
ROUTE Program Logic Manual

E. McCreight
Parc/CSL

Draft of June 2, 1978 11:17 AM

ROUTE is a Bcpl program that is part of the Parc/SDD/EOD electronic design automation
system. Its function is to combine the net lists describing a number of logic drawings that
together describe an entire logic board, and to generate a set of wiring orders sufficient to
produce the board automatically.

It has been said that a university is an otherwise unrelated set of colleges sharing a common
heating system. So it is with ROUTE. ROUTE is the current repository for a fairly large
collection of unrelated functions sharing a common net list input format and wire list
output format. These functions are such diverse things as automatic terminator assignment,
wire length minimization, and wiring order determination.

ROUTE is further complicated by the necessity to carry out revisions incrementally. This
means, among other things, that nets must be recognized as "the same" even if net names
change, and that terminator assignment must change as little as possible.

0. Normal Operation

ROUTE is normally invoked from the Alto Executive with a command line like this:

Route[/switches] board/B [metric/M] [exhaustive/E] [heuristic/H]
[boardlocation/L] file1 file2 file3 ...

ROUTE normally reads a set of .nl-format files produced by the ANALYZE program and
produces several output files. If the first .nl file in the input list (file1) had the name
AARGH.nl, then the following output files would be produced

* AARGH.wl, a file containing wiring orders for the stitchwelding program FAB to
fabricate the board from scratch,

* AARGH.re, a file containing error messages,

* AARGH.bp, a file describing the external (backpanel, usually) connections of the
board, and

* AARGH-x.nl, a file for each each external connector type x describing the
connections through that connector. These files are intended to be used as input for
automatic backpanel routing.

If correction (revision) is specified, in addition ROUTE will read AARGH.wl and will
produce two other output files:

* AARGH.wlnew, instead of AARGH.wl. That’s so that if something goes awry, the
original AARGH.wl is unchanged and the correction can be re-run. The other
output file is

c Xerox Corporation 1980

ROUTE Program Logic Manual2

* AARGH.ad, a file containing FAB wiring orders to implement the revision on the
pre-existing board.

The following switches have the indicated effect:

c: This specifies that correction is to be done.
b: This causes two .wl-format files to be produced, one containing all pins that are
initially floating, and one containing all pins trace-wired to a power plane. This is
useful for automated incoming board inspection.
m: This requests Multiwire-format wiring output, suitable for
sending to Photocircuits, Inc.
h: This causes a list of hole positions to be produced in Multiwire-format.
Photocircuits needs to know where not to put the wires, too.
t: This causes a check list of trace-wired pins to be produced (not normally useful
except for Board debugging (see below)).

The file board contains a concatenation of .BR files that collectively define all the Board
routines (see below). The parameters exhaustive and heuristic together control the wire-
routing part of ROUTE; their normal settings are 7 and 20. Better routings of long nets can
be gotten at the expense of longer running times by increasing heuristic. The metric is
either Manhattan (rectilinear) or Euclidean (as the crow flies); the default is Manhattan,
which is faster. The boardlocation is a string that will be substituted for the connector
name x in the AARGH-x.nl file mentioned above.

1. File Formats.

1.1 .NL format.

An .nl-format file is an ASCII text file that looks like this:

<comment line>
<IC line>
...
<IC line>
@
<net line>
...
<net line>

The <comment line> is ASCII text preceded by a ";" and terminated by a carriage return.
ANALYZE generates the comment from a piece of "boiler plate" in the drawing. The
standard boiler plate template is known as LogicBlock.sil.

The <IC line> has the following format:

<IC position>: <Short IC name>(<long IC name>/<npins>/<IC family>); <used
group string>

For example,

ROUTE Program Logic Manual 3

h24: S04 (SN74S04/14/S) ; badfe

The <IC position> is a string in one of two forms: either a lower-case letter followed by a
decimal number, or a string preceded by "#". In the former case, the name is normalized
by suppressing leading 0’s and then forcing the decimal number to be two digits long or
longer. Thus a004 and a4 would both be normalized to a04, and c04000 would be
normalized to c4000. Interpretation of this normalized IC position string is strictly up to
the board routines, but some guidelines have developed among board designers:

* It is pretty clear what ought to happen when the board socket and the IC are
congruent. It is less clear what ought to happen when a Sip is plugged into a Dip
socket, or an 8-pin Dip is plugged into a 16-pin socket, etc. Usually, something like
a41 means that pin 1 of the IC is supposed to go into pin 1 of the board’s socket
a41, and the rest of the pins of the IC plug into other pins of the board in an
obvious manner defined by the board routines.

