This document is for Xerox internal use only

Array of Intensity Samples -- AIS

WRITTEN BY PATRICK BAUDELAIRE, JAY ISRAEL AND ROBERT SPROULL

FEBRUARY 1977

REVISED BY KEITH KNOX

MAY 1980

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

This document is for Xerox internal use only

ABSTRACT
This document describes a file format for the digital encoding of images, a basic Alto

software package for manipulating these files, and a general purpose facility for user
interaction and automatic replay.

KEY WORDS AND PHRASES

AlS, Array of Intensity Samples, picture processing, Alto, DIALOG package, DIRECTOR
subsystem.

CR CATEGORIES

39,44

1.

11
12
13
14
15
16

2.

21
22
2.3
24

3.

31
3.2
33
34
35
3.6

4,

41
4.2
43
44
4.5
4.6

5.

51
52
53
54
55
5.6
57

Overview

AIS Files
AIS Software

DIALOG Package and DIRECTOR Subsystem

About Reading this Document
Related Documents
Acknowledgements

TheUser’sView

Keying Conventions
AIS Subsystem
Using a Script
Getting Started

AIS Subroutines

Conventions and Terminology

Level 0 -- Basic AlS Routines

Level 1 -- Type Dependent Routines
Level 2 -- User Conveniences

Level 3 -- Utilities

Modules and Files

DIALOG and DIRECTOR

Overview of DIALOG

The User’'sView

Format of Command File and Log File
Subroutine Calls

DIRECTOR Subsystem

Modules and Files

AIS Format

Terminology
The AIS Format
Raster Part
Placement Part
Photometry Part
Comment Part
Declarations

Figures

1.
2.
3.

An Illustration of an AIS Image
Usage of Command and Log Files
AIS Raster Directions

Table of Contents

I:(J‘I(J'I (€] AR WOWWNDN N

[
[2 BN N

NNNNEE
GRANEFPLP~NO®

N
~

&gwwml\n\)
Wk OO0

W
»

8@@@@@@
O© 00O OoOOd®

41
42

ARRAY OF INTENSITY SAMPLES -- AIS

1. Overview

"Array of Intensity Samples' (AIS) is astandard format for the digital representation of images. By
using this standard, researchers involved in diverse projects can more readily exchange images and
software for processing them. The software described here for manipulating AlS filesis a"starter
set" that we hope will grow as various research groups write routinesto add to it. We invite
additions to the software repertoire, and shall endeavor to disseminate new software and to update
this document accordingly.

1.1 AIS Files

"AIS" refers both to a standard digital format for image representation and to a collection of
programs which manipulate files in that format.

Each AIS fileisadigital representation of arectangular array of pixels ("picture elements’). The
array is a sequence of scan-lines. Each scan-lineis a sequence of pixels. Each pixel is described by
one or more samples -- more than one sample is required whenever severa signals (e.g., chromatic
separations) are to be represented in the samefile.

The AIS format accommodates images of different sizes, different resolutions, different intensity
guantizations, different numbers of signals, etc. A header on the file describes the various
parameters of the file, called the attributes. The AIS format can also accommodate different
methods of encoding images, but only one such encoding has been defined and implemented to
date: an uncompressed array of signal samples (UCA encoding). Section 5 contains detailed
specifications of the AIS format.

There are two classes of software described in this document.
Z Programs and subroutines for manipulating AlS files.
Z Genera-purpose user interface programs: DIALOG package and DIRECTOR subsystem.
All the software assumes a standard Alto configuration and one or two optional Trident disks. AIS

files may be stored and manipulated on both types of Alto disks, Diablo and Trident. The Trident
disk isrequired for printing AIS files viathe Slot interface.

1.2 AIS Software
The software for manipulating AIS filesfalsinto two classes:

Z A package of AlS subroutines for carrying out individual actions:. they are described in
Section 3.

Z A driver subsystem AlS.run which interacts with the user to specify and perform a set of
standard operations on AlS files. The driver subsystem incorporates both the AIS
subroutines and the DIALOG package. It permits a user to manipulate AIS files without
doing any additional programming. Details can be found in Section 2.

ARRAY OF INTENSITY SAMPLES -- AIS

The AIS package has two important properties that even the non-programming user must know.

First, AIS subroutines may access not only disk-resident AIS files, but also pseudo-files which permit
to use the Alto display (asif writing on an AlS file), or certain program-generated test patterns (as if
reading from an AIS file). Second, AlS files are accessed via windows, imaginary rectangular
apertures superimposed over the picture array, which facilitate processing a portion of an AIS

picture. Figure 1 illustrates this abstraction and the coordinate systems used (one for thefile asa
whole and one for each window). A window may cover an entirefile.

1.3 DIALOG Package and DIRECTOR Subsystem

The DIALOG package is a general-purpose set of run-time subroutines which reside between
application routines and the user. DIALOG serves the following purposes:

Z Provide asimple, common software utility for the user dialog, as it appliesto the
specification of input values for a subsystem, using the Alto keyboard and textual display.

Z Permit input to come from a command file (also called a script), with gaps (if any) in the
command file being satisfied by prompting the human user.

Z Produce an output log, which includes the input command file information (if any), updated
according to the values assigned during that session. Log file and command file have the
same format. Thus the log can be used as a command file on alater occasion, with input
values it contains being used automatically: the user will not be asked for them again. This
isillustrated in Figure 2 -- the broken line indicates the log file being used as the command
file during a subsequent session.

Z Permit adry run mode, in which the subsystem carries out the user dialog, but does not
perform processing. The output log from such a run can be used as a command input file
on alater occasion, causing the user-supplied values to be recapitul ated selectively without
human intervention. This, in fact, ishow the initial command file can be created -- a
separate file building/editing step is unnecessary.

Z Provide away to accommodate future procedures which take input from devices other than
the keyboard.

The purpose of the DIRECTOR subsystem is to provide a mechanism for running a series of
application subsystemsin a controlled way. DIALOG and DIRECTOR cooperate to maintain the flow
of control from one subsystem to another. DIRECTOR invokes each subsystem in turn, passing it a
command file on which to operate. Upon completion of the subsystem, DIALOG transfers control
back to DIRECTOR to determine the next step. It isimportant to note that the DIALOG subroutine
package is the only part of the application subsystem which has any interface with DIRECTOR, and
the only part which is aware of the source of the input parameters (disk file or interactive).

Section 4 describes the DIALOG subroutines and the DIRECTOR subsystem in more detail.

1.4 About reading this document

Some material is duplicated in two different sections so that portions of the document can be read
independently. The non-programming user of the AIS subsystem may get started by reading section
2 (The User’s View) and glancing over the description of the AIS format in section 5. A more
expert use of the subsystem (but still without programming) will require some knowledge about the

ARRAY OF INTENSITY SAMPLES -- AIS

AIS subroutines, described in section 3. The AlS programmer should get well acquainted with
section 3, and of course section 5. Reading of section 4 (DIALOG and DIRECTOR) is required only for
the programmer who wants to use the DIALOG package.

Certain notational conventions should be kept in mind when reading this document, especialy the
procedure calling sequencesin Sections 3 and 4. All software terms (file names, subroutine and
subsystem names, calling sequences, parameter names, reserved names) are in a sans-serif font.
Names of parameters are lower case, except that when a name is made up of several words the first
letter of each word after thefirst is capitalized: scanDirection. A further exception is that words
which are acronyms are capitalized: AlS, UCA. Names of procedures follow asimilar convention
except that the first letter is always capitalized: CreateAlSDisplayFile. The calling sequencesarein
BCPL format. "_" isused to indicate the result of afunction which returnsavalue. Square

brackets indicate default values. An argument followed by [exp] defaults to exp if omitted or set to
zero. An argument followed by [...exp] defaults to exp if omitted.

1.5 Related Documents

"Alto: A Personal Computer System, Hardware Manual" describes the standard hardware assumed
by the AIS software.

"Alto Operating System Reference Manual," describes the software environment in which AIS
programs reside.

"BCPL Reference Manua", by J. Curry, et a, describes the programming language used in
implementing AlS and DIALOG software.

"TFS," by J. Melvin, found in "Alto Software Subsystems,”" describes the software package which
the AIS routines rely on to access Trident disks.

"PREPRESS documentation,” memo from R. Sproull, includes instructions for creating and modifying
the .CU format font files used by the halftone procedure.

"Slot/3100 PRESS Printer Operation Procedures,” memo from R. Sproull, describes how to print
fileswhich arein PRESS format.

"BRrRAVO Manual," by B. W. Lampson, describes atext editor suitable for editing DIALOG command
files. Reprinted in the Alto User’s Handbook.

1.6 Acknowledgements

B. Pardley programmed the RotateAlS routine described below, and offered numerous suggestions.

ARRAY OF INTENSITY SAMPLES -- AIS

2. TheUser'sView

This section explains how to use the driver subsystem AlS.run. There aretwo waysto runit. The
first way isto type "AIS" to the Alto EXECUTIVE: thiswill permit one operation to be performed.
The second way isto type "DIRECTOR" to the Alto EXECUTIVE; this permits a chain of operations to
be performed, one step at atime. More about this later (2.3). Let usfirst describe the individual
operations that AlS.run can execute (2.2).

2.1 Keying Conventions

Since both AlS.run and DIRECTOR.run use the DIALOG package, |et us start by describing the user
input conventions.

Each time the program needs information, it displays a message saying what it wants, and a cursor
appears in the form of ablack rectangle. Thisisasignal for you to type aresponse. Since a
response may occupy more than one line, it is always terminated by ESc (not RETURN). Depending
on the nature of the information, the response could be;

Z Oneinteger or more integers, separated by space, comma, or RETURN. They will normally
be interpreted as decimal; to use octal notation, type "#" as aprefix or "B" as a suffix (e.g.,
25 = #31 = 31B).

Z A text string: any sequence of characters.

Z A filename, input as atext string. However AlS.run applies certain defaulting conventions
to AIS file names, which are discussed |ater.

Z A yesor no answer: type"Y Esc" or "N ESC".

Z A multiple choice selection: indicate your choice by typing one or more of the beginning
characters of one of the alternatives, as needed to identifying it uniquely(see the example
on page 11).

Z A request for help: type"? Esc”. Some information will be displayed for you, and you will
be prompted again.

Certain keys have special actions:

ESC terminates each response (not RETURN)

BS backspaces one character

DEL backspaces to the beginning of the response
CTRL-Q aborts execution of the subsystem

Responses may often have default values. They are shown between curly brakets: {......} . To specify
that the default value be used, type Esc alone. Defaults have been selected to be values that you
would want to use most of the time (hopefully). Sometimes, defaults are not provided. If you are
unsure about what to type or what the default is, type "? ESC" to inquire.

2.2 AIS Subsystem

The purpose of the subsystem AlS.run isto permit a user to utilize the AIS subroutines without
having to do additional programming. The discussion in this subsection isintended to give you
information about the operations provided and how to use them. The seven basic operations are:

ARRAY OF INTENSITY SAMPLES -- AIS

Copy Merges windows of AIS files.

Legend Places identifying text on an AIS window.
Reformat Puts certain non-AlS filesinto AlS format.
Print Printsan AIS file viathe Slot interface.

Each time the AIS subsystem is activated, one operation is performed. Y ou are prompted by aline
listing the available operations. select one operation by typing one or more characters to identify it
uniquely, terminated by Esc. Thefirst listed operation is usually the default: it may be invoked by
simply typing ESC. For instance, to invoke the following actions, it is sufficient to type:

Copy ESC
Attributes AT ESC
Print PEsc

Some operations may in turn offer a succession of choices. Each new choiceis selected in asimilar
fashion.

