declarations are to be included in many files.

See thelocal /S switch, below. The global version smply provides a site-dependent
default value for the switch argument.

8.2

Revised BCPL Manud COMPILATION

83....... Local switches
These switches are attached to names following the compiler name in the command line; eg.,
"BCPL QUEENS.3 QUEENS.LSA™:
name (no switches) The name is taken as the source file name. No extension is assumed; you must
type "name.ext" if the source file has an extension. The source file nameis used to
generate the names for the relocatable binary (.BR) file and the text output (.BT) file
(unless these are specified by the local switches/A, /F, /IR). Onthe Nova, if adevice is
specified with the name (e.g., DPI:QUEENS.3), that device will be used for files
specified in "get" directivesin the source text; and for the output files (unless these are
specified by the local switches/A, /F, IR). If no deviceis specified, the default device
isused (the device given in the last DIR command to DOS), even if the compiler is
running on a different device (e.g., if you have typed "DIR DPO; DPI:BCPL
QUEENS...", QUEENS and its "get" fileswill come from DPO). There are no
"devices' on the Alto.
name/A Likethe global /A switch, but the assembly listing is written onto "name" rather than
QUEENS.BT. If "name" is afile name, the extension .BT will be appended to it if it
has no extension; to create a file with no extension, use "name/A". If "name" is a
device (e.g., MCO:XGP.), it should be terminated with a"."; the output will be sent to
the device named.
name/F Like the global /F switch, but writes error messages onto "name" as for /A above.
("name/A/F" does the obvious thing, but you cannot send errors and the assembly
listing to two different files.)
name/R Causes the relocatable binary file to be named "name" instead of QUEENS.BR. The
.BR extension is appended to "name" if it has no extension; to create afile with no
extension, use "name./R".
name/G The named file is afile of precompiled definitions, created with the global /G switch
(see above). For example, the command
BCPL DECLDRIVER/G TEST
will compiletest, including the declarations precompiled in DECLDRIVER.
number/V. The decimal number is used to set the "manifest constant” for use with the /M switch,
below.
name/M This switch declares the name to be a manifest constant, with the value taken from the
last setting of the /V switch (default istrue, -1). The value will apply throughout
compilation, excluding any part of the compilation introduced through the
precompilation (/G) option.
If used in conjuction with "newname," this can be used to override standard settings for
parameters.
Caution: Nova DOS will convert all keyboard input to upper case; names given to the
/M switch in this manner will therefore be upper case. However, the /M switch does
not trigger the "upper case" detector (section 7-6).
name/L
name/T These switches cause the compiler to print the source text (/L) and intermediate
compilation results (/T) asit proceeds through its various phases. The phases are

specified by the individual characters of "name":
8.3

Revised BCPL Manua COMPILATION

number/S

L forthelexical anayzer

C for the parser

S for the symbol table generator

T for the Ocode generator

| for the code generator, pass |

2 for the code generator, pass 2.
E.g., "CL/L" would cause the compiler to print each line of source text asit parses it,
and again as it makes afirst pass at generating code for the line. The output would go to
the file QUEENS.BT unlessthe global /T switch were given. These switches are
primarily for debugging the compiler. But they might be helpful occasionally in
tracking down an obscure error, or one for which the error message does not provide
enough context to locate the offending statement in the source text.
The number isinterpreted in octal. Its value is used instead of the first instruction of
code normally issued for each procedure (see the runtime environment section). The
same number, incremented by #400, is used instead of the standard procedure return
instruction. This facility allows an installation to customize its procedure storage

dlocation facilities.

8.4

Revised BCPL Manual

SECTION 9
LOADING

9-1....... Normal loading

The BCPL loader on the Alto isfound on the file BLDR.RUN. A symbol file BLDR.SYMS also exists
use in loader maintenance.

The BCPL loader on the Nova consists of four files, normally called BLDR.SV, BLDR.YU, BLDR.YI,
BLDR.YD. The.Y* filesare copies of filesthat the loader needs for initialization of the save file which
creates. The.Y* files must have the same name as the loader; so if you rename BLDR.SV, you must
the .Y* filesaswell.
A typical command to BLDR on the Alto looks like:

BLDR/L/V QUEENS QUEENS1
and on the Nova looks like:

BLDR/D/L/V QUEENS QUEENSL 101 102
Thiswould create the file QUEENS.RUN (.SV on the Nova), an executable save file, from the
relocatable binary files QUEENS.BR, etc. The/L/V switches create a symbol table file
QUEENS.BS, containing information about where things will be in core when the program runs. A
.BSfilelisting is attached. The /D switch on the Novaloads the debugger.
BLDR will accept concatenated .BR files aswell as .BR files created directly by the compiler. That is,
F1BR, F2.BR, ..., Fn.BR are all BCPL relocatable binary files, and F.BR is their concatenation,
including Fin aBLDR command has the same effect asincluding F1 F2 ... Fn. The purpose of this

isto allow muilti-file subroutine packages of BCPL routines to be distributed as one file rather than as
collection of files.

9-2....... Errors
Errorsin the command line to BLDR are fatal; the loader immediately aborts. Most such errors will
in amessage like
Bad switch L in QUEENS/L/S
Undefined file names, and other operating system-detected errors will result in something like
Cannot open QUEENS.BR
Fatal error messages are aways printed on the terminal.

The loader detects two types of external name conflicts. If an external name is defined (by

9.1

for

and
it
rename

BCPL
named
typical

if
then
feature

result

"static

Revised BCPL Manual

[name=...]" or by "let name (...) be ...") in more than one rel ocatable binary file, the loader generates
message like

QUEENS2.BR
The EXTERNAL NAME name was also defined in QUEENS1.BR
for each such conflict detected in QUEENS2. On the Alto, the static for "name" will contain the first
givenit. If an external name is declared to be a common (page zero) variable in some files (by
[@name; ...]") but not in the first file in which the name appears, the |oader genrates a message like
QUEENS2.BR
The COMMON NAME name was not declared COMMON in QUEENS1.BR
These messages appear in the .BSfileif oneis being created; the message

n errors during loading

is printed on the terminal if any name conflicts are detected. Y ou must recompile the offending files
reload before attempting to run the program.

External names which have been used but not defined result in the message
n undefined externals

being printed on the terminal. The names are listed in the .BSfileif oneis being created; or on the
otherwise.