* For some boards, a41 means that the IC is to be inserted in some board-standard
part of a41. For example, D0 boards are covered with 20-pin sockets whose pin 10’s
are trace-wired to GND. The D0 board routines interpret the number a41 on a 14-
pin TTL IC as meaning that pin 1 of the IC goes in pin 4 of the socket, so that pin
7 of the IC goes in pin 10 of the socket, the GND pin.

* Most boards have adopted an offset convention. In this convention, #3a41 means
that pin 1 of the IC is to be offset 0.3" in the direction of increasing socket pin
numbers from pin 1 of the socket. For the D0 board above, a41 and #3a41 would
specify the same position for a 14-pin TTL IC. If you wanted to put an 8-pin Sip
in pins 12-19 of a 20-pin 300-mil-wide Dip socket, you would say #1_3a41,
signifying a "sideways" shift of 300 mils and a "vertical" shift of 100 mils.

* More positioning conventions will likely evolve. The idea is for any reasonable
positioning to be possible, and for common ones to be easily specified, preferably
to happen by default.

The <IC family> is a string from which ROUTE infers a number of characteristics of the
IC, such as

a) to what pins (if any) automatic terminator assignment applies,
b) what fixed voltages are applied to what pins,
c) how to compute the co-ordinates of pin i given the co-ordinates of pin 1.

The <net line> has the following format:

<net name>: <pin>, <pin>, ..., <pin>

For example,

Sin.15: j26.13o, E146
stor08.sil+8: g22.2i, k25.12o, j23.11i
WEo’: g22.3i

A <net name> is an alphanumeric string beginning with an alphabetic character and
optionally ending with the character "!". Two net names differing only in the final "!" are
considered to be the same for matching purposes, and the "!" affects only automatic
terminator assignment.

ROUTE Program Logic Manual4

In general, a <pin> may be one of the following:

<Connector string><decimal number><i/o/p/nothing>
<IC position string>.<decimal number><i/o/p/nothing>

A connector string is something like E or C. It may not end with a period or digit. An IC
position string is something like a41. It can contain periods but may not end with one.
Interpretation of the connector strings and IC position strings rests with Board routines to
be described later. The final letter i or o or p indicates whether ANALYZE believes that the
pin is an input pin, an output pin, or a power pin. These beliefs form the basis of some of
ROUTE’s warning messages.

1.2 .wl format.

An .wl-format file is an ASCII text file that looks like this:

<board type line>
<comment line>
...
<comment line>
<IC line>
...
<IC line>
@
<basic wiring command>
...
<basic wiring command>

The <board type line> consists of a string followed by a carriage return. The string
uniquely encodes the board type. The <comment line>’s are just the comment lines
collected from the various .nl files. An <IC line> now has the following form:

<IC position>: (<long IC name>/<npins>/<IC family>); <pin number>,...,<pin
number>

where the <pin number>’s are pins unused by any of the input .nl files. For example,

i26: S04 (SN74S04/14/S); 8,13,14,15,16

A <basic wiring command> looks like one of the following:

<CR>CALIBRATE: <<decimal command number>>; <operator instructions><CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>
...

or

<CR>DISCONNECT: <<decimal command number>><CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>
...

ROUTE Program Logic Manual 5

or

<CR><net name>: <<decimal command number>> (<decimal wire length>)<CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>
...

A <co-ordinate> is a string of the form:

{<decimal number>,<decimal number>}

where the two decimal numbers are interpreted as distances in the x and y axes, measured
in units of .025 inch, from the "origin" of the board (an arbitrary fixed position).

For example,

Sout.00: <8> (7)
 b01.05i {052,007} C176 {052, 000}

CALIBRATE is a command that causes FAB to solicit operator assistance in attaching the
board to the x-y table, attaching a working tool, and locating four calibrating points on the
board, which must form the corners of a rectangle. After that FAB can find every point by
itself until the board is removed from the table.

DISCONNECT is a command to operate a milling tool to isolate a stitchweld pin from the
trace-wired net to which it was originally connected during board manufacture. This
facilitates installing TTL IC’s in sockets intended for ECL IC’s, for example.

<net name> is an implicit command to wire up the named net in the same order as the pins
are mentioned.

1.3 .ad format.

An .ad-format file is almost a superset of a .wl-format file. There are two differences.
First, an .ad-format file does not have the <board type line>. Second, the .ad-format file
allows several additional wiring commands:

<CR>UNPLUG: <<decimal command number>><CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>
...

or

<CR>DISCARD: <<decimal command number>><CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>
...

or

<CR>RECONNECT: <<decimal command number>><CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>

ROUTE Program Logic Manual6

...

or

<CR>DELETE: <<decimal command number>>; <net name><CR>
<four blanks><pin> <co-ordinate> ... <CR>
<four blanks><pin> <co-ordinate> ... <CR>
...