Before describing the details of each operations, let usfirst discuss some general conventions.

Some Conventionsand Ter minology
Files and windows

Two operations deal with AIS files: Reformat, Print. The remaining two operations deal with
windows on AIS files: Copy (in all of its variants) and Legend. As has been mentioned earlier,
windows are rectangular apertures superimposed over the picture array, which permit processing of
selected portions of an AIS picture.

All the details of the AIS terminology are covered in section 5. Figure 1 aso illustrates the concept
of window, and shows the numbering scheme used for pixels and scan-lines. Herelet usonly
mention that there may be up to four samples per pixel (numbered 0, 1, 2, 3) and from one to 16

bits per sample. Let us also define the term scan direction; thisis a number that indicates how the
scan-lines and pixels of the raster relate to the page image itself. With the Alto display, for example,
the most natural scan direction is 3 -- the standard television raster. For the Slot/3100 printer, the
scan direction is 8 -- pixels go from bottom to top; scan-lines from left to right. See Figure 3 for an
illustration of these and other permissible scan directions.

File names

Every file (including AIS files) stored by an Alto isidentified by a name, consisting of one or more
parts, separated by dots. The last part, called the extension is customarily used to designate the
format of thefile. Example: Picture.AlS. No distinction is made between upper and lower case
letters; thus the name picTure.ais refersto the samefile as Picture.AlS. AlS software also permits
afile name prefix indicating the device on which an AIS fileis stored. The prefixes are SO:, S1:,
TO:, and T1:, representing, respectively, the first system (i.e., Diablo) disk, the second system disk,
the first Trident disk, and the second Trident disk. For example, SO:Picture.AlS and
TO:Picture.AlS represent different physical files. When the prefix of an AIS file is omitted, the AIS
software assumes a default disk. The default disk isTO:, if the Trident disk isinstalled and ready;
otherwiseitis SO:. Prefix S: isequivalent to SO:, and T: isequivaent to TO:.

Currently, disk names are used in a dlightly different manner from that described above. The

ARRAY OF INTENSITY SAMPLES -- AIS

second system disk is not implemented at all in any AIS software. ThetermsTO and T1 do not
refer to the actual disk drives, but rather to the two Trident drives or file systemsinitialized in the
cal to InitAlS, see section 3.2. For AIS.RUN, only one Trident drive can beinitialized at atime.
The drive is specified by aglobal switch giving the drive number. For example, if the command
line were AIS.RUN/403, then the default disk and TO would both refer to the second file system of
aT300 on drive number 3.

It is not necessary to type the full name of an AIS fileif it has the standard extension ".AIS".
Suppose that you type the name "PICTURE", and assume that you are using the Trident disk. The
subsystem will first attempt to find the file TO:PICTURE. (with anull extension). If it fails, it will
then look for the file TO:PICTURE.AIS, and only then report failure. When creating anew file, the
extension ".AlS" will automatically be appended to any file name without extension. If you
explicitly want afile name without extension, you should type a dot at the end of the name:
"PICTURE.".

Patterns

Some operations (Copy, Print) can be applied to AIS patterns, aswell asregular AlS files. AIS
patterns are software generated AlS pictures which can be used as read-only AIS files. Patterns are
invoked by typing Esc rather than afile name. Then you will have to specify raster parameters as
for awindow on aregular AIS file: the only differenceisthat the height of the window is defined
by a count of scan-lines rather than by afirst and last scan-line; similarly, the window width is
defined by a pixel count. Four types of pattern are implemented:

Constant The same pixel repeated throughout the pattern.

Grid Equally spaced horizontal and vertical lines. Y ou must specify the spacing and
the line thickness in each of the two directions.

Rectangles A regular array of rectangles, each differing in intensity from its neighbor by
an increment you specify. You will also be prompted for the rectangle
dimensions.

Wedge A rectangular array with intensity varying gradually along the scan-line
between two extremes you specify.

Description of the Operations

Copy

Thisisthe most extensive operation. Each copying step takes a source window, manipulatesit in
some way, and storesit in a destination window. The source window may be from a disk-resident
fileor it may be a pattern. The destination window may similarly be either disk-resident or on the
Alto display.

If you want to act on the entire source file (or pattern), answer yes (i.e Y ESC) to the question
"Should the window be the whole AIS picture?'; otherwise, you will be asked to specify awindow inside
the source AlS picture.

Similarly, when creating a new file as the destination of a Copy operation, the new AIS picture can
be made equal to or larger than the destination window; in the later case, the new AIS picture will

ARRAY OF INTENSITY SAMPLES -- AIS

be set to zero outside the destination window. In this case, you also have the option of changing the
padding and blocking parameters: to understand what this means, consult the details of the AIS
format (section 5) and the AIS subroutines (section 3).

Copy does a straightforward pixel-by-pixel combination of source and destination windows. The two
windows should be of the same size.

There are eight options for treating the old values of the destination window (note: the bit-by-bit
options are useful primarily for one-bit-per-sample AlS pictures).

Opaque Overwrite the old values.

Paint Overwrite only where a source value is non-zero.

Mask Where source valueis all ones, use destination value; elsewhere, zero (bit-by-
bit logical "and").

Blend Perform hit-by-bit logical "or."

Add Perform the arithmetic sum.

Subtract Perform the arithmetic difference.

Invert Where source value is al ones, change destination zeros to ones and vice versa;
where source value is zero, leave destination value unchanged (bit-by-bit logical
"xor").

Compare Compare source and destination bit-by-bit; result is ones where matches occur
and zeros elsewhere.

A typical application would be to replace awindow on an AlS picture by its negative (in the photometric sense): use the
window as the destination of a Copy with an appropriately sized window of a constant pattern with sample value(s) of -1;
if thefile has one bit per sample, use the Invert option; otherwise, the Subtract option.

The source sample values may be mapped via table lookup before they affect the destination file.
There are three ways to specify the mapping table: a one-for-one value substitution, dividing source
values into value ranges and specifying a mapped value for each range, or specifying that equal
ranges be used for dividing input values among mapped val ues (approximately linear mapping).
When you have specified amap, you will be given the option of saving it in afile so that you will
not have to describe it again if you want to use the same map in a subsequent session.

Reformat

The purpose of this operation isto help you convert between AIS and other image formats. There
are three types of conversion supported.

AIS to PRESS
The source must be awindow on an AIS file having one sample per pixel and
either one or eight bits per sample. The output Press file may be B&W or
color and may contain a PressEdit arrow. Either the image dataitself or a
pointer to afile containing the image datais written into the Press file.

ARRAY OF INTENSITY SAMPLES -- AIS

PRESS printer output to AlS format
This method of conversion from PRESS to AlS format requires that the PRESS
printer subsystem be run previously. One page of an intermediate bit map left
behind in the file "Press.Bits" from the most recently printed PRESS fileis
converted to AIS format. The Press.Bits file may bein either SLOT or ORBIT
format.

Other format to AIS
The source image file must include raster data already packed in UCA-type
format. Inthis case, Reformat simply constructs the control information in the
form of an AIS header and copies the raster data, skipping over any header
present in the source file. To use this operation, you will need to be familiar
with the layout of the sourcefile.

Legend

This operation imprints text on an AIS window using crude characters. Theintent isto place
identifying labels on test images, not to provide pleasing textual appearance.

Print

Causes one or several AlS filesto be printed viathe Slot interface. Depending on the printer, you
may print 1, 2, 4, or 8 bit-per-pixel images. The number of bits per pixel in the image must match
the printer specification. No haftoning will be done at print time. Y ou will be asked to specify the
number of copiesdesired. Thereisalimited amount of freedom in printing AIS files. Each scan-
line on the page may be printed once, or it may be doubled. A leading margin of scan-lines may be
specified. Each scan-line on the printed pageis divided into a number of pixels which you specify.
This number includes (a) the image data, (b) aleading margin which you specify, and (c) atrailing
margin (whatever isleft). In alocating these margins, account for afew pixels which the output
scanner traverses beyond the edges of the paper before encountering start & end of scan detectors.
The AlS subsystem uses default values for these parameters which are found in your Alto user
profile user.cm shown below. There should be 7 entriesin user.cm. For instance, the defaults for
the standard 3100 configuration are:

[AIS]

Double: 0

BitsPerPixel: 1

ScanMargin: 36

PixelMargin: 14

ScanLength: 4272

ScansPerPage: 3264

PixelsPerPage: 4224

Some of the necessary printing parameters can be specified only in the user.cm file, some only at
run time and some can be defined both ways.

The parameters ScanMargin and PixelMargin, can only be set within the user.cm file. They are
used to center the laser page image on the paper. The last two parameters, ScansPerPage and
PixelsPerPage, are also specified in the user.cm file. They define the maximum size of the page
image. The actual pictureislocated within this page image.

At run time, you are asked how many scan-lines and pixels to skip within the page image before
printing the picture. The default values for these parameters are calculated by:

ARRAY OF INTENSITY SAMPLES -- AIS 10

scan-lines in leading margin = (ScansPerPage - PictureHeight)/2
pixelsin leading margin = (PixelsPerPage - PictureWidth)/2

Therest of the above parameters can be specified either in the user.cm file or at run time. If
Double is nhon-zero, the scan-lines will be doubled. The number of bits per pixels that the printer
can print is given by BitsPerPixel. ScanLength defines the total number of pixels across a scan-
line and therefore defines the horizontal resolution.

Under a number of circumstances, the Print operation may reformat the AlS files, creating
temporary files TO:print.ais, TO:prinl.ais, ..., TO:prin9.ais. In particular, printing must be done
from a contiguous file on the Trident disk. Thisisthe most common reason for reformating. 1f you
want to save the files you have just printed so that it will not need reformating next time, copy the
corresponding temporary files TO:prin*.ais using the command copy/C of the subsystem TFU.
Hereis an example of interaction with the Print command (prompting and messages by the AIS
subsystem is in small sans-serif italics, user input isin bold face):

>AlSRETURN

AlIS version 3.2 in control

Copy? Legend? Reformat? Print? {Copy}
p ESC

Print

Number of files to print {1}

ESC

Source file name (for pattern, just hit <ESC>) {}
picture Esc

Using file name: picture.AIS

How many copies? {1}

5Esc

Bits/pixel for this printer {1}

ESC

Hardcopy scan-line length in pixels {4272}
ESC

Should each scan-line be doubled? {no}
ESC

Scan-lines in leading margin {1504}

ESC

Pixels in leading margin {1984}

ESC

Your file is being reformated for printing. If you want to save it, copy TO:print.ais

>TFU COPY/C printPicture.ais_ print.aiSRETURN

The user requested 5 copies of the file picture.ais to be printed. The reformated file was copied
under the new name printPicture.ais. Default values were used.

ARRAY OF INTENSITY SAMPLES -- AIS

2.3 Using a Script

The AIS subsystem may be run with input taken from a command file (or script). As mentioned
before, this permits automatic replay of arunning session with identical, or perhaps-- at your
discretion-- with slightly different, input. It may also be run under control of the DIRECTOR, to
perform a specific series of operations prepared in ascript.

The key is therefore the preparation of ascript. Fortunately, thisis made easy by the fact that the
AIS subsystem (as any DIALOG-based system) produces an output log which records all the
interaction that takes place during execution. Thislog is produced, whether or not the subsystem is
run under DIRECTOR control. Output log and script have identical format: they are text filesthat are
easily read and modified with atext editor. Scripts are usually prepared by modifying an existing
script or an output log.

An Exampleof aLog File

The following log file was generated by a previous version of the AIS subsystem. Please note that
several of the options presented there, are no longer available in AIS.RUN.