The loader also generates "warnings' if it detects space allocation conflicts in the save file being
The most common of these are

Not enough COMMON space
if too many common (page zero) variables have been declared, and

Not enough STATIC space was reserved
if too many non-page-zero statics have been used. The available page zero space cannot be increased;
must redefine some common variables to be ordinary statics. The space reserved for statics can be
with the local /W switch; see below for thisand for other space allocation controls.
The error, warning, and undefined/multiple-definition error counts are separate; if you are told that

one undefined external and one error, there are two thingswrong. The error being reported is not
undefined external but a different one.

9-3....... Global switches

/D (Novaonly) Load the Nova debugger into the savefile. Thisswitchislegal only if

assembly language file is specified with the /I switch; if you load assembly
programs, you should include the debugger when you load them with DOS's
This switch is not needed on the Alto, since debugging is done with Swat.

LOADING

value
"external

and

terminal

created.

you
specified

was
the

no
language
RLDR.

/U Convert the names of all external symbolsto upper case. Thisis needed, for example, if

9.2

Revised BCPL Manud LOADING

you are loading the DOS 1O package (101, 102) with programs written in upper case;
the 10 procedure names in your files are upper case, but in 101 and 102 they are
defined in lower case. Without /U, the upper case externalsin your programs would be
undefined. (Alternatively, you could recompile the 10 package source files with
BCPL/U.)

W Do not print warning messages. Normally the loader will tell you if you do something
suspicious, like loading a program on top of something else. If you know what you are
doing, and if the warning messages bother you, you can turn them off with /W.

/LIVIN Generate lists of static variable names. /L prints procedure and label names, sorted by
the location of the procedure or label in the code; the /L listing is, in effect, a core map.
IV prints non-procedure names (variables). /N prints all static names, sorted by
address. The most useful combinationis/L/V; it lists al statics, separating procedure
names from variable names. The listings go to the file "savefilename.BS" unless the /T
switch is used.

IT All printed loader output (errors, warnings, and listings) is sent to the terminal.
Normally, if listings are requested, they are sent to afile. Error and warning messages,
and other load map data if there are no listings, normally go to the terminal.

/F All printed output is sent to the file "savefilename.BS', except for fatal error messages,
which aways go to the terminal.

M (Alto only) Don’'t produce a.SYMSfile.

/K (Alto only) Don’t read SY S.BK. (Thefacilities of the Alto operating system are made
accessible to user programs via static variables that refer to system procedures or system
scalars. Because these objects are not defined in auser’s Bepl program, he must declare
the namesto be external. The loader automatically reads the file Sys.bk to determine
how to match up the user’s references with the operating system objects. This
arrangement does not require re-loading programs when objects in the operating system
move. The K switch should only be used if you do not want the loader to perform this
service for you, e.g., if you are loading the operating system itself.)

/IR (Alto only) Don’t complain if the same BR file name appears more than once in the file
list (presumably in different overlays). Load the code each time it appears, but only
dlocate the statics once. Each such static, like any multiply defined static, will contain
thefirst value assigned to it. Thisis relevant only if at least one of the occurrences of the
BR fileisin resident (non-overlay) code.

/B (Alto only) Append overlay filesto the RUN file instead of creating separate BB files.
Each overlay will start on anew disk page.

/l (Alto only) Initialize all code-pointing statics defined in Type B overlaysto point to the
procedure SwappedOut, which had better be defined in the resident code.

94....... Local switches-- group 1
These switches provide global information to the loader. All occurrences of these switches must appear
before any of the group 2 switches, and before the first rel ocatable binary file name.

name/S The name of the savefileto be created. (If not specified, the name of the first
relocatable binary fileisused.) If "name" has no extension, .RUN isused (.SV on the

9.3

Revised BCPL Manua LOADING

name/F

name/|

name/U

number/N

number/C

number/Z

number/V

number/W

number/J

number/K

name/M

number/O

Nova). The"name" will aso be used for the name of the .BS file unless the local /F
switch is used, and on the Alto for the .SYMSfile, unlessthe /M switch is used.

All output is sent to the file "name”. If "name" has no extension, .BSis used.

(Novaonly) Assembly language file. Thefile"name" (extension .SV if "name" has
none) is assumed to be aNova savefile. The savefile created by BLDR isinitialized to
the contents of this file (except for locations 300-377) at the beginning of loading. If the
Nova debugger is to be loaded, it must have been loaded with the/I file. If no/I file is

specified, ablank save file (BLDR.Y) is used, or if the global switch /D is specified,

(Novaonly) BCPL runtime routines. This switch allows the user to replace the standard

runtime routines (get new frame, multiply, etc.) with hisown. (These normally come
from BLDR.YU.) The specified fileisa Nova savefile, but it is special in severa
respects.

Maximum number of names allowed (octal). The default is 1000 (512 decimal). BLDR
must allocate a certain amount of fixed space for each name, and must also have room
for the name strings themselves. If you have alarge number of long names, BLDR may
run out of room, and print a storage exhausted message; or you may have more than
512 names. In either case, you may be able to load by adjusting the number of names
alowed with /N. Y ou may also be able to get more room with /C, if none of your .BR
files have as much as 5000 words of code. (The/N switch does not affect the default

/W value - see below).

Maximum (octal) size of codein asingle .BR file. The default is5000. The/C switch is

useful either if you have an especialy big .BR file, or if you need more name space (see
/N). (The compiler message "QUEENS.BR -- 1426 (790) WORDS" indicates the size
of the code compiled, in octal and decimal).

The (octal) starting address for allocating common (page zero static variables). |If not
specified, common starts at octal 50 on the Alto, and on the Novaat ZMAX of the /l
file, whichis 60 if global /D is specified, 50 otherwise.

The (octal) starting address for allocating static variables. |f not specified, statics start
on the Alto at octal 1000, and on the Nova just after the BCPL runtime routines (which

areloaded just after the /I file).
The maximum number (octal) of non-page-zero static variables. The default is 400 (256

decimal). If no/V is specified, thisamount of space isreserved in the savefile at the
default starting address for statics; code will be [oaded after this space unless/O is given
onthe Alto, or /Pisgiven onthe Nova. If the starting address for staticsis specified
with /V, it isthe user’ s responsibility to see that enough space isleft for static variables
at that address; /W is then just used in checking that static and code space do not
overlap.

(Novaonly) The maximum number (octal) of overlay files permitted. The default is 10
(8 decimal).