UNPLUG and DISCARD are commands designed to give the stitchwelding machine
unrestricted access to stitchweld pins on which it will need to work. The difference is that
DISCARD means that the IC should not be replaced after the update, while UNPLUG
means that the IC will be re-plugged afterwards. UNPLUG is actually a list of positions
that will be re-plugged after the change, so it may contain board positions that originally
were empty. Sorry for the confusion.

RECONNECT is a command to restore the connection from trace to pin that was earlier
destroyed by a DISCONNECT command. This would normally be done by soldering. The
Board routines specify under what conditions the operator can be asked to do this.

DELETE is a command to remove a net that was wired onto the board in an earlier
revision.

1.4 Multiwire Net format

1.5 Multiwire Hole format

2. MetaProgram.

First, let us imagine that ROUTE is being invoked to do its simplest task: collect together
several .nl files and produce a .wl file, a .bp file, some -x.nl files, and a .re file. Processing
proceeds as follows:

1. The command line is processed to extract parameters. These include:

a. the names of the .nl files,
b. the names of the .wl, .bp, and .re files,
c. the name of a .br-format file (or concatenation of .br-format files)
containing compiled Bcpl Board routines,
d. whether or not re-work is desired (/R), and
e. parameters to control wire length minimization.

2. Read in each .nl file. For each <net name>, accumulate a list of all <pin>’s
contained in that net.

3. See whether any of the pin assignments in (2) above conflict with so-called
trace-wired nets; that is, board-defined nets that are wired by PC-board traces. If
so, and if this is permissible for the board type, disconnect the offending pins from
their trace-wired nets.

4. All pins connected to trace-wired nets are partitioned into clusters according to
the closest pins that are still trace-wired. These clusters are then reassigned to new

ROUTE Program Logic Manual 7

nets with names like VCC1, VDD35, etc.

5. All nets are routed if this has been requested. For each net this involves a
permutation of the net order so as to minimize the total wire length. Additional
termination pins may be added to nets in this step.

6. The nets are then sorted into an order intended to optimize the wiring process.
For stitchwelding this is currently believed to be:

a) nets with very short arcs first, so other wires will not interfere with them,

b) if two nets have shortest arcs of the same length, wire the shorter net
first.

7. All the output files are created from the data structures built up in steps 1-6.

2.1 Automatic terminator assignment.

The ECL logic family does not work properly unless each net contains at least one
terminating resistor. Assignment of terminating resistors to nets by hand is a tiresome task,
and it is reasonable that the DA system should do it. Particularly for long wires, the driver
should be on one end of a wire and a terminating resistor be on the other, or else the driver
should be in the middle and terminators on both ends. ROUTE is the only program with
enough information about board position and wire routing to be able to do rational
terminator assignment.

First, let us expand on step 5 above to explain how termination comes about:

5a. A permutation of the net is chosen to minimize the wire length, subject to the
following constraints:

i) the first edge (or cable) pin is constrained to lie at the end of the
permutation, or

ii) if there is any ECL output pin in the net, and if exactly one pin in the
net is marked as an output pin, and if the net contains no edge or cable
pins, then if the resulting net would be no longer than 1.2 times the length
of the constrained net, the output pin is constrained to lie at the end of the
permutation.

5b. If no instance of the net name ended in the character "!" (signifying that
termination is to be ignored) and there is an ECL output pin in the net, and there
are no terminating resistors explicitly included in the net, then either one or two
terminating resistors will be assigned to the net. Two resistors will be assigned if the
net is longer than 4 inches, or if the net contains more than one output pin, or if
any output pin is not at the end of the net. One resistor will be assigned otherwise.

5c. If any terminating resistors are to be assigned, they are assigned either at the
ends of the nets or between the next-to-end and end pins in the net so as to
minimize the increase in wire length (except if an unterminated stub longer than 3
inches would result). Terminators are chosen as close as possible to the end pins. If
only one terminator is assigned, it is assigned on the opposite end of the net from
the output or edge pin.

ROUTE Program Logic Manual8

2.2 Correction.

Another practical consideration is correction (revision). It should be possible to correct a
set of drawings and have the size of the resulting wiring change relate to the size of the
change in the drawings. This is done by reading the previous .wl file and only changing the
wiring of a net if it differs between the old .wl file and the new one. Unfortunately, one of
the least significant physical features of a net is its name, so ROUTE must be able to
recognize identical nets as identical even if their names change. If re-work is requested, a
new step 4.5 is inserted after the nets are completely specified but before they are routed:

4.5 For each net in the old .wl file, determine what new net it is the same as, except
for terminating resistors. If it is not the same as any new net, then mark it for
deletion in the .ad file. If it is the same as some new net, and if the termination for
the old net makes sense for the new net, and if the new net has no explicit
termination of its own, then route and terminate the new net exactly as the old one
was, and mark it as routed and terminated so that it will not be worked on in step 5
nor output to the .ad file.