The format of the log file and script is formally described in section 4.3. Here, it will be sufficient
to give an example. The following isthe log file generated by the AlS subsystem for the session
given as an example above (it is usually called Dialog.out). For clarity of reading, line numbers
have been added, and various fonts have been used to distinguish KEY WORDS, messages and input
prompting, and user input.

COMMAND SUBSYSTEM "AIS" VERSION "2.0" MODE live-run #
PROMPT STRING "Copy? Delete? Attributes? Annotate? Legend? Reformat?
Print? Show?" VALUE att #
3 PROMPT STRING "File name" VALUE PICTURE #
: TERMINATION HOW successful #

5: COMMAND SUBSYSTEM "AIS" VERSION "2.0" MODE live-run #

6: PROMPT STRING "Copy? Delete? Attributes? Annotate? Legend? Reformat?
Print? Show?" VALUE #

7: PROMPT STRING "Source file name (for pattern, just hit <ESC>)."
VALUE PICTURE #

8: PROMPT STRING "Should the window be the whole image?" VALUE #

9: PROMPT STRING "Merge? Halftone? Rotate? Zoom?" VALUE Z #

10: PROMPT STRING "Destination file name" VALUE TEMPFILE #

11: PROMPT STRING "Count of scan-lines" VALUE 512 #

12: PROMPT STRING "Pixels per scan-line" VALUE 512 #

13: PROMPT STRING "Raster direction" VALUE #

14: PROMPT STRING "Samples per pixel" VALUE #

15: PROMPT STRING "Words per scan-line" VALUE #

16: PROMPT STRING "For blocking, give scan-lines per block. (0= no
blocking.)" VALUE #

17: PROMPT STRING "Should the window be the whole AIS picture?" VALUE #

18: TERMINATION HOW successful #

19: COMMAND SUBSYSTEM "AIS" VERSION "2.0" MODE live-run #

20: PROMPT STRING "Copy? Delete? Attributes? Annotate? Legend? Reformat?

11

ARRAY OF INTENSITY SAMPLES -- AIS 12

Print? Show?" VALUE S#

21: PROMPT STRING "Source file name (for pattern, just hit <ESC>)."
VALUE TEMPFILE #

22. PROMPT STRING "Should the window be the whole AIS picture?" VALUE #

23. TERMINATION HOW successful #

24 COMMAND SUBSYSTEM "AIS" VERSION "2.0" MODE live-run #

25: PROMPT STRING "Copy? Delete? Attributes? Annotate? Legend? Reformat?
Print? Show?" VALUE D #

26! PROMPT STRING "File name" VALUE TEMPFILE #

27: TERMINATION HOW successful #

The reader will easy recognize the correspondance between the log file, the display interaction
presented above, and the four AlS operations that it represents:

Step Items Operation
1 14 Display attributes of file Picture.ais
2 518 Copy/Zoom Picture.aisto new file TempFileais.
3 19-23 Display file TempFile.ais on the Alto screen.
4 24-27 Deletefile TempFileais

A few words about the content of this ouptut log. Each recorded unit of interaction is called an
item. Each item ends with the character #. Thefirst item of each step (items 1, 5, 19, and 24)
shows the name and version of the program that wrote the script step, and indicates that it wasa
liverun. Thelast item of each step (items4, 18, 23, and 27) indicates that execution terminated
successfully. Each of the other items shows (after the keyword STRING) a prompt displayed to the
user and (after the keyword VALUE) the user’ sresponse. Notethat initems6, 8, 13, 14, 15, 16 17,
and 22, there is no user response. This means that the user hit the Esc key alone to specify that the
default value be used. When the file shown is used as a command file, the default will be taken
automatically for those steps.

Let us now describe how to use such alog for preparing a script, and how to use a script.

Replaying a Program
Each segment of the output log delimited thus:

COMMAND #

TERMINATION #

represents the running of a program. Extract such a segment and save it in the file Dialog.in.
Activate the program again and it will run automatically without human intervention. Figure 2
illustrates what you have just done. The broken line shows alog file being used subsequently to
substitute for keying, thus enabling unattended operation.

There is an important consequence: if you want to run the AIS subsystem entirely under your
control, make sure to delete the file Dialog.in.

ARRAY OF INTENSITY SAMPLES -- AIS 13

Making It Happen Differently Next Time

Using atext editor, acommand file segment may be modified to cause the program to run
differently next time. The usual modifications are of the following type:

Z To cause avalue to be requested from the user at akeyboard: delete the keyword VALUE

and everything between it and the following #. (The # itself must remain, preceded by at
least one space.)

To cause a default to be used: the same as above, but leave the keyword VALUE.

To give the user extrainformation: insert before vALUE (or before the closing # in the
COMMAND item) something of the form
REMARK "This is additional information"

To use adifferent file asalog instead of Dialog.out (for instance AlSlog.out), insert
LOG AlSlog.out

before the closing # of the COMMAND item. Caution: the log file and command file must

be different.

To change the mode: in the COMMAND item, replace
MODE dry-run
by
MODE live-run
or viceversa. (In dry-run mode, the log file is written, but the operation specified is not
performed.)

Suppose a user wanted to include steps 2, 3, and 4, of the log example above in ascript, so that the
source file name and the dimensions of the destination file may vary from session to session. The
user wants only those three values to be input from the keyboard in the future. Suppose further
that areminder to the user is desired, before he/she keys in the file name, about what is going to
happen to that file. Simply extract items 5 to 27 from the log, and modify items 7, 11, and 12.
Using atext editor, it is straightforward to change the log to look like this:

11:
12:

PROMPT STRING "Source file name (for pattern, just hit <ESC>)."
REMARK "The picture will be displayed on the screen." #

PROMPT STRING "Count of scan-lines" VALUE #
PROMPT STRING "Pixels per scan-line" VALUE #

Scriptswith Many Operations

If you want to use a script containing several operations or involving several subsystems, you will
need to run under control of the DIRECTOR subsystem. The script is prepared by pasting together
segments of other scripts or log files, and perhaps modifying them as described above.

ARRAY OF INTENSITY SAMPLES -- AIS 14

To cause a script to be executed, type "DIRECTOR" to the Alto EXECUTIVE. DIRECTOR will first ask
for the file name of your script. (Typing conventions for responding to DIRECTOR are the same as
those described above.) Y ou will then be given an opportunity to override the modes (dry-run and
live-run) contained in the script. Next, you may specify whether or not you want DIRECTOR to

pause for you to intervene after each step (i.e., each invocation of the AIS subsystem). Execution
now begins. Interaction with DIRECTOR would look like (prompting and messages by the DIRECTOR
subsystem isin small sans-serif italics, User input isin bold face):

>DIRECTOR RETURN

DIRECTOR version 1.2 in control

If you want to use an existing script, name it.
Otherwise, just hit <ESC>. {}

ais.script ESC

To override script's modes, type L or D for live or dry run
Otherwise, just hit <ESC>. {}

ESC

If you want a special log file, name it {Dialog.out}
ESC

Do you want to pause after each step? {no}

ESC

>AIS

If a subsystem aborts for some reason, or if you specified a pause after each operation, DIRECTOR
provides the following options:

Z go on to the next segment,

Z repeat the segment with all input values provided interactively (valuesin the script being
ignored),

Z repest it in the same mode as the original attempt,

Z quit altogether.

Y ou will recognize an abort by noticing the screen go blank for an instant, followed by the
appearance of "SWAT" at the top of the screen and a message at the bottom of the screen explaining
the situation. Type CcTRL-K when you have read the message.

To help you get started, a skeletal script is provided in file AlS.script. It includes a sequence of
activations of the AIS subsystem (described below), with no specific operations or values pre-
assigned. When you want to carry out some AlS operations but do not have a relevant script
available, smply activate DIRECTOR and specify AlS.script. Thelog fileis cumulative; it grows
every time a DIALOG-based subsystem isrun. Delete it every so often so as not to consume too
much disk space.

2.4 Getting started
In order to run the AIS subsystem, you will need the following files on your Alto disk:

AlS.run the subsystem itself,
AlS.errors afile containing messages that are displayed when the subsystem runs into
error conditions.

If you intend to use the Print command, your file user.cm should contains the appropriate entries.
Thefile AlS-usercm.slice contains atemplate of entries for printing on the Slot 3100 in its standard
configuration. Simply insert AlS-usercm.slice into your file user.cm with atext editor. For other

ARRAY OF INTENSITY SAMPLES -- AIS 15

Slot printer configurations, edit the entries as appropriate.
If you want to use DIRECTOR, get aso the following files:

DIRECTOR.run the DIRECTOR subsystem,
Dialog.errors the error message for the DIALOG package,

AlS.script aminimal script for running the AIS subsystem with all input from the
keyboard.

All the files mentioned above are kept on the <AIS> directory on the central PARC computer
MAXC. If you are connected to MAXC via FTP, you can get the latest version of the AIS subsystem
on your disk by obtaining the file <AIS>AIS.cm, and then typing "@AIS.cm@" to the Alto
EXECUTIVE. The same action is appropriate whenever anew version of AlS isreleased.

ARRAY OF INTENSITY SAMPLES -- AIS

3. AIS Subroutines

This section describes a set of utility subroutinesto deal with AIS files.

3.1 Conventions and Terminology

Each AIS fileisadigital representation of arectangular array of pixels ("picture elements'). The
array is a sequence of scan-lines; each scan-line is a sequence of pixels. Each pixel is described by
one or more samples -- more than one sampleis required whenever several signals (e.g., chromatic
separations) are to be represented.

AIS accommodates images of different sizes, different resolutions, different intensity quantizations,
different numbers of signals, etc. A header on the file (the attribute section) describes the various
parameters of thefile. AIS can also accommodate different methods of encoding images, but only
one such encoding has been defined to date: an uncompressed array of signal samples.

Not only may disk-resident AlS files be accessed, but pseudo-files are defined for accessing the Alto
display or certain program-generated test patterns. Each AlS file represents a rectangular image.
Files (and pseudo-files) are accessed viawindows, imaginary rectangular apertures which facilitate
processing a portion of animage. Figure 1 illustrates this abstraction and the coordinate systems
used (one for the file as awhole and one for each window). A window may cover an entire file.

Reading and writing

Reading and writing of AIS files can be performed at three different levels: asample at atime, a
scan-line at atime, or several scan-linesat atime. The first isthe slowest, but conserves space and
is suitable when the processing involved does not proceed in raster fashion. The second is the most
commonly used. Thethird isusually significantly faster than the second when the window is as
wide (in the pixel direction) asthe entire file. When reading a scan-line at atime, there are two
modes available: packed and unpacked. When unpacked mode is used, the calling routine’ s data
image has sample values separated -- one sample per word. This representation is independent of
the encoding method used in the fileitself. When packed mode is used, the calling routing’ s data
image is in the same form as the data on the disk. Programs using this mode require less buffer
space, but may not be applicable to new coding types. In addition to the three basic data access
levels, there are facilities for operating on an entire window. Included here are routines for merging,
rotating, printing, displaying, zooming, and halftoning images. These are currently a somewhat
limited set of facilities, intended to grow with usage.

File name

Every file (including AIS files) stored by an Alto is identified by a name, consisting of one or more
parts, separated by dots ("."). Thelast part, called the extension is customarily used to designate the
format of thefile. Example: Picture.AlS. No distinction is made between upper and lower case
letters; thus the name picTure.ais refersto the samefile as Picture.AlS. AlS software aso permits
afile name prefix indicating the device on which an AIS fileis stored. The prefixes are SO:, S1:,
TO:, and T1:, representing, respectively, the first system (i.e., Diablo) disk, the second system disk,
the first Trident disk, and the second Trident disk. For example, SO:Picture.AlS and
TO:Picture.AlS represent different physical files. When the prefix of an AIS file is omitted, the AIS
software assumes a default disk. Normally, the default disk is TO:, if the Trident disk isinstalled
and ready; otherwise it is SO:. Prefix S: isequivalent to SO:, and T: isequivaent to TO:.