(Nova only) The maximum number (octal) of .BR files which may be loaded.

(Alto only) The first name of the SY MSfile (defaults to the same name as the RUN
file).

(Alto only) The location to start loading code (instead of its usual place right after the
statics).

94

Revised BCPL Manud LOADING

9-5....... Local switches -- group 2
These switches control the loading of BCPL code into the savefile. The loader also has facilities for creating
"overlay" filesto allow code to be swapped in dynamically; see the section on overlays below.
name (no switches) A BCPL relocatable binary file. If "name" has no extension, .BR is assumed (this
is the extension normally used by the compiler). The codeinthefileisloaded into the
save file at the current PC.
name/l Thefile"name.BR" is considered to be the beginning of a series of "initialization code’
files which extends to the end of the resident or of the A-overlay code in which the
name appears. A relocation table (see Overlays, below) will be appended after the code
of the series. Thetable will contain apair [static address, relative PC] for each code-
pointing static defined since the last /1. Theideaisthat your program after
initialization can set all the those statics to point to SwappedOut (see Global Switch /1).
number/P Set the current PC to "number" (octal).
$number/P Add "number" to the current PC. No spaces may appear between the"$" and the
"number".
letter/Q
letter/X
letter/Y The "letter" isasingle character A-Z. These switches associate the current PC with the
letter so that the PC can later be restored with the form of /P described below. /Q uses
the value of the current PC; /X uses the larger of the current PC and the value (if any)
currently associated with the "letter"; /Y uses the smaller of the current PC and the
current value of the "letter”.
letter/P Set the current PC to the value last assigned to the "letter" by /Q, /X, or /Y. If no
value has been assigned, an error is reported.
Thefina PC value, after al files have been loaded (not counting the overlays on the Alto), is taken as the
address of the start of frame space when the program executes. (This value can be changed on the Nova
with afinal /P specification.) Execution will begin with the first procedure defined in the first relocatable
binary fileloaded. This procedure will be called with one argument, a 32 (decimal) word vector whose
contents are:
word O: Thelast value assigned to "A" by /Q, /X, or /Y.
word25: Thelast value assigned to "Z" by /Q, /X, or /Y.
word 26: The address at which statics were |oaded.
word 27: The address of the last static variable.
word 28: The address of the first procedure loaded.
word 29: The address (+1) of the last word of BCPL code |oaded.
word 30: Thefinal value of PC (frame space start on the Nova).
word 31: The highest memory address available on the Nova,

the location of the relocation tableif /I was used on the Alto.

9.5

Revised BCPL Manud LOADING

96....... Nova Save file image
The save file produced by BLDR on the Nova looks just like an ordinary Nova savefile. The coreimage it
produces is organized as follows (all numbers are octal):
0..15
(Not part of asavefile. Novasave files start with location 16; DOS considers locations
0-15 sacred. The addressess listed below are core addresses; subtract 16 (octal) if you
arelooking at the savefileitself (e.g., with OEDIT).
16...277
An image of these words from the /I file. Common variableswill normally be alocated
starting at ZMAX, thefirst page zero (.ZREL) location not used by the /I file; this can
be changed by the /Z switch to BLDR.
300...377
Reserved part of page zero (used by the BCPL runtime routines). Y ou should refrain
from clobbering these locations, unless you know what you are doing. Locations
340-377 are relocated by BLDR to point at various runtime routines.
400...777
An image of these words from the /| file. DOS depends heavily on this page being
correct, so users should not clobber it. BLDR fixes afew words in this page to make the
save filelook asif it was created by the Novaloader.
1000-NMAX-1
Animage of therest of the /I file. NMAX /Isthe first unused word of the/I file. If
thereisno /I file, NMAX will be approximately 4300 if /D was used (the debugger is

about 3300 words long), 1000 otherwise.

NMAX...UMAX-1

The BCPL runtime routines. These currently are about 700 words long.

UMAX..VMAX-1 (if /V was not used)

Space for static variables, unless the starting address for statics was explicitly specified
by /V. The size of the space reserved (VMAX-UMAX) is 400, unless changed with /W.

VMAX... (if /V was not used)
UMAX... (if /V was used)

The default starting address for loading BCPL code. If the group 1 switch specifications
arefollowed by just alist of file names, the BCPL code will be loaded sequentially
starting here, unless the PC is changed with /P.

The format of an Alto savefileis described in the Alto Operating System Reference Manual, section 4.9.

9-7....... Overlays
All occurrences of these switches must appear after al .BR file names which are to be loaded into the
"resident” save file have been specified.
name/A Create the file"name" (extension .BB if "name" has no extension) and load the
following relocatable binary files sequentialy into that file. The code isintended to be
read into core and run at the current value of PC; procedures and labels defined in the

9.6

Revised BCPL Manua LOADING

name/B

filesloaded into "name" will point at this area of core. The PC should not be changed
(with /P) between the .BR files. Thefile "name" (or the subfile of the RUN file if
Global /B was used) has the format:

word O: value of PC at thefirst .BR file loaded

word 1: length of the code in words

word 2; 0 (thisword is 1 for a/B file - see below)

word 3: L, the word at which the relocation table starts, if any
word 4: length of the file or subfile in words

word 5: page number of this disk page on the Alto, 0 on the Nova
word 6: 0

word15: 0
word 16: (thisisthe first word of code)

(if there is arelocation tabl e, see below)

N.B.: Thefirst word of the code for each .BR file is the length of the code for that file;
the second word is executable.

Similar to /A, but in addition, the file "name" contains information about which
procedure and label pointers must be fixed when the codeisread into core. /B is used
when the place at which the code will be executed is not known at 1oad-time.