16

ARRAY OF INTENSITY SAMPLES -- AIS

Currently, disk names are used in a dightly different manner from that described above. The
second system disk is not implemented at all in any AIS software. ThetermsTO and T1 do not
refer to the actual disk drives, but rather to the two Trident drives or file systemsinitialized in the
cal to InitAlS, see section 3.2. For AIS.RUN, only one Trident drive can beinitialized at atime.
The drive is specified by aglobal switch giving the drive number. For example, if the command
line were AIS.RUN/403, then the default disk and TO would both refer to the second file system of
a T300 on drive number 3.

Errors

Whenever the AIS routines encounter a non-recoverable error (e.g., a hard equipment failure or a
datainconsistency), the routine AISError is called. This routine halts the processing step and
displays a message indicating the nature of the problem. The user types CTRL-P or CTRL-K to
terminate the processing step cleanly. AISError isalso available for use by programmers utilizing
the AIS routines.

All the AIS.RUN software iswrittenin BCPL.

3.2 Level 0-- Basic Al SRoutines.

zone_InitAlS(stackSpace [3000], driveNumberTO, driveNumberT1)
This procedureis caled to initialize level 0 routines, and to create a zone from which all
free storage will be seized (up to 32K words). The routine also initializes the Trident disk
software and microcode. If the last two parameters are absent, only one Trident drive, TPO,
will beinitialized. If the arguments are present, they are interpreted as the drive numbers
of the Tridentsto be initialized as TO and T1, respectively. For example, the cal to
InitAIS(3000, #403) will initialize TP403, i.e. the second file system of a T300 on drive
number 3, asthe default disk TO.

SetAlSDefaultDisk(diskName)
Changes the default disk prefix for OpenAlSFile and DeleteAlSFile calls.
Example: SetAlSDefaultDisk("S0:").

AISError(code, argl, arg2, ...)
Thisroutineis called to signal an internal error (i.e., not an error in the user’ s responses, but
aproblem in equipment, data structure, or format). The file AIS.Errors contains alist of
error messages (indexed by code) which will be displayed by SwAT.

Files

f_OpenAlSFile(fileName, how [readOnly], rasterVec [0], attributeLength [1024])
This function opens an AlS file of the given name.
how determines the mode of accessto thefile. It has one of the reserved values: readOnly,
readWrite, writeOnly or readWriteNew (meaning create a new file).
If thefileis being created, rasterVec must beinitialized with all the relevant parameters so
that the file size can be determined, and so that it can be alocated on the disk. This
rasterVec can be created by obtaining the parameters from an already existing file (see
ExtractAISUCARaster, below), or by building it anew (see MakeAISUCARaster and
UserAlSUCARaster, below). attributeLength specifies how many words are to be allocated
for the attribute section -- it will rounded upward (if necessary) to amultiple of 1024 words.
If the file already exists, rasterVec (unlessit is zero or omitted) will be filled with the raster

17

ARRAY OF INTENSITY SAMPLES -- AIS 18

part of the attribute section; attributeLength isignored in this case.

The function returns the value f, which is to be used for all subsequent reference to thefile;
it returns O if it isunsuccessful. The notion of an AIS file is similar to the notion of a
stream in the Alto operating system.

success_DeleteAlSFile(fileName)
Deletes the AIS file of the given name. Returnstrue if afile was found, false otherwise.
Notice: thisis the unique exception where afile name isused. All other procedures use the
value f returned by OpenAlSFile.

length_ReadAlSAttributes(f, partType, partVec [0])
If partVec is present and non-zero, this procedure treats it as a vector and reads into it the
corresponding attribute part. partType may have one of the following 5 reserved values:
placementPart, rasterPart, photometryPart, commentPart or allParts. If youwishto
read or write your own private part type, be sure not to use any of the part types already
defined in AlSfile.d.
In any event, the value returned, length, is the number of words in the attribute part, or O
if unsuccessful (i.e. the file does not contain the specified part type).

WriteAlISAttributes(f, partType, partVec)
Writes the corresponding attribute part into the file referred to by f.
Exception: the raster part may be written only when creating afile using
OpenAlSFile(fileName, readWriteNew, rasterVec).

CloseAlSFile(f)
Closes thefilef, and all windows associated with it (see below).

s_GetAlSStream(f)
This function returns the disk stream that is open for accessing the file referred to by f.
Manipulate the stream at your own risk.

Windows

w_OpenAlSWindow(f, firstScan [...0], lastScan [...scanCount-1], firstPixel [...0], lastPixel
[...scanLength-1], unPack [...false], whichSamples [...allOnes])
This call creates awindow on the AlS file specified by f, and in effect establishes alocal
coordinate system for dealing with the AlS. In referencing the window, the first scan-line
will be numbered 0; the last, lastScan-firstScan. Similarly, thefirst and last pixel are
numbered 0 and lastPixel-firstPixel, respectively. Thisfunction also sets the mode in which
scan-lines will be read and/or written.
unpack specifies whether scan-lines are to be read as they are represented on the disk, or
unpacked one sample per word. On writing, similarly, unpack=true means that the
samplesin the user’s data vector are interpreted as unpacked values: one sample per word.
whichSamples is a bit mask that tells which samplesin the pixel should be returned by
ReadAlSScanLine or written by WriteAlSScanLine: if bit O (i.e., the leftmost or most
significant bit) ison, the first sample will be read; if bit 1 ison, the second, etc. Restriction:
if unpack isfalse, all sasmples must be selected.
The default window, obtained by calling this procedure with only one argument f, covers the
whole AIS file.

ARRAY OF INTENSITY SAMPLES -- AIS 19

w_OpenAlSWindowFromVec(parameterVec)
Same as above, with parametersin a vector.

At any given time, afileis permitted to have several windows. When determining the size of a data
vector required for reading and writing scan-lines through a window, you should obtain the value
vLengthMin using GetAlISWindowParams or SetAlISWindowParams. For accessing asingle scan-
line, the smallest data vector alowed isvLengthMin words. For multiple scan-lines, multiply this by
the number of scan-lines. AlS software selects vLengthMin according to certain static characteristics
of the window and file.

CloseAlISWindow(w)
Releases a window.

vLengthMin_GetAlSWindowParams(w, parameterVec [0])
This function extracts the seven parameters of the window in the order given to
OpenAlSWindow, and returns them in parameterVec if this argument is provided:
parameterVec!O isf, parameterVec!l isfirstScan, etc.

vLengthMin_SetAlSWindowParams(w, unpack [false], whichSamples [allOnes])
This function changes the indicated window parameters.

Reading and writing

Several procedures are provided for reading and writing single or multiple window scan-lines, as well
asindividual samples. With awindow is associated the notion of a current scan-line, which isthe
scan-line of the most recent read or write activity. The scan-line number argument sl provided to
reading and writing procedures, may have the special value -1, meaning next scan-line (i.e., the
current scan-line + 1). Immediately after opening a window, next scan-line will be the first scan-
linein the window (i.e., sI=0). The read and write routines do no scaling of the sample values (i.e.,
they ignore the information in the photometry part).

boolean_EndofAISWindow(w)
Returnstrue if the current scan-lineisthe last scan-linein the window (i.e. lastScan-
firstScan).

ReadAlSScanLine(w, sl, vLength, vO, v1, v2, ...)

WriteAlSScanLine(w, sl, vLength, vO, v1, v2, ..))
These functions transfer scan-lines between user’ s vectors and the window, according to the
mode set.
sl isthe scan-line number in the windowed coordinate system.
vLength isthe length (in words) of the vectorsvo, v1,...
The calls specify as many vectors as needed; remember that the whichSamples bits specify
which samples will bereturned. If unpack isfalse, all samples must be selected; the scan-
lineisread or written in packed format, appropriately shifted, into or from vector vO. If
unpack istrue, there should be as many vectors as samples are requested: for instance, if
whichSamples is equal to #060000, the second and third samples will be read into or
written from vectors v0 and v1 respectively. However, if one of these vectorsis zero, the
corresponding sample will not be read or written.
These procedures generate an error if sl isout of range or if vLength istoo small (i.e.
vLength < vLengthMin).

ARRAY OF INTENSITY SAMPLES -- AIS

numberRead_ReadAlSScanLineS(w, sIBegin, count, vLength, v)
numberWritten_WriteAlISScanLineS(w, sIBegin, count, vLength, v)

These procedures can be used to transfer several packed scan-lines to and from the window.
These calls are usually substantially faster than loops using ReadAlSScanLine or
WriteAlISScanLine in those cases when the window is aswide asthe full AIS file (i.e.,
firstPixel=0 and lastPixel=scanCount-1). Otherwise, speed isthe same asthat of iterated
callsto ReadAlISScanLine or WriteAlSScanLine.

The procedures return the number of scan-lines successfully read or written. However, they
will generate an error if the initial scan-line, sIBegin, isout of range, or if vLength istoo
small (i.e. vLength < count * vLengthMin).

value_ReadAlSSample(w, sl, pixel, sample [0])
WriteAlSSample(w, value, sl, pixel, sample [0])

Cursor

Functions for reading and writing individual samples, which work somewhat more slowly
than the scan-line versions above. The sample number, which defaults to specify the first
sample, is provided so that if there are several samples per pixel, you can in fact access each
inturn. These procedures will generate an error if scan-line number, pixel number, or
sample number is out of range.

The AIS read/write routines incorporate a feature which illustrates on the Alto screen the progress of
aseries of operations. The feature is activated by setting the external static AISCursor to anon-zero
value. If AISCursor isnon-zero, every call to aread or write procedure sets the Alto screen cursor
to look like awindow roller-shade showing proportionally the current scan-line position in the AIS
window being accessed. The shadeisrolled up when the window is just opened, the current scan-
line being zero; the shade is pulled down when the current scan-line is at the end of the window. |f
AISCursor is neither zero nor -1, it should point to a 16-word cursor bit map, which will replace the
cursor after each call to CloseAISWindow.

An implementation detail

AIS files and windows are "objects’ for which several of the level 0 AlS routines are generic
routines; pointers to them are planted in the object itself. The routines are:

File routines:

CloseAlSFile Callo
OpenAlSWindow Calll
ReadAlSAttributes Call2
WriteAlISAttributes Call3
GetAlSStream Call4
Window routines;

CloseAlSWindow Callo
GetAlSWindowParams Calll
SetAlSWindowParams Call2
EndofAISWindow Call3
ReadAlSScanLine Call4
WriteAlSScanLine Call5
ReadAlSScanLineS Callé
WriteAlISScanLineS Call7
ReadAlSSample Callg
WriteAISSample Call9

Miscellaneous routines

20

ARRAY OF INTENSITY SAMPLES -- AIS 21

m_Minimum(a, b) =(a<b)?a, b
M_Maximum(a, b) =(a>b)?a,b

DoubleMultiply(r, a, b)
puts the double precision product of a and b in the two-word vector r.

g_DoubleDivide(r,a)
returns r/a wherer is atwo-word vector and a is a single-word value.

r_MulDiv(a,b,c)
returns (a*b)/c, the intermediate product being computed in double precision.

g_IntDivide(a, b) =i a/bj = (a+b-1)/b
computes the quotient of a and b rounded upward, assuming a and b positive.

3.3 Levd 1-- Type Dependent Routines.
AIS files of type UCA

UCA coding typeisdescribed in Section 5. Generic procedures for this type are implemented for
samplesperPixel <_ 4.

MakeAISUCARaster(rasterVec, scanCount, scanLength, scanDirection [3], samplesperPixel
[1], bitsperSample [1], wordsperSL [minWordsperSL], scanLinesperBlock [allOnes],
paddingperBlock [allOnes])
This routine puts the appropriate raster part of type UCA in rasterVec. The minimum
value for wordsperSL is computed by:
minWordsperSL=IntDivide(scanLength*samplesperPixel, 16/bitsperSample)

ExtractAISUCARaster(w, rasterVec)
This routine extracts the shape of the window w, and its mode, and creates a raster part that
can be used to create an AIS file that will hold w. Thisfunction is useful when extracting a
piece of an AlS. The raster parameters wordsperSL, scanLinesperBlock and
paddingperBlock are not copied from w; rather, they are given the default values shownin
the preceding paragraph.

AIS pseudo-files

There are several kinds of pseudo-files. Each of these can be used the same way f isused in the
calls above, with afew exceptions specified below.

f_CreateAlSDisplayFile(displayLines [as much as storage permits], width [606], scanDirection
[3], reverse [false], zone [the zone created by InitAlS])
This function creates an "AlS file" on the Alto display. Programs can write and read scan-
lines from windows on it (1 bit per point) and have the image appear appropriately. The
displayLines parameter states how many Alto display scan-lines are to be allocated. The
scanDirection parameter governs how the scan-lineswill be laid down in the display itself;
it must be either 3 or 8. If reverse isfalse, asample of value 1 is displayed as awhite
dot, and the picture background is black, and vice versa.
Exception: GetAlSStream returns the address of the display bitmap (manipulate it at your

ARRAY OF INTENSITY SAMPLES -- AIS

own risk); ReadAlSAttributes deals only with the raster part; WriteAISAttributes isa no-

op.

f_CreateAlSPattern(patternType, rasterVec, arg0, argl, arg2, ...)
Thisisaway of making aread-only AlS for returning various test patterns (e.g., constant
gray, agrid, etc.). rasterVec isof type UCA. Windows may be opened on patterns; this
gives the programmer an opportunity to set window size and to specify the reading mode.
In the discussion below, the term sampleVec is used to denote an array of samples; itis
employed because a pixel may have several samplesinit. (For one sample per pixel,
sampleVec!0 isthe sample; hence the routines can be called with v value as asampleVec
argument.) The actual number of samples returned is determined in the same way as when
reading from disk-resident files. The patterns presently available are:

patternConstant

patternGrid

patternRectangles

patternWedge

arg0 isasampleVec for a constant pixel to be spread
throughout the window.

arg0 isthe number of pixels per grid unit

argl isthe number of scan-lines per grid unit

arg2 isthe number of pixelsin agrid line (i.e., its thickness)
arg3 is the number of scan-linesin agrid line

arg4 isthe sampleVec for pixels off grid lines [allOnes]
arg5 isthe sampleVec for pixelson grid lines [0].

arg0 isthe number of pixels per rectangle

argl isthe number of scan-lines per rectangle

arg2 isthe sampleVec for the first rectangle [0]

arg3 isan incremental sampleVec to step by with each new
rectangle [allOnes].

arg0 isthe sampleVec at thefirst pixel [0]
argl isthe sampleVec at the last pixel [allOnes].

Exceptions: in accessing patterns, WriteAISAttributes isano-op; GetAlSStream yieldsa
"stream™ which will cause an error if ever used; and ReadAlSAttributes deals only with the

raster part.

3.4 Level 2 -- User Conveniences.

Thislevel includes the routines listed below. Each one whose name starts with "User" exploitsthe
DIALOG package (see Section 1V) to prompt the user for relevant parameters for constructing the

object returned.

PrintAlSPart(stream, partType, partVec)
Puts a textual representation of an attribute part on stream.

LegendAlS(w, slCount, string, sampleValue [allOnes])
This procedure imprints in crude characters, the given legend string on the AIS window w,
using sICount scan-linesin which to do it. Thisis not intended to create pretty characters,
but only to place identifying labels on test images. Uses the system font

22

ARRAY OF INTENSITY SAMPLES -- AIS 23

scanDirection_UserAlSScanDirection(promptString)
This function displays the promptString and solicits user input of a scan direction value.
Only valid AIS scan directions are accepted.

UserAISUCARaster(rasterVec)
fillsin the entriesin rasterVec for a UCA raster by prompting the user to supply valuesto
use. rasterVec may then be used to create a pattern or adisk AlS file.

maps_UserAlSMap(window, zone)
The purpose of this procedure is to construct a map such as used as an optional argument in
MergeAlS or HalfToneAlS (see below). First, however, it ascertains whether or not the user
wants mapping of input values at all; if not, zero isreturned. A map may be specified in
one of three ways: a one-for-one value substitution, dividing the input values into ranges
and giving avalue for each range, or specifying that equal ranges be used for dividing input
values among mapped values. window is the AIS window to which the map will be applied.
zone isamain memory allocation zone from which the storage for maps will be obtained.
The caller isresponsible for freeing maps when it isno longer needed. Finally, the user is
given the option of saving the map in afile, to be retrieved at a subsequent call to
UserAlSMap. The map fileformat is as follows:

word 0 A password (#61273) serving as a hint that thisisamap file.

word 1 Size of thefile in words (excluding words 0 and 1).

word 2-5 Offsets from word 2 for start of map for samples 0-3, respectively
(zero when the corresponding sample is not mapped).

word 6-end L ookup tables mapping input values to output values.

f UserAlSPattern()
is analogous to CreateAlSPattern. The values required to specify the characteristics of the
pattern are obtained through interaction with the user.

w_UserAlSWindow(how, Iv dispUse, Iv dispWidth, Iv dispHeight, Iv dispRasDir, v dispReverse)
This procedure interacts with the user to determine afile to open and awindow to open on
that file. how must be readOnly or writeOnly; in the latter case a new file will be created
if the user names afile not aready existing. InthereadOnly case, awindow on a pattern
may be specified by the user. With writeOnly, the user may specify adisplay, but thisisan
exceptional case: the display file will not be created. Instead, the dispxxx variables are set.
Each dispxxx is apointer to avariable relevant to display usage. The procedure sets
dispUse=true if the user specified display output; false otherwise. The remaining dispxxx
variables will be set by this procedure whenever it sets dispUse. Each corresponds to the
argument of CreateAlSDisplayFile which its name resembles.
Therationale for making an exception of displaysisasfollows. Creating adisplay fileinvolves allocating a bit
map which requires large amounts of main memory. With UserAlSWindow implemented as described here, the
region occupied by the "User" and DIALOG routines can be freed to participate in the bit map. Inthisway,
larger displays can be accommodated. The priceis adlight inconvenience for the programmer calling
UserAlSWindow, who must subsequently test dispUse and, if it istrue, call CreateAlSDisplayFile and open a
window on the result.

ARRAY OF INTENSITY SAMPLES -- AIS

3.5Level 3-- Utilities.
Thislevel contains some utility subroutines for operating on files or windows.

MergeAlS(wOut, win, operator [opStore], maps [0], keepLowerBits [false])
This procedure merges the input window win into the output window wOut. win and wOut
may be of different sizes. however, the procedure will actually operate on two equal size
sub-windows determined by the minimum width and height of win and wOut.
The whichSamples parameters of the two windows will determine the correspondance
between input samples and output samples. |If the sample sizes of wOut is smaller than that
of win, the parameter keepLowerBits comesinto play: if it istrue, the low order bits of
each sample of win are used (the excess high order bits being discarded in copying); if itis
false, only the high order bits are used.
The value of operator determines how old values in wOut are to be treated:

opStore: overwrite old values.
opNew: wherever anew value is non-zero, overwrite.
opAdd, opSub: add or subtract old values.
opAnd, opOr, opXor, opEqv: bit-wise logical operations (useful primarily for one-
bit-per-sample AIS pictures).
If the maps argument is non-zero, the sample vaues from win are mapped into new values,
asfollows:
outVal=(if maps!sample eq 0 then inVal else (maps!sample)linVal).
This can be used for modifying the photometric scale through table lookup (for instance,
tone reproduction correction).

AISPress(wln, streamOut, PRESSFileName, resolution)
This procedure converts from AlS to PRESS format.
win must be awindow of an AlS file having one or eight bits per sample, and one sample
per pixel.
streamOut is a stream aready open on the disk file in which the PRESS output is desired.
PressFileName and resolution are used for PRESS control information: PRESSFileName is
aBCPL string identifying the file; resolution isin pixel per inch.

AISGetPressPage(AlSFileName, pageNumber [1])
This routine provides a mechanism for obtaining an AIS file from an image that starts as a
PREss file page. The PRESS Printer subsystem must be run before calling this subroutine.
AISGetPressPage locates the file Press.bits (intermediate data | eft as a by-product of the
PRESS Printer), extracts page pageNumber, converts that page to AIS format, and stores the
result in AISFileName.

PrintAlS(fvec, copies [1], printerBits [1], slLength [4416], sIDouble [false], bitsInLeadingMargin
[20], scanLinesinLeadingMargin [20], nFiles [0])
This procedure prints one or several AIS filesusing the Alto Slot interface. The files must
have one sample per pixel and may have 1, 2, 4, or 8 bits per pixel.
If nFiles=0, fvec isasingle AlS file; otherwise, fvec is avector of length nFiles containing
the AIS files.
Thereisalimited amount of freedom in printing AIS files. Each scan-line on the page may
be printed once, or it may be doubled, governed by the boolean siDouble. A leading
margin of scan-lines may be specified (scanLinesinLeadingMargin). Each scan-line on the
printed pageis divided into a number of pixels which you specify (slLength). This number
includes (a) the image data, (b) aleading margin (pixelsinLeadingMargin), and (c) atrailing

24

ARRAY OF INTENSITY SAMPLES -- AIS

margin (whatever isleft). In allocating these margins, account for afew pixels which the
output scanner traverses beyond the edges of the paper.
Under any of the following circumstances, PrintAlS reformats the files (creating the
intermediate file TO:print.ais, TO:prinl.ais, ..., TO:prin9.ais) to facilitate printing:

- thefileis a pattern.

- thefileis not on a Trident disk.

- thefileis not contiguous.

- the number of words per scan-lineis odd.

- the larger of block size and file size is greater than 8,192 words.

- the photometry part is missing or O for 1 bit per pixd files.

- the photometry senseis 1 for >1 bit per pixel files.

Warning: use of this routine requires knowledge of the code. It is expected that printing
requirements will be satisfied by the Print command of the AIS subsystem (section 2.2).

3.6 Modulesand Files

The AIS subroutines are found in the following files, all stored on the <AIS> directory on PARC
central computer MAXC.

Minimum basic Level O routines for AIS disk files:

AISUCAO InitAlS, SetAlSDefaultDisk, OpenAlSFile, DeleteAlSFile,
OpenAlsSWindowFromVec, IntDivide, DoubleMultiply, DoubleDivide,
MulDiv, Minimum, Maximum, AISError, some generic routines for disk

windows.
AISUCA1 generic routines for disk file data reading and writing.
AISUCA2 MakeAISUCARaster, ExtractAISUCARaster, generic routines for

manipulating attributes.

Required when using display pseudo-files:

AISDisp CreateAlSDisplayFile, generic routines for display pseudo-files.