All code compiled by BCPL is self-relocating; that is, the code contains no absolute
addresses which point at the code. The only words which must point into the code are
the static variables which are defined as procedures and labels. Therefore, in order to
dynamically relocate the code from one or more .BR files, all that is necessary is to

initialize the procedure and label variables defined in the .BR files. Thisisthe purpose
of therelocation pair list at the end of a/B file.

word O: value of PC at thefirst .BR file

word 1. length of code in words

word 2: 1 (to distinguish between /A and /B files)

word 3: L, the word at which the relocation table starts

word 4. length of the file or subfile in words

word 5: page number of this disk page on the Alto, 0 on the Nova
word 6: 0

word 15: 0

word 16: (thisisthe first word of code)

word L: number of relocation pairs N
word L+1: static address
word L+2: relative PC

word L+N*2-1: static address
word L+N*2: relative PC

When the code isread in at location P, each "static address' must be set to P+ "relative
PC", so that the procedures and labels which reference the code will point to the correct
places. The following procedure will do this on the Nova; it assumes the standard 10

package and aroutine to get a block of storage from someplace in core.

| et swapin(fil enanme) be
| et channel =open(fil enane)
| et header=vec 15

[

readseq(channel , header |shift 1,32) /1
| engt h=header!1 I
| et codestart=get bl ock(| engt h) /1

| et

read 16 word header
| ength of code
get core for code

9.7

Revised BCPL Manud LOADING

readseq(channel , codestart |shift 1,1l ength*2) //read code

set pos(channel , header!3 Ishift 1) //get to relocation info

| et n=readbi n(channel) /I nunber of pairs

for i=1to n do

[let p=readbi n(channel) /lstatic address to fix
| et codeaddr =r eadbi n(channel) /loffset in code
@=codeaddr +codest art /1fix static variable

]
cl ose(channel)

It should be noted that string constants and label constants are part of the code BCPL
compiles; the pointer to the constant block is recomputed each time the string or table
expression isevaluated. So non-resident code must be careful about its use of strings
and tables.

Although the relocation pair table is the actual authority for producing correct addresses
in statics that reference overlay code, a better BSfile listing will result if each name/B
entry isfollowed by 0/P, to reset the PC value assigned during the load.

9-8....... Alto Operating System Linkage

To facilitate operating system linkage, two kinds of text files are accepted by BLDR: files specifying static
locations (.BJfiles) and files specifying static values (.BK files). The former are specified by filename/J or
filename/H and the latter by filename/K. All the BJ files must precede the first BR and all the BK files
must follow the last BR!!! Remember that the loader automatically reads SY S.BK at the very end, unless

Global /K has been specified.
Theformat of atypical lineinaBJor aBK fileis:

staticName octalNumber(s) codes

A BJlineisignored unless the staticName is declared external in some BR. A BK lineisignored unless the
staticName is declared external in some BR and is never defined in any BR or BJ. Thus, aBJfile specifies
only the locations of operating system statics defined and/or referenced in the program, while the BK serves
to initialize only operating system statics referenced but not defined in the program.

In aBJfile, thelast octal Number on each line specifies the location at which the loader should allocate the
static staticName. In aBK file, the first octalNumber specifies theinitial value of the staticName. The first-

last ruleisframed to allow simple construction of these text files by editing aBSfile.

The recognized "codes' on each line of aBJfile are asfollows (note: if aBJfileis cited as filename/H, all
codes are ignored, and the default isinvoked):
U=UND=UNDEF
(default) The staticName must be defined in this load.
P L,V
Another load (the operating system) defines the staticName to be a
procedure (P), label (L), or variable (V); it must not be defined here
R (withPorL)
The static points to relocatable code

The codes on each line of aBK file are asfollows:
P(default), L, V
Another load (the operating system) defines the staticNameto be a
procedure (P), labdl (L), or variable (V)

9.8

Revised BCPL Manua LOADING

R (withPorL)
The static points to relocatable code

Unrecognized codes are ignored.

To simplify the composition of the text files, there are "bases" which are added to each octal Number.
bases are specified by individual lines of the form:

octal Number
Comments may be included in atext file between / and carriage return.

The loader cannot initialize a static unlessit isin the static area of memory. Thus, UND entriesin aBJ
which place a code-pointing or initialized static outside the legal arearesult in awarning message.

The loader keeps track of the minimum and maximum locations in the static area that are mentioned in
files (including those statics unused in any BR), and avoids allocating staticsin that region theresfter.

The way the loader informs the operating system of the linkagesis by listing the addresses of all
initialized by BK entriesin atable appended to the resident code (after the relocation table, if /I is used)
recording the number of these statics in the file header. The operating system assumes that the values
those statics are redlly "indices' into a static areain the OS (in which order will not change) from which
contents of the designated OS statics are copied into the corresponding user program statics.

9.9

The

file

BJ

statics

of
the

Revised BCPL Manual

SECTION 10
RUNTIME ENVIRONMENT

10-1....... Procedure Frame Format
Whenever code compiled by BCPL is being executed, AC2 points to the first word of the frame for the
procedure which owns the code. (AC2 is not changed by "goto,” so one should not jump across procedure
boundaries; no check is made for this either at compile time or run time.) While the procedure Q is running
(i.e. after a call has been executed from the procedure P and Q’s frame isinitialized), the frame belonging to
Q contains:

(AC2)+0: address of P'sframe

(AC2)+1: (temp -- see below)

(AC2)+2: (temp -- see below)

(AC2)+3: (temp -- see below)

(AC2)+4,5,... arguments passed to Q by P

. dynamic variablesfor Q
dynamic temps needed by Q

vectors declared in Q

The frame belonging to P, the procedure that called Q, contains:

word O: address of the frame of P's caller

word 1: address (-1) within P to which Q should return

word 2 (address (+2) of the start of P)

word 3: (temp used by P to pass arguments to Q)

word 4,5,... arguments, dynamic variables, temps, vectors for P
The frames belonging to P’'s caller and earlier ancestors of P have the same format as P'sframe. The only
useful information contained in the frame of the procedure currently executing (Q) isword 0; the return
addressfor Q isin P sframe, not in the current frame. Words 2 and 3 of P's frame need not be preserved by
Q once Q's frame has been allocated. Words 1, 2 and 3 of Q's frame are available as temps for the BCPL

runtime routines (and for users’ machine-language procedures -- see below) while Q is running.

10-2....... Procedure Calls
Assume that Q is the currently executing procedure, and that Q is about to call the function R with two
arguments: z=R(x,y). (Callswith more than two argumentswill be described below.) The codein Q for
this statement will look something like this (assuming x, y and z are directly addressable):

LDA 0,x /lput argl in ACO

LDA 1y /lput arg2 in AC1

JSR @R /lcall R (R pointsto first instruction)

2 //Inumber of arguments passed

STA 0,z //store result passed back in ACO

The JSR will transfer to the following codein R:
STA 31,2 [/save return address (in Q's frame)
10.1

Revised BCPL Manud RUNTIME ENVIRONMENT

JSR @370 /Iset up R'sframe

n /Isize of frame needed by R

JSR @367 /l(not executed unless >3 arguments)
(first instruction in R’ s body)

The "getframe" routine, pointed to by location 370, does most of the work for entering a procedure. Its
responsibilities are to set AC2 to point to a block of storage at least n words long for R’s frame, to save the
original contents of AC2 (Q’sframe pointer) in word 0 of R’ s frame, and to store the two arguments passed
to Rinwords4 and 5 of R's new frame. (If there are more than three arguments, "getframe" executes the
JSR @367 to store the additional argumentsinto R’s frame; otherwise the JSR @367 is skipped.) The
"getframe" routine returns, in ACO, the actual humber of arguments passed to R. If R has declared a
"numargs" variable, the first instruction in R stores ACO into this variable.