Required when using pattern pseudo-files:

AlSPat CreateAlSPattern, generic routines for pattern pseudo-files.

Required for special processing steps:

AISPromptl UserAlSWindow, UserAISUCARaster.
AISPrompt2 UserAlSPattern, UserAlISMap, UserAlSScanDirection.

AlSUser PrintAlSPart, LegendAlS.
AlSMerge MergeAlS

AISPrint PrintAIS

AlSGetPress AlSGetPressPage
AISPress AISPress

AlISSlotProc asubroutine of PrintAIS borrowed from the PRESS Printer subsystem.

25

ARRAY OF INTENSITY SAMPLES -- AIS 26

Additional routines for implementing the AlS subsystem described in Section 2 are found in the

AIS
AlISChatter
AISPChatter
AlISReformat
Template

following files:

main program.

conducts user diaog.

conducts user dialog for the printing command.

puts certain non-AlS filesinto AIS format.

contains a general-purpose text stream output formatting subroutine.

Definition files necessary for compiling the source files listed above:

AlISFile.d
SlotDefs.d

structure and manifest declarations used by all AlS software.
structure and manifest declarations relevant to AISPrint.

Files needed for running AlS software:

AlS.errors
AlSSlotMc .br

Useful command files:
AlSbldr.cm

AlSInstall.cm

AlS.cm

Other useful files:
AlS.script

AlS.updates

error messages displayed through SwAT.
microcode for running both the Slot/3100 and the Trident disks.

loader command for combining relocatable filesto form the AIS
subsystem.

acommand file using FTP to retrieve al the necessary relocatable modules
and subsystems from MAXC. The relocatable modules are stored together
inthefile <AIS>AIS.dm.

acommand file for retrieving the AIS and DIRECTOR subsystems.

askeletal script which DIRECTOR can use to sequence through a number of
AlIS steps.

atext file listing the changes to the AIS software.

ARRAY OF INTENSITY SAMPLES -- AIS 27

4. DIALOG and DIRECTOR

The DIALOG package is a general-purpose set of run-time subroutines which reside between
application routines and the user. DIALOG serves the following purposes:

Z Provide simple, common utilities for the user dialogue, asit applies to the specification of
input values for a subsystem, using the Alto keyboard and textual display.

Z Permit input to come from a command file (also called a script), with any gapsin the
command file being satisfied by prompting the human user.

Z Produce an output log, which includes input command file information (if any), updated
according to the values assigned during that session. Thislog can be used as an input
command file on alater occasion, with input valuesit contains being used automatically: the
user will not be asked for them again. Thisisillustrated in Figure 2.

Z Permit adry run mode, in which the subsystem carries out the user dialog, but does not
perform processing. The output log from such arun can be used as acommand file on a
later occasion, causing the user-supplied values to be recapitulated without human
intervention. This, infact, is how theinitial command file can be created -- a separate file
building/editing step is unnecessary.

Z Provide amechanism for the later attachment of procedures which take input from devices
other than the keyboard.

The purpose of the DIRECTOR subsystem is to provide a mechanism for running a series of
application subsystemsin a controlled way. DIALOG and DIRECTOR cooperate to maintain the flow
of control from one subsystem to another. DIRECTOR invokes each subsystem in turn, passing it an
input command file on which to operate. The subsystem may take some input values from the
command file and some from a human operator. DIALOG creates an output log in aformat suitable
for use asacommand filein alater session. Upon completion of the subsystem, DIALOG transfers
control back to DIRECTOR to determine the next step. It isimportant to note that the DIALOG
subroutine package is the only part of the application subsystem which has any interface with
DIRECTOR, and the only part which is aware of the source of the input parameters (disk file or
interactive).

Subsystems operating under the control of the DIRECTOR need not use the DIALOG subroutines, but
only by using DIALOG are the advantages offered by DIRECTOR exploited. The compatibility facility
isprovided primarily for convenience so that existing subsystems can be intermixed with DIALOG
subsystems and be run under the control of DIRECTOR. Conversely, DIALOG may operate without
DIRECTOR. DIALOG and DIRECTOR are written in BCPL.

4.1 Overview of DIALOG

This section discusses the general sequence of eventsin the execution of a subsystem which utilizes
the DIALOG package. Each of the two subroutines -- Dialoglnit and Prompt -- are described in more
detail in alater section. The DIALOG software and command file formats permit a separate
subsystem (DIRECTOR) to run automatically several programs or subsystemsin succession. The
DIALOG package is most appropriate for subsystems which can be provided with all their required
input values first, and which then go ahead and perform the required processing. Itisless

ARRAY OF INTENSITY SAMPLES -- AIS 28

appropriate for subsystems which require continual close user interaction (e.g., text editors).
The sequence of eventsin the execution of a subsystem is as follows:

1. The subsystem is invoked by any of the standard methods. It performsits own internal
initializations.

2. The subsystem calls Dialoglnit, which causes the DIALOG software to be initialized.
3. For each input value required by the subsystem, the following series of steps occurs:
3.1. The subsystem calls the Prompt routine.

3.2. The Prompt routine looks in the script (if any) first for an appropriate value. If
present, that value is returned to the subsystem without human intervention. If the
valueis absent, the user is prompted to supply it. The user’sinput is subjected to a
cursory validity check (to catch blatant typos). The user also has the option of (a)
specifying that a default value be used, or (b) causing the subsystem to be aborted.

3.3. The Prompt routine appends to the output log an item indicating the value
used, or that the default was taken.

3.4. The Prompt routine returns the value to the calling routine. The calling routine
is not informed where the value originated (file or human).

4. After all required values have been processed, the subsystem performs its main function.
An exception isthe dry run mode; upon detecting this mode, the subsystem is responsible
for skipping this step altogether. (The DIALOG package itself does not cause the skip to
happen, but does provide the mode information. In fact, the DIALOG routines do not take
any different action in dry run mode from live run mode.)

5. Finally, the subsystem terminates execution in any of the standard ways (e.g., BCPL finish
or abort)

If the output log is used as script on a subsequent run of the subsystem, the same values will be
supplied, but without the human interaction. Moreover, this automatic supplying of values can be

selective. If thelog is edited to remove the value(s) associated with a particular prompt, the human
interaction will occur for that prompt.

4.2 TheUser’'sView

This section describes what the user of a DIALOG-based subsystem sees. A later section deals with
the programmer’ sinterface.

Running a program

A subsystem is activated either through DIRECTOR (described in more detail in section 4.5) or, more
conventionally, by typing its name to the Alto EXECUTIVE.

Each time the program needs information, it displays a message saying what it wants, and a cursor
appearsin the form of ablack rectangle. Thisisasignal for you to type aresponse. Sincea

ARRAY OF INTENSITY SAMPLES -- AIS 29

response may occupy more than one line, it is always terminated by ESc (not RETURN). Depending
on the nature of the information, the response could be:

Z Oneinteger or more integers, separated by space, comma, or RETURN, terminated by EScC.
They will normally beinterpreted as decimal; to use octal notation, type "#" as a prefix or
"B" asasuffix (e.g., 25 = #31 = 31B).

Z A text string (for instance afile name): any sequence of characters, terminated by EScC.

Z A yesor no answer (i.e. aboolean value): type"Y ESC” or "N ESC".

Z A request for help: type"?Esc”. Some information will be displayed for you, and you will
be prompted again.

Certain keys have special actions:

ESC terminates each response (not RETURN)

BS backspaces one character

DEL backspaces to the beginning of the response
CTRL-Q aborts execution of the subsystem

Response may often have default values. They are shown between curly brakets: {......}. To specify
that the default value be used, type Esc alone. Sometimes, defaults are not provided. If you are
unsure about what to type or what the default is, type "? ESC" to inquire.

Replaying a program

After running a program, look at the log file (usually Dialog.out) using atext editor. Anexample
of such alog fileisgiven in section 2.3. Each segment delimited thus:

COMMAND #

TERMINATION #

represents the running of a program: all the user interaction with the program has been recorded
there, and it is sufficient for running the program again, automatically, with the same input. Extract
such asegment and save it in the file Dialog.in. Activate the subsystem again and it will run again,
repeating the same actions, this time without human intervention: it is now using the file Dialog.in
asascript. Figure 2 illustratesthis-- the broken line represents taking alog file for use asa
command filein alater session. Below, in the discussion of DIRECTOR, it is described how to chain
together many such segments into a more complicated script.

Making it happen differently next time

Using atext editor, you may modify ascript or alog file, in order to run a program again with
different input. The following section explains the details of the command file and log file format.
Here are some simple ways of changing a command file, causing a program to run in aslightly
different fashion the subsequent time:

Z To cause avalue to be requested from the user at akeyboard: delete the keyword VALUE
and everything between it and the following #. (The# itself must remain, preceded by at
least one space.)

Z To cause adefault to be used: the same as above, but leave the keyword VALUE.

ARRAY OF INTENSITY SAMPLES -- AIS 30

Z Togivetheuser extrainformation: insert before vALUE (or before the closing # in the
COMMAND item) something of the form
REMARK "This is some extra information”

Z Touseadifferent file asalog instead of Dialog.out (for instance MyOwnLog.out), insert:
LOG MyOwnLog.out
before the closing # of the COMMAND item.
Caution: the log file and command file must be different.

Z To change the mode: in the COMMAND item, replace
MODE dry-run
by
MODE live-run
or vice versa.

4.3 Format of Command Fileand Log File

The command file (or script) is atext file, and therefore it can be read easily by somebody
interested in its contents, and can be edited using standard text editing programs. Thefileis divided
into items. Each item consists of one or more complete lines. The first line of each item starts with
akeyword specifying the item type. The last line ends with a space followed by the special
character #. There arethreeitem types. Thefirst item of each file isthe command item; the last,
the termination item. Each intermediate item is of the third type, a prompt item. Each prompt item
corresponds to one call to the Prompt procedure.

The syntax of the command file itemsis described below: keywords are denoted by words in SMALL
CAPITALS, parameters are in tiny italics. The first parameter of each item isrequired; the others are
optional: some are defaulted when omitted.

Conventions for text strings

When a character string appears in the command file, it is enclosed in double-quote characters, and
"*" js an escape character asin BCPL strings. That is, *t isinterpreted as the tab character; *n and
*c, carriagereturn; *l, line feed; *", double-quote character; and **, as * itself. For the character
after "*", upper and lower case have the same effect. Strings (but not other types of values, e.g., an
integer) in the command file may spill over from one line to the next.

Command item

COMMAND SUBSYSTEM subsysString VERSION versionString MODE mode LOG fileName REMARK remarkString
#

subsysString is the name of the subsystem to which the file pertains.
versionString is the particular version of the subsystem to which the file pertains
mode is either dry-run or live-run. Default is live-run.

fileName is the name of the file to which the output log information is to be appended.
Default is Dialog.out.

ARRAY OF INTENSITY SAMPLES -- AIS 31

remarkString iS an arbitrary string of commentary. If present, it is displayed to the user when
the Dialoglnit routineis called.

Thisisan example:
COMMAND SUBSYSTEM "AIS" VERSION "2.0" MODE live-run
LOG AlSlog.out REMARK "This is the February release" #

Prompt item
PROMPT STRING promptString REMARK remarkString VALUE value #

promptString iS the explanation of the desired value displayed to the user when human input
isrequested. Thisstring originated at a previous run of the subsystem as a subsystem-
supplied prompt.

remarkString iS a commentary which is also displayed to the user at the time of the prompt.
It pertains specifically to the context of the particular input command file, as contrasted with
promptString, which is relevant to all invocations of the subsystem.

value (if present) is an assignment which has already been made to the subsystem parameter
involved. value can take different forms, as explained below: one or more integers, a string,
ayes/no answer, etc. If the keyword VALUE and the value specification are both absent, it
means that assignment to the parameter should be made by human intervention. If the
keyword VALUE is present but only blanks appear between it and the closing #, it means

that the subsystem-provided default value should be used, without human intervention.

Termination item
TERMINATION HOW how #

how is either successful Or user-aborted Or program-aborted.
Logfile

A log fileis produced automatically by the DIALOG package. It has exactly the same format as a
command file, with the following exception: the parameters REMARK and LOG are not generated
automatically, therefore they will be present in the log file only if they are present in the command
file.

4.4 Subroutine Calls
The two DIALOG procedures are DialoglInit and Prompt.

mode_Dialoglnit(userParams, subsysName, versionString, zone, inputCommandFile
['Dialog.in")
userParams is the second argument handed to every subsystem activated by the Alto
EXECUTIVE. The subsystem must pass this value on to the DIALOG package as the first
argument of Dialoglnit.
subsysName is the name of the subsystem being executed, expressed as a BCPL string.
Dialoglnit checks this name against the corresponding parameter in the input command file
(if any). In case of amismatch, the input file will be disregarded and the user will be
prompted for each value.

ARRAY OF INTENSITY SAMPLES -- AIS 32

versionString is the particular version of subsysName being executed. Dialoglnit
compares it with the version parameter in the input command file. Inthe event of a
mismatch, the user is warned, and execution otherwise proceeds normally.

zone isastandard main memory allocation zone from which the DIALOG package may
obtain temporary working space.

inputCommandFile isthe disk file read by the DiIALOG package. If the specified file does
not exist, the user will be prompted for each input value.

mode isdryRun or liveRun. If the initialization procedure does not know the mode from
the input command file, liveRun is assumed.

The coOMMAND item of the log file is now created and appended to the existing file. (DIALOG
software always appends to the log file; it does not delete or overwrite material already
there.)

firstVal_Prompt(promptString, type [typeBoolean], valueVector[0], defaultVector[0], proced[0])
promptString is a message indicating to the user the nature of the information required. It
isexpressed as a BCPL string.

type indicates the form of the information, and is one of the following:
typelnteger
typelntegerPair
typelntegerVector
typeBoolean (ayes/no answer, represented by the constants true and false)
typeString (a character string)
typeName
typeMessage
typeError

typeName is the same as typeString except that Prompt strips off leading blanks and
everything starting with the first delimiter (,;/" SPACE RETURN LF TAB) following the name.
typeMessage and typeError cause output to be displayed, but no values to be sought.
Their operation isidentical, except for the extra features of typeError noted below.

valueVector (if present) points to a vector where the prompt procedure will place the
parametersit obtains.

defaultVector (if present) specifies values to be placed in valueVector if the user indicates
that default values be used.

proced isintended for use when input from a device other than the keyboard is required.

It isthe address of a procedure to supply the values.

firstVal is set by the Prompt procedure to valueVector!O (or if valueVector is not present,
whatever would have been valueVector!0). Its purposeisto permit use of the vector
arguments to be avoided for simple inputs.

Some discussion of the format of valueVector and defaultVector isin order. The

maximum length for each is 128 words. For types typelntegerVector, typeString, and
typeName, the first member specifiesin binary integer format the number of additional
members. (For the other types, thereis no explicit count.) Thus, for typelntegerVector,
valueVector!0=count, and valueVector!1 through valueVector!count contain data.
Likewise, for typeString and typeName, valueVector!0 rshift 8 = count, valueVector!0 &
#377 isthefirst character, and the last character isin valueVector!(count/2) -- the left
byteif countiseven, theright if countisodd. (This string format isthe same as that of
BCPL strings.)

Remember also that the (actual or potential) valueVector!0 content iswhat isreturned as

ARRAY OF INTENSITY SAMPLES -- AIS 33

firstval. For typeString and typeName, thisis aword with count in the left byte and the
first character in the right byte.

Operation of the prompt procedureis asfollows. First, the promptString is compared with
the corresponding expected prompt itemin the command input file. If the strings match, the
value(s) is(are) taken from the command file. Otherwise, the promptString is displayed to
the user (along with any REMARK from the command file) and input is requested. |f proced
is absent, the keyboard is read, terminated by an ESC character.

If proced is present, it is called by the statement:

stringResult_proced(pointer, result)
It must place, in the vector pointed to by result, either (a) a character string, such aswould
be typed in by a user, in the form of aBCPL string < _ 254 characterslong, or (b) abinary
value coded according to the type-dependent valueVector conventions described above.
stringResult is a boolean returned to indicate which of these applies: true for (a), false for
(b). When stringResult=true, the string will be processed exactly as akey input, and the
result will be validated. Otherwise, Prompt will do neither of these.
pointer is amechanism whereby proced may access the arguments of Prompt. Specifically,
pointer!0 is promptString, pointer!1 istype, pointer!2 isvalueVector, pointer!3 is
defaultVector, and pointer!4 is proced.

Except when proced is used and stringResult=false, the Prompt routine validates that the
input conforms with the type and does any necessary conversions. In the event validation
fails, the prompt cycleis carried out with human interaction (even if the value came from
the command file). If the user or the command file specifies that the default be taken, the
values from defaultVector are used (but are not checked). Now, regardless of the source of
the values, the Prompt routine stores them in valueVector (if present), in the format
described above. The first word is saved as the Prompt procedure sresult. Prompt then
appends to the output log a prompt item including the prompt string and the values used.

In addition, any REMARK from the input command file is copied. If the value was taken
from the input command file, that file is advanced to the next item; if that item is another
PROMPT, it will be used at the next Prompt subroutine call.

The purpose of typeError isto deal with the case in which the subsystem detects a value
inconsistency. The Prompt procedure accommodates this situation by backspacing the
output log by one item whenever called with typeError. Prompt will not permit more than
one typeError call consecutively without at least one intervening value assignment call. One
final case concernsthe user’ sindicating that the subsystem should be aborted. In this case,
control is not returned to the calling routine; instead, Prompt causes execution of the
subsystem to terminate.

4.5 DIRECTOR Subsystem

DIRECTOR works from a command file. This script is a concatenation of several portions of the
output log described above. Each portion corresponds to the execution of a subsystem. The output
log serves another valuable purpose. It isan audit trail recording the sequence of subsystem steps
and input values of a given experiment or operation. It can be consulted whenever it is necessary to
reconstruct the history of the operation, such asin debugging equipment or application programs. It
can also provide for areplay of an operation for closer scrutiny. In the other extreme, DIRECTOR’S
use of a script permits an experiment or operation to be canned, a ong with repestedly occurring
input parameters, so it can run with little intervention at the keyboard, or even unattended.

ARRAY OF INTENSITY SAMPLES -- AIS

A run of DIRECTOR proceeds according to the following steps.
1. User activates the DIRECTOR subsystem.

2. DIRECTOR prompts the user to supply the name of afile from which the script isto be
read. Alternatively, the user may specify that thisis a scriptwriting run. In this event, the
user specifies alist of subsystem names, from which DIRECTOR constructs a skel etal
command file for the run. Upon completion of the run, the output log will contain a
completely filled out command file.

3. The user may select one of three run modes:

dry run

liverun

take modes from the command file (default)
In the first two cases, the run mode selected appliesto all subsystems, and overrides
whatever may be in the command file. In a scriptwriting run, a user selecting the third
option will have to provide arun mode for each subsystem.

4. The user may select one of two continuity modes:;

auto run (proceed through the script without interruption)
pause (halt after each subsystem for human intervention)

The latter capability is provided especially for the purpose of replaying an aborted run.
5. For each subsystem segment, the following steps are carried out
5.1. DIRECTOR activates the subsystem and supplies a command file for DIALOG.

5.2. The subsystem performs its processing, producing alog and finally returning
control to DIRECTOR.

5.3. DIRECTOR checks for successful completion of the subsystem. In the event it
aborted, the user is given the option to either (1) go on to the next segment, or (2)
repeat the segment with al input values to be provided interactively, or (3) repeat in
the same mode as the original attempt, or (4) quit altogether.

5.4. In the event of successful completion, DIRECTOR also checks the continuity
mode. If itis pause, the user is given the same four options asin step 5.3.

6. DIRECTOR reaches the end of the script and releases contral.

4.6 Modulesand Files

The DIALOG package consists of the following source program files:
Dialoglnit contains the subroutine of the same name.
Prompt likewise.
PromptSubs contains subroutines of Prompt.

ARRAY OF INTENSITY SAMPLES -- AIS 35

DialogUtil utility routines for the other modules.
Dialog.dfs contains structure and manifest declarations for DIALOG and
DIRECTOR.

Also required are:
Template a general-purpose output formatting procedure.
Dialog.errors error messages displayed through SwWAT.

After Dialoglnit is called, the storage it occupies may be released. Likewise, after al values have
been specified, Prompt and PromptSubs may be released. However, DialogUtil may never be
released because it contains the code to wrap up a subsystem and return control to the DIRECTOR.

DIRECTOR consists of one source file (named Director) and requires the DIALOG package.

Other files of interest are:

DirectorBLDR.cm loader command for combining relocatable files to form the
DIRECTOR subsystem.

Director.state used by DIRECTOR and DIALOG to exchange information.

Director.scratchRem temporary holding place for the file Rem.cm.

Director.scratchScript temporary script used in scriptwriting runs.

ARRAY OF INTENSITY SAMPLES -- AIS 36

5. AIS Format

This section contains the detailed specifications for filesin AIS format.

5.1 Terminology

An encoded image is arepresentation of an "array of intensity samples’ (AlS), or araster. For the
formats specified here, the raster is a sequence of scan-lines; each scan-lineis a sequence of pixels.
The signal value(s) for a pixel are given by one or more samples. By convention, the numbering of
these abjects begins at 0: the first scan-line is numbered O; the last of nis numbered n-1.

We shall assume standard Alto terminology. A word is 16 bits. A file, for the purposes here, isa
homogeneous sequence of data bytes (the particular way these data bytes are stored on the disk
itself, the way disk directories are built, etc. are of no concern to this discussion).

When coordinates on a page are required, we shall use the following coordinate system: the (0,0)
point is at the lower left corner of a (portrait) page; the x direction isto the right; they direction is
up the page. The unit of measurement is the mica, equivalent to 10 microns.

Because of their convenience, BCPL structure declarations are used to describe some of the formats.
These declarations show how successive bits and words of the file are laid out; they are not
necessarily intended for explicit use in your programs. For more rigorous definitions of data
structures, see file AlSfile.d.

5.2 The AlS Format

The purpose of the AIS format is to define arectangular raster region, and optionally give the
desired placement of the region on apage. In addition, the encoding of the raster information must
be specified. Thereisalso aneed to record photometry information concerning the measurement of
the intensity samples.

Seefigure 5 for agraphical description of the AIS file format. An AlS file consists of an attribute
section followed by araster section. The attribute section describes the format of the raster and
various other information about the data; the raster section gives the samples themselves.

The attribute section is always a multiple of 1024 words long, and isitself composed of several parts:
the page placement part, the raster part, the photometry part, and the comment part. Only the raster
part is mandatory: it must be at the beginning of the attribute section. The other parts may bein
arbitrary order. Any unused words in the attribute section are set to O (this permits expansion later

on). Thefirst word of the attribute section is a password, which serves as a hint that the fileisin
AIS format. The second word is the length of the attribute section.

5.3 Raster Part
All information in the raster part is mandatory. It has two components:
Scan: This specifies how the image has been sampled and raster-scanned.

scanCount: The number of scan-lines of information that are recorded in the raster data.