After "getframe” isfinished, the body of R is executed. R returns by executing JSR @366, with its result in
ACOif itisafunction. This"return" routine must deallocate R’ s frame, restore Q' s frame pointer to AC2,
and return to Q at the location (+1) pointed to by word 1 of Q'sframe.

For procedure calls which pass zero or one arguments, the above discussion applies as well; ACO and/or
AC1 are simply not loaded by Q, and are ignored by "getframe.”

For procedure calls with exactly three arguments, ACO and AC1 are loaded with the first two arguments as
above, and the third argument is passed to R by Q in word 3 of Q'sframe. Inthiscase, in addition to the
chores mentioned above, "getframe” copies this word to word 6 of R’s new frame (word 6 is the location for
putting the third argument). The codein Q for acall a=R(x,y,z) might look like:

LDA 0,x /lput argl in ACO
LDA 1y /lput arg2 in AC1
LDA 3z /lput arg3 in word 3 of
STA 3,3,2 /IQ sframe

JSR @R /lcall R

3 /I3 argumentsto R
STAOQ,a [Istore result

(The code might be more complex that thisif one or more of the argumentsis not asimple variable.)

For procedure calls with N arguments (N>3), the calling sequence is more complicated. N+1 consecutive
cells are reserved (as dynamic temps) in Q's frame, starting at word L of the frame. (L is not necessarily the
same for every call.) Arguments 3 through N are stored by Q in cells L+3 through L+N of Q’s frame;
arguments 1 and 2 are loaded into ACO and AC1; and the number L is stored in word 3 of Q's frame.
(WordsL, L+1 and L+2 in Q'sframe are available as temps for "getframe.") So the code for
a=R(z1,z2,23,z4,25) might look something like:

LDA 0,z3 l/store args 3,4,5in Q'sframe

STA0Q,L+3,2

LDA 0,24

STA 0,L+4,2

LDA 0,25

STA O,L+5,2

LDA 0O,KL /IKL contains the number L

STA 0,3,2 /lpass offset of argsto R

LDA 0,21 /lputargsland 2in AC's

LDA 1,22

JSR @R

5

STA O,a
So for calls with more than three arguments, "getframe”" must move arguments 3 through N from Q's frame
into words 6 through 6+N-2 of the new frame for R. Thisis done by the "moveargs’ routine (pointed to by
location 367) after "getframe” has created the new frame. (The "moveargs’ routineis used, rather than

10.2

Revised BCPL Manud RUNTIME ENVIRONMENT

having "getframe" itself move the arguments, for historical reasons. The "moveargs' routine, like
"getframe," must return in ACO the number of arguments passed to R.)

Nothing in the above description of procedure frames and procedure calls depends on where or how frame
spaceis alocated by "getframe" and deallocated by "return." In addition, the code compiled by BCPL
makes no assumptions about frame allocation; a BCPL procedure simply assumes that the standard four-
instruction preface will set up its frame and that the standard return instruction will deallocate it and restore

the state of the caller. By replacing the standard "getframe," "moveargs’ and "return” routines (e.g., by
changing locations 366, 367 and 370), the user can tailor frame allocation strategy to special needs.

10-3....... Frame Allocation on the Nova

The standard Nova BCPL "getframe" allocates frames on a stack which starts from the final PC value seen
by BLDR and grows toward address #77777. When "getframe" alocates a new frame, it checks to see that
the last word of the frameis not beyond the address contained in location 335; if it is, "getframe" prints a
message indicating that the program has run out of frame space, and aborts execution. Location 335 is
initialized to point at the highest memory address available (not used by DOS). Normally, all available
memory is assumed to be devoted to frame space. However, by adjusting the contents of location 335, a
program can reserve storage for itself (e.g., the statement @#335=@#335-#10000 reserves #10000
additional cells, starting at location @#335 (after the statement is executed)).

The page zero location 336 points to the location which will be the first word of the frame for the next
procedure called. So when location 335 is adjusted, the program should check the contents of location 336

to seeif the desired space is available: @#336 must be less than @#335.

10.3

Revised BCPL Manual

SECTION 11
NOVA /O and UTILITY ROUTINES

11-1....... Introduction

This section describes a number of routines which have been written to provide limited but useful runtime
support for Nova BCPL programs. In many cases, the routines are very similar to the actual assembly-
language DOS system call, or are obvious extensions of the DOS function. Routines have been written to
do many 1/O functions and afew string functions. Limited formatted 1/0 functions have been
implemented using general string and integer conversion routines.

Before calling any of the 1/O runtime routines, the routine initbcplio must be called to set up severa global
variables. The /O errors are handled by the routine whose addressisin syserror. Thisroutineis normally
ioerror, aroutine which corrects some inadequacies of the DOS error-handling facility, and optionally prints
procedure information. Input routines do not consider end of file to be an error and return this information
through a byte count indicating how many bytes were actually read, or aspecial ASCII character. Errors
may be captured by changing the routine in syserror to one of the user’s routines or by setting syserrortrap
to"false." If thisisdone, after an 1/O routineis called, the location syserrorflag will be false if no error has
occured, but otherwise will be true; syserrorvalue will have the error value from AC2 after the DOS system
call. End of filewill be shown as an error when this facility isused. For doing routine tasks, the default
error routine will be adequate.

DOS strings are not compatible with BCPL strings. All the /0 routines accept BCPL strings and convert
them to DOS strings when necessary, with the exception of readline and writeline (see description of those
procedures).

The procedure descriptions will, in many cases carry a cross-reference note to the DOS manual of the form
DOS:ch-pp. Ingeneral, all procedure arguments must be given; in afew specific cases, optional arguments
are permitted -- these are indicated by brackets ([]). The DOS channel for an open file is an argument to
many of the routines; it is always called "chno." When using routines in which the "chno" description is
marked with an asterisk (*), if the value of "chno" givenis-1, the system teletype will be used (via PCHAR

and GCHAR DOS functions). Thus, for simple teletype I/O it is unnecessary to open a channel.

The routines are contained in the files 101 and 102. 10X isafile containing external definitions that can be
included in aBCPL program with the "get" statement.

11-2....... Global Names

sysac
The accumulators used for system callsto DOS. Not generally useful except inside the runtime
routines.

syserrorflag
If set after asystem call, an error has occurred. Thiswill be true independent of the state of

syserrortrap. The value of the error will be in syserrorvalue until another error occurs.

syserrorvalue
If syserror flag is set after a system call, this static contains the value of the error. Thisvalueis constant
until another error occurs.

111

Revised BCPL Manual

NOVA /O and UTILITY ROUTINES

syserrortrap
If this static is set to true, the routine ioerror will print an appropriate error message and return to DOS
CLI. If set tofase, ioerror will simply return. If ioerror is called by the user program with a single
parameter, ioerror is called by the user program with a single parameter, ioerror behaves as if
syserrortrap were set to true. For more information see ioerror(syserrorvalue).

sysprintpc
If set to true, ioerror will print the addresses of the system procedure from the runtime 1/0O and the

user procedure which caused the error. Thisisthe variable which is set to true by initbeplio(2).

filenamelength

The maximum length of DOS filenames--manifest constant which may be used for allocating vectors
to receive DOS file names.

11-3....... Procedures

nbytes = readcomcm(chno, string [, switches])

Purpose:
chno
string

switches
nbytes

initbcplio(mode)
Purpose:

mode

char = readch(chno)
Purpose:
chno
char

writech(chno,char)
Purpose:
chno
char

To read arguments and switches from the DOS command file, COM.CM
DOS channel number, previously opened to file COM.CM

A BCPL vector for the name read from COM.CM (may be allocated with vec
filenamelength).
A 26 element boolean vector in which each element corresponds to the

aphabetic character for the switch.
The number of bytes actually read is returned.

To initialize various constants needed by the runtime 1/O routines. Failure to
invoke this routine will lead to system crashes at undefined times!
1 - normal mode; error messages will be given normally. 2 - diagnostic mode;

stack information will be printed if thismodeisset. Mode2 may alsobe invoked
by setting sysprintpc to true.

To read one 8 bit character from channel chno previously opened to a DOSfile.
* A DOS channel number 0-7.
The 8 bit character read from the channel.

To write one 8 bit character from channel chno previously opened to a DOSfile.
* A DOS channel number 0-7.
The 8 bit character to be written.

rbytes = readseq(chno, bytepointer, nbytes) DO0S:4-14

Purpose:
chno
bytepointer
nbytes
rbytes

Read a number of bytes using the DOS .RDS command.

A DOS channel number 0-7.

DOS byte pointer to the first byte involved in the transfer.
Number of bytesto be read.

Number of bytes actually read--must be used to detect end of file.

writeseq(chno, bytepointer, nbytes) DOS:4-18

Purpose:
chno
bytepointer
nbytes

Write a number of bytes using the DOS .WRS command.
A DOS channel number 0-7.

DOS byte pointer to the first byte involved in the transfer.
Number of bytesto be written.

nbytes = readline(chno, string[, true/false]) DOS:4-13

11.2

Revised BCPL Manud NOVA /O and UTILITY ROUTINES

Purpose: To read astring terminated by a carriage return from aDOSfile.

chno A DOS channel number 0-7.

string A BCPL vector with enough space to receive the input string.

true/false If true, the TRUE DOS readline function is executed. The .RDL function
terminates on NULL aswell as form feed, carriage return and end of file. One
usually does not want to deal with thisfunction. If false or absent, the NULL
termination is removed.

nbytes If 1, aterminator has been received. The last character in the string received is

either carriage return or form feed (or NULL if the true .RDL) or carriage return
followed by #377 if end of file.

writeline(chno, string) DOS:4-17

Purpose; Write astring which MUST be terminated by a carriage return, null or form feed
to the DOS channel previously opened. DOS interprets tabs, form feeds for
certain devices.

chno A DOS channel number 0-7.

string A BCPL string or vector which must be terminated as specified for readline.

writestr(chno, string)

Purpose: Write any BCPL string. A line feed is unconditionally issued following every
carriage return character.

chno * A DOS channel number 0-7.

string A BCPL string or vector which must be terminated as specified above.

writezoct(chno, number)

Purpose: Write asix digit unsigned octal number with leading zeroes.

chno * A DOS channel number 0-7.

number 16 bit quantity.

writedec(chno, number[, space])

Purpose: Write a signed decimal number with fixed or variable spacing.

chno * A DOS channel number 0-7.

string 16 bit quantity.

space Number of spacesto be used. If missing or zero, a variable number of spaces are
used.

writeoct(chno, number[, space])

Purpose: Write asigned octal number with fixed or variable spacing.

chno * A DOS channel number 0-7.

number 16 btit quantity.

space Nsuergber of spacesto be used. If missing or zero, a variable number of spaces are
used.

writeform(chno, formatcode, data[, formatcode, data...])

Purpose: Write agroup of string or 16 bit data to the channel as specified by the
formatcodes.

chno * A DOS channel number 0-7.

formatcode 0 - datafollowing is string data. 2-10 - datafollowing isa 16 bit quantity to be

displayed in that radix.

writevalue(chno, number, rdx[, space])

Purpose: Write a 16 bit signed number in arbitrary radix (2-10) using fixed or variable
spacing.

chno * A DOS channel number 0-7.

number A 16 hit signed quantity.

rax An arbitrary radix 2-10.