ARRAY OF INTENSITY SAMPLES -- AIS

scanLength: The number of pixelsthat are recorded for each scan-line.

scanDirection: This quantity describes how the scan-lines and pixels of the raster areto relate to
the page image itself. The value in scanDirection is:

pixel-direction-description * 4 + scan-line-direction-description.:
A direction-description is:

0 = toward the right on the page

1 =toward the left on the page

2 =toward the top of the page

3 = toward the bottom of the page

Example: If the scanDirection=3, the pixel direction isto the right, and the scan-line direction is
to the bottom. This means scanning begins at the upper |eft corner of the image area: pixels are
placed at successive positions to the right; scan-lines descend the page (thisislike TV video, or the
way the Alto records bit maps). The scanDirection for the Slot/3100 printer is 8: pixels run up the
page; successive scan-lines move to the right on the page. See Figure 3 for anillustration of
acceptable values for scanDirection.

samplesPerPixel: Each pixel may have several signals associated with it; this entry records the
number of samples associated with apixel. For example, if theimage isa color picture recorded
with R, G and B signals, this value would be 3. Different coding schemes may conceivably place
different interpretations on this value.

Coding: The coding information specifies how the intensity samples are actually encoded in the
raster section. We may need to add new entries to the coding information as new coding formats
become available; for this reason, the raster part is prefaced with a length to permit future
expansion.

codingType: Thisword givesthe "type" of the encoding. Thereisone type currently defined:

UnCompressedArray: codingType=UCACodingType=1. The samples are recorded
as a sequence of fixed-size bytes. The samplesfor the first scan-line are recorded first,
then the second scan-line, etc. Within each scan-line, the first pixel is recorded first,
then the second pixel, etc. The additional coding part entries for thistype are:

UCABItsperSample: The sample byte size, i.e. the number of bits recorded for each
sample. The byte size may have any value between 1 and 16. If 16 isnot amultiple
of the byte size, bytes do not straddle word boundaries. they are right justified, with a
few unused bits on the |eft. For instance, if UCABItsperSample is5, there are 3 bytes
per word, and the leftmost bit is unused.

UCAWordsperSL: The samplesfor an individual scan-line occupy UCAWordsperSL
words in the file; scan-lines therefore begin on aword boundary. Zero bits are used to
pad out space remaining in the last word of the scan-line. Any words beyond the
minimum required to represent the scan-line are filled with zeros.
Notethat, if UCABItsperSample isequa to 1, 2, 4, 8, or greater than 8, then:

UCAWordsperSL*16 > scanLength * samplesPerPixel * UCABitsperSample.

UCASLperBlock: For certain real-time devices, it is essential that there be an
occasional break in the encoding to facilitate buffering. If no such breaks occur in the
encoding, thisentry is-1. If the encoding is blocked, this entry gives the number of
scan-lines per block. For example, if there are 32 scan-lines per block, then the 1st,

37

ARRAY OF INTENSITY SAMPLES -- AIS 38

33rd, 65th, etc. scan-lines all begin at the start of ablock. The number of wordsin a
block isusualy a multiple of the disk sector size (see below).

UCApaddingperBlock: Not all disks have 1024 words in a sector. It thereforeis
necessary that blocking units of other sizes be allowed. Thisinformation is recorded by
specifying the number of padding words left over in each block. If thefileis not
blocked, then thisentry is-1. From the previous example, if there are 32 scan-lines

per block, then there are (32* UCAWordsperSL+UCApaddingperBlock) wordsin
each block.

5.4 Placement Part

The placement part contains the coordinates required to specify the size and shape of the image
region on apage. If placement is not specified, all four entries are -1.

placeXLeft: The x coordinate on the page of the lower Ieft corner of the image rectangle.
placeYBottom: They coordinate of the lower left corner of the image rectangle.
placeXWidth: The width (in micas) of the image rectangle on the page.

placeYHeight: The height (in micas) of the image rectangle on the page.

Note that the placement information, together with the raster part, effectively specifies aresolution

at which theimage is to be interpreted. However, most AlS programs will ignore the placement part
when performing calculations, and believe instead the specification of the array as given by the raster
part. The only point of the placement part isto permit printing location information to be specified.

5.5 Photometry Part

The purpose of the photometry part is to identify the signal that has been sampled and some of the
conditions under which it was sampled.

photometrySignal: Thisentry isintended to give some idea of what signal has been sampled and
recorded in the file:

unspecified = -1
specified in comment part = -2
Black and White =0
Red separation = 1
Blue separation = 2
Green separation = 3
Cyan separation = 4
Magenta separation = 5
Yellow separation = 6
x signa (CIE) =7

y signal (CIE) =8

... (more to be added)

R,G,B samples, 3 per pixel = 100
C,M,Y samples, 3 per pixel =101
C,M,Y ,B samples, 4 per pixel = 102
Y X,y samples, 3 per pixel =103

ARRAY OF INTENSITY SAMPLES -- AIS 39

... (more to be added)

photometrySense: This entry givesthe "sense" of the samples: if larger values of sample indicate
greater transmission or reflection, then the senseis 0. If larger values of sample indicate greater
density or absorption, then the senseis 1. (Note: This value can be derived from the "scale”
parameters, below, but is given here for convenience.)

photometryScale (together with pointA, ...B and ...C): These specify the conversion between
sample values (viewed as integers) and the actual physical values. The photometryScale value gives
the sort of scale used:

Z Reflectance or Transmittance X 1000=1
Z Optical Density X 1000=2

Points A, B, and C are three points on the curve defining the relationship between the actual

physical values and the digital values. Thefirst 16 bit word is 1000 X the actual value, e.g.
reflectance (0-1000). The second word isthe digital sample value, e.g. (0-255). If not al three points
are needed, unused values are -1.

photometrySpotType, photometrySpotWidth, photometrySpotLength: These three numbers give
the type and dimensions of the spot that was assumed when the image was created, measured as
follows: the width is the dimension along the scan-lineg; the length is orthogonal to the scan-line.

The dimension is measured from 20% energy points on the spot. The units are 100 times the
dimensions expressed in pixels or scan-lines; the entries are -1 if no width information is known.

The currently defined spot types are: undefined, defined in comments, rectangular and circular, see
AlSfile.d.

photometrySampleMin, photometrySampleMax: The minimum and maximum values of the
sample integers (-1 if unknown).

photometryHistogram: If a histogram of the samplesisavailable, it follows this entry, and this
entry gives the length of the table (presumably 256 for 8-bit samples; alength of 0 or -1 indicates no
histogram is present). Each table entry is one word which contains an integer that is 32767 times the
frequency of occurrence of the corresponding sample. Note that thisis a histogram of the sample
values themselves, before any scaling.

5.6 Comment Part

This part simply contains atext string in BCPL format. It isused to record an arbitrary comment
pertaining to the AIS file such as: what type of pictureit is, how and when it was generated, etc.
The BCPL format limits the text string to 255 characters.

ARRAY OF INTENSITY SAMPLES -- AIS

5.7 Declarations

The following declarations indicate the format of the attribute section. They are intended to be
descriptive, not authoritative. The version used for programming isin file AlSfile.d.

structure Attributes [

password word /I Password = -31574.
attributeLength word /I Number of words before data begins
body ~1,variable word /I Here are the "parts" (see below)
remainder ~1,rest word /I Words of 0 to pad.

structure RasterPart [/I RASTER PART:
@APH /I Header: type=1; length=variable
scanCount word /I Number of scan-lines
scanLength word /I Pixels per scan-line
scanDirection word /I Scanning directions
samplesPerPixel word /I Number of samples
codingType word /I Method of coding (e.g., UCACodingType=1)
other 76,length word /I remainder of coding part (e.g., @UCA)
]

structure PlacementPart [/I PLACEMENT PART:
@APH /I Header: type=2; length=5
placeXLeft word /I Position of lower left corner
placeYBottom word
placeXWidth word /I Size of image area on page
placeYHeight word
]

structure PhotometryPart [/I PHOTOMETRY PART:
@APH /I Header: type=3; length=variable
photometrySignal word /I Signal that is sampled
photometrySense word /I Explained above.
photometryScale word /I Scaling type
photometryScaleA @VALUE /I and arguments (points on
photometryScaleB @VALUE " conversion curve)
photometryScaleC @VALUE
photometrySpotType word /I Spot type
photometrySpotWidth word /I Spot size
photometrySpotLength word /I information
photometrySampleMin word /I Sample range
photometrySampleMax word /I (if known)
photometryHistogram word /I Number of words in histogram

photometryHistData ~1,photometryHistogram word

structure CommentPart [/I COMMENT PART:
@APH /I Header: type=4, length=variable
@STRING /I A text string in BCPL format
structure APH [/I Attribute Part Header
type bit 6 /I Type of attribute part.
length bit 10 /I Length in words, including this one.
]
structure UCA [/I UnCompressedArray
UCABiItsperSample word
UCAWordsperSL word
UCASLperBlock word
]UCApaddingperBIock word
structure STRING [/I BCPL string format
length byte
char 71,255 byte

structure VALUE [
sample word /I 1000* (actual sample value), e.g. reflectance (0-1000).
level word /I digital sample value, e.g. (0-255).
]

structure FL [/I Proposed foating-point format:

sign
exponent
mantissa

ARRAY OF INTENSITY SAMPLES -- AIS

bit /I Note: thisformat isidentical to the high
bit 8 /I order 32 bits of PDP-10 floating point.
bit 23 /I See DEC documentation.

41

Pixel 0 50

Scan Line 0

89

50

Internal

Window
Coordinates

79

Scan Line 99

This example shows a 100x100 AIS file containing a 40x30 window.

File parameters

scanCount 100
scanLength 100
scanDirection 3

Figure 1. An lllustration of an AIS Image

firstScan
lastScan
firstPixel

lastPixel

Pixel 99

Window parameters

50
79
50
89

Command G
Keyboard file

Running
Program

Figure 2. Usage of the Command and Log Files

pixels

Start 7

12..

can
Ines

4

File layout
on disk

< 9
End
< |
E I
I
'
13
AN
———>
V
3

Figure 3. AIS Scan Directions

H*"WW+2

H*WW+2

height of font (bits)
word width of widest character

character code

bit width of character

scan-line 1

(top)

scan-line H

(bottom)

character code

bit width of character

scan-line 1

(top)

scan-line H

(bottom)

Figure 4. .cu Font Format

first

character

last

character

Header

AlISFile

password

length

Raster Part

2nd part
(optional)

last part
(optional)

0

padding
tofill last
1024 word

section

= #102252

AISFile Format

header length in words
(multiple of 1024)

length

Raster Part

type | length

scanCount

scanL ength

scanDir

samples/pixel

coding type

bits/sample

words/SL

Sl /block

padding/block

Block =

Block =

Data

scanline-- 0

scanline-- 1

scanline -- SL/block-1

padding/block
(empty if not blocked)

scanline -- SL/block

scanline -- SL/block+1

scanline -- 2* SL/block-1

Last Block ==

padding/block
(empty if not blocked)

scanline -- scanCount-3

scanline -- scanCount-2

scanline -- scanCount-1

For the UCA (Uncompressed Array) coding type:

A block may be an arbitrary length.

No padding

Numerically it isequal to: (words/SL)* (SL/block)+(padding/block)
The Datalengthis: (Nblocks* Lblock)+(words/SL)* (scanCount rem SL/block)
where Nblocks=scanCount/(SL/block) and Lblock is the block length.

If the file is unblocked then the Datalength is: scanCount* (words/SL)

Figure 5. Format of an AIS image file