space The number of spacesto be used. If the argument ismissing or 0, a variable

number of spaceswill be used.
word = readbin(chno)
113

Revised BCPL Manud NOVA /O and UTILITY ROUTINES

Purpose: Read a 16 bit quantity from the DOS channel. No end of file detection is
provided except by capturing the error with syserrortrap.
chno A DOS channel number 0-7.
word A 16 bit quantity read from thefile.
writebin(chno, word)
Purpose: Write a 16 bit quantity to the specified channel.
chno A DOS channel number 0-7.
word A 16 hit quantity to be written.
chno = open(name) DOS:4-10
Purpose: Open aDOSfile to a channel selected by the runtime routines.
name Any BCPL string which isalegal DOS file name. Device specifier must be
upper case, e.g., DPO--all other characters are translated to upper case.
chno A DOS channel number 0-7 returned specifying the channel number to be used.
chno = append(name) DOS:4-11
Purpose: Re-open aDOS file to a channel selected by the runtime routines. Writing will
begin following the last character in the existing file.
name Any BCPL string which isalegal DOS file name. Device specifier must be
upper case, e.g., DPO--all other characters are translated to upper case.
chno A DOS channel number 0-7 returned specifying the channel number to be used.
nbytes = curpos(chno)
Purpose: Return the current byte position of a DOSfile.
chno A DOS channel 0-7.
nbytes Current byte pointer for the file.
setpos(chno, nbytes)
Purpose: Set the current byte position of aDOSfile.
chno DOS channel 0-7.
nbytes Current byte pointer for thefile.
curposdw(chno, doublewordvector)
Purpose: Return the current block and byte number of aDOS filein a BCPL vector to
overcome the lack of double precision integersin BCPL.
chno A DOS channel 0-7.
doublewordvector A 2 word BCPL vector giving the block number in word 0 and the byte number
inword 1.

setposdw(chno, doublewordvector)

Purpose: Set the current block and byte number of aDOSfilein aBCPL vector to
overcome the lack of double precision integersin BCPL.
chno A DOS channel 0-7.
doublewordvector A 2 word BCPL vector giving the block number in word 0 and the byte number
inword 1.
createfile(name) DOS:4-6
Purpose: Create aDOSfile.
name A legal DOSfile name.
deletefile(name) DOS:4-7
Purpose: Create aDOSfile.
name A legal DOS file name.
initdev(name) DOS:4-4
Purpose: Initialize aDOS device.
name A legal DOS device name.
directorydev(name) DOS:4-4

114

Revised BCPL Manual

Purpose:
name

releasedev(name)
Purpose:
name

renamefile(name,newname)

NOVA /O and UTILITY ROUTINES

Change the default directory to the indicated device.
A legal DOS device name.

DOS:4-5
Release adevice.
A legal DOS device name.

DOS:4-7

Purpose: Change the name of an existing DOSfile.
name A legal DOS file name.
close(chno) DOS:4-12
Purpose: Close an /O channel to further use until re-opened.
chno A legal DOS channel number (0-7).
resetfiles() DOS:4-13
Purpose: Close dll 1/0O channelsto further use until re-opened.
errvalue = systemcall(ac0, acl, ac2, syscallname, err) DOS4-1
Purpose: Generate aDOS system call directly.
acO NOVA ac 0 to be passed as part of the system call.
acl NOVA ac 1.
ac2 NOVA ac 2.
syscallname A name from the list of system calls contained iniox, generally, the DOS
mnemonic preceded by "sys'--e.g., sysrdl for .RDL. These are manifest
constants defined in 10X.
err The BCPL procedure to be called in the event of an error return from the system
call.
errvalue The error value if an error occurs, otherwise-1. The error code is returned in
global vector SYSAC!2 and in the global variables syserrorflagand syserrorvalue.
If syserrorflag is set, syserrorvalue contains the value of the error. syserrorvalue

will not be changed, but SY SAC!2 will be changed with every system call.

ioerror(syscallname, sysac) or (syserrorvalue)

Purpose:

syscallname
sysac
syserrorvalue

install(chno)
Purpose:
chno

chatr(chno, ac0)
Purpose:
chno
ac0

ac0 = getfileatr(chno)
Purpose:

Writes an error message to the teletype output device. Most messages are
generated by DOS, but in afew cases, ioerror generates the correct message. If
called with 2 parameters, the error value is taken from the vector specified by
sysac and in some cases the name specified by sysac. If called with 1 parameter,

the error value is taken to be the value of that parameter and if needed
syserrorname will be used. If syserrortrap is set to false, this routine will simply
return when called with TWO parameters. Theroutineis executed

unconditionally if called with only one parameter.

The DOS system call used to generate the error.

The system call accumulator vector.

The error value which may be given directly in lieu of the two above.

DOS:4-5
Install a DOS on the default directory device.
The DOS channel previously opened to the DOS to be installed.

DOS:4-8
Change the attributes of a DOSfile.
A DOS channel previously opened to the file to be changed.
The value for ac0 as specified in the DOS manual for file attributes:
R=#100000, S=#020000, P=#000002, W=#000001. WARNING: if
#040000 (bit 1) is set and the file is permanent, it cannot be removed except by a

DOS:4-9
Returns the attributes of a DOSfile.

115

Revised BCPL Manual

chno
ac0

incr = memavail ()
Purpose:
incr

memincr(incr)
Purpose:
incr

dosexec(name, acl)
Purpose:
name
acl

dosreturn()
Purpose:

dosereturn(ac2)
Purpose:

ac2

dosbreak()
Purpose:

NOVA /O and UTILITY ROUTINES

A DOS channel previously opened to the file in question.
The word returned with meanings defined by the DOS manual.

DOS:4-21
Returns the amount of available memory for the user program.
The increment of available memory.

DOS:4-21
Change the amount of user available memory.
The increment of memory to be claimed.

DOS:4-23
Execute a DOS savefile.
The name of a DOS save file to be executed.
The value for acl as specified by the DOS manual. If missing, O will be used S0
that the current execution level is pushed to the disk and the next save file will be
started at its normal starting address.

DOS:4-24
Return control to DOS CLI.

DOS:4-24
Return control to DOS giving an error code. The common error messages will
be misprinted due to DOS assumptions about file names.
The error value to be returned.

DOS:4-25
Create the file BREAK.SV. WARNING!!!!! All 1/O channels must be closed
with aresetfiles command if thefileis to be re-executed.

word = strtovalue(string[, radix])

Purpose:
string

Convert asigned string to a 16 bit integer in the specified radix.
The BCPL string to be converted.

radixThe radix of the conversion. If unspecified, 8 is assumed.

word

A 16 hit word having the converted value.

valuetostr(word, string, radix[, space])

Purpose:

word
string

radix
space

packstr(ustring, pstring)
Purpose:
ustring
pstring

unpackstr(pstring, ustring)

Purpose:
pstring

Convert a 16 bit signed value to a signed string with no leading zeros having
either fixed or variable spacing.
The 16 bit value to be converted.

A vector with enough space to hold the converted value. If fixed spacing is
specified, overflow will cause more spaces to be used in this vector. The
maximum number of spaces used depends on the radix and is 16 for radix 2, 6
for radices 8 and 10.

The conversion radix.

The number of string spacesto be used. If zero or missing, variable space is
assumed.

Change a BCPL string from unpacked format (one byte per word) to packed

format (two bytes per word).

A vector containing a BCPL unpacked string, one character per word, the first

word specifying the length.
A vector with enough room to receive the packed string.

Change a BCPL string from packed format (two bytes per word) to unpacked
format (one byte per word).
A BCPL string.

116

Revised BCPL Manua NOVA /O and UTILITY ROUTINES

ustring A vector with enough room for the BCPL unpacked string, one character
word, the first word specifying the length.

movestr(stringsrc, stringdest)

Purpose: Move a BCPL string which may be in either packed or unpacked format.
stringsrc A BCPL string to be moved.
stringdest A vector with sufficient room to receive the source string.
byteptr = dostr(bcplstrig, dosstring)
Purpose: Convert aBCPL string to a DOS string.
beplstring A BCPL string to be converted.
dosstring A vector with sufficient space to receive the converted string. The
difference in the two formatsis that DOS requires a null character at the end
many strings.
byteptr A DOS byte pointer to the first character of the DOS string.
word = lengthstr(string) Purpose: Return the length of a BCPL string.
string A BCPL string.
word The length of the string.
char = extractchar(string, index)
Purpose: Extract a single character from a string at a specified index.
string A BCPL string.
index Theindex for the character. If out of range, garbage is returned.
char A 16 bit word containing the value of the character.
ans = extractstr(stringl, string2, index, lengthstringl)
Purpose: Extract stringl from string2 beginning at the specified index.
stringl A vector of sufficient size to receive the extracted string.
string2 The string from which the extraction is to be made.
index The beginning index for extraction; if the index goes out of the range of
at any time, the length of the extracted string will be adjusted accordingly.
lengthstrl The length of the string to be extracted.
ans The actual length of the extracted string.

lastbyteindex = imbedchar(char, string[, index])
Purpose: Imbed a character into a vector containing a BCPL string. The existing
at that index is destroyed. If the index for the imbedded character is greater

per

only
of

string2

character
than

the length of the string, the second string isfilled with blanks up to the imbedded

character. If no index is specified, the character will be appended.

char The character to be imbedded.

string2 A vector or BCPL string in which the character isto beimbedded. If
extends the length of string2, string2 must be a vector large enough to hold
results.

index Theindex in string2 at which the character isto be imbedded.

lastbyteindex The last position of string2 which was modified.

lastbyteindex = imbedstr(stringl, string2[, index])
Purpose: Imbed stringl in string2. The existing sub-string at that index is destroyed.
the index for the imbedded stringl is greater than the length of the
string2 isfilled with blanks up to the imbedded character. If no index
specified, stringl will be appended to string2.

stringl The string to be imbedded.

string2 A vector or BCPL string in which the first string is to be imbedded. If
extends the length of string2, string2 must be a vector large enough to hold
results.

index Theindex in string2 at which stringl is to be imbedded.

lastbyteindex Theindex of thelast byte imbedded in string2.

index = searchstr(stringl, string2[, startindex])
11.7

index
the

If
string2,
is

stringl
the

Revised BCPL Manud NOVA /O and UTILITY ROUTINES

Purpose: Search stringl for string2 at the specified starting index or at the start of string 1.
stringl The string to be searched.

string2 The string to be found.

startindex Theindex in stringl at which to begin the search.

index Theindex of the string if it isfound; if not, then -1.

11.8

Revised BCPL Manual

SECTION 12
APPENDICES
12-1....... BCPL Reserved Words
and abort
be by break bit byte blank
case compileif compiletest
default do docase
eq eqv ext endcase external
for false finish
ge or get goto
if ifso ifnot into
let le Is Iv loop
logand logor [shift
manifest
ne neg nil not neqv numargs
newname
or offset
rv return resultis repeat repeatwhile
rem rshift repeatuntil
switchon static size selecton structure
to test then true table
unless until
vec valof
while word xor

121

Revised BCPL Manual

INDEX
abort 5.6,7.2
argument L 34,37
bit 6.7,6.8,6.10
blank 6.10
breek 5.25.3,7.2
byte 6.2,6.7,6.8,6.11
CaSe e 5455
commonvariables L. 3334
compileif L 53
compiletest L 5354
conditionals ... L. 5.2
constants L 4.2
default 4.75.455
do 5.15.25.4,7.1,7.2
docase 5.255
dynamicvariable oo 3.1,3.2,36,3.7,4.1
endcase e 5.255,7.2
= 4.3,4.4,4.6
eV 4.3,4.6
EXPressions L 43
externd 24,3.1,323.334,357.1
fdse 4.2
finish 5.6,7.2
for 52,72
function L 34,35
ge e 43,4.6
get 5.4,7.1
global declarations 31
goto 525.4,7.2
ar e 4.3,4.6
heffalump 6.9
identifier 11
it 5.15.2,7.2
ifnot 5254
ifso 5.25.4
into e 4354

Revised BCPL Manual

label

le
left-lump
let

loop
Is
[shift
Iv

manifest
mul

ne
newname
nil

not
numargs

offset
Operators
or

parameter
procedure

rem
repeat
repeatuntil
repeatwhile
resultis
return
right-lump
routine
rshift

rv

selecton
size
static variable

string
structure

switchon

table
test
then
true

12.3

2431,323353,7183
4.3

4.7,8.3
3.3,34,3.6,3.7
4351

34,35

52

5152

5152
3.4,3.6,3.7,4.6,4.7,5.25.4,7.2
34,355254,7.2

6.1

34,355.1

4.3,4.5,6.2

4.2,43,45

4.3,4.6,5.5

6.5,6.10
24,31,3233,343.7,4.1,4.24.5,
5493

4.4,6.4
3.1,3.2,6.16.2,6.3,6.4,6.56.7,6.8,
6.10,7.1

52545572

52535472
4.2

INDEX

Revised BCPL Manual

unless
until

valof
Vec
vector

while
word

Xor

124

51,52,7.2
5.15.2,7.2

34,3.6,44,4.6
3.6,4.3,6.10
3.7,416.1

51,52,7.2
6.1,6.2,6.3,6.6,6.7,6.9

INDEX