3. Internal Data Structures.

3.1 Names and Namees.

The basic organizing concept in ROUTE is the "name". Nets have names, IC types have
names, board positions have names, etc. ROUTE maintains a single name data structure, and
attached to each name is a list of named objects with that name. The name data structure is
a hash table where each bucket is a pointer to a list of name blocks that all hash to that
bucket. A name block looks like this:

structure name:
[next word // next name block in bucket list, or nil
mark word // =-1. Namee list is circular and ends here.
nameString @string
]

The name block is immediately followed by a namee block, several types of which are
described below.

3.1.1 Nets.

One namee is a net. A net block looks like this:

sturcture net:
[next word // to next namee with this name
flags bit 4
unused bit 8
type bit 4 // =net
pinList word // pointer to first pin of pin list
shortestarc word = netnum word = minSperge word
netlength word
]

ROUTE Program Logic Manual 9

3.1.2 IC instances.

Another namee is an IC instance. The name denotes the board position. An icinst block
looks like this:

sturcture icinst:
[next word // to next namee with this name
type word // =icinst
ictype word // pointer to ictype block for this IC
pinattribute word
pin^1,npins // each one links to the next pin in

// the pin list of its net, or nil
]

Note that one can chain one’s way into an icinst block at some undetermined index in its
pin vector, and then get properly aligned with the icinst block by scanning backward until
detecting type=icinst, which is an illegal value for pin, pinattribute, and ictype words.

3.1.3 IC types.

Another namee is the IC type. An ictype block looks like this:

sturcture ictype:
[next word // to next namee with this name
npins bit 12 // same as npins in icinst
type bit 4 // =ictype
icclass word // pointer to IC class containing this type
outpins^1,npins bit 1 // one bit per pin, true if pin

// ever used in any IC instance as output
]

3.1.4 IC classes.

The final namee is the IC class. An icclass block looks like this:

structure icclass:
[next word // to next namee with this name
isTraceWired bit 1 // needs termination?
isConnector bit 1 // is this a terminator IC?
printUsedList bit 1
unused bit 9
type bit 4 // =icclass
PinOffset word

// PinOffset(npins, pinNo, lv XOffset, lv YOffset) is
// a routine that computes the X- and Y- offsets
// of the given pin from pin 1, in 25-mil units.
// For a standard 14-pin DIP, pin 1 would result in
// {0,0}, pin 2 would result in {4,0}, and pin 14 would
// result in {12,0}.

PinAttributes word
// PinAttributes(icinst, pinNo) = attributes, such as
// isEcl or isTerminator

ImplicitICNets word

ROUTE Program Logic Manual10

// ImplicitICNets(npins, icInstNameString) is
// a routine that writes
// nets for such things as IC power and ground onto
// a file called "implicit.nl"

npins word
// # pins, overridden by ictype block

... and other fairly esoteric stuff for terminators and trace-wired nets
]

3.2 Boards.

A board is a set of Bcpl subroutines dynamically loaded into ROUTE. It is represented as
one or more concatenated .BR files. These subroutines are:

FindIndexFromCoord(xPos, yPos, picclass, pPinNo) = index

This routine finds an integer from 1 to maxPins that uniquely represents the
board pin at co-ordinates xPos, yPos. It returns 0 if there is no board pin at
co-ordinate xPos, yPos. If xPos = yPos = -1, then it returns maxPins+1. In
addition, if the board pin is initially connected to some trace-wired net,
@picclass is set to the icclass describing that trace-wired net and @pPinNo
is set to the number of the pin within the trace-wired net.

DeclareInitialNets(TWBuild, TermBuild, ConnBuild)

This routine declares all the trace-wired nets, terminator sets, and
connectors that the board has.

ZeroTablePoint(point) = string

If point=0 then the string name of the board is returned. If point is from 1
to 4 the string name of the proper calibration point is returned. The
calibration points should form a rectangle on the board.

LevelTransform(level, x, y, px, py, pName, pPull, pWire) = exists

A given pin is described by different co-ordinates according to whether a
board is positioned wiring-side up or component-side up. For each value of
level, this subroutine implements a transformation from internal co-
ordinates x,y to printing co-ordinates @px,@py. @pName is set to a string
giving the name of this level. @pPull is set according to whether
components can be removed at this level. @pWire is set according to
whether wiring can be done at this level.

FindCoordFromString(s, px, py, vop1, hop1) = {absolute, relative, illegal}

This routine takes the string name of a board location and computes the
internal co-ordinates x,y of that position. It then adds vop1 and hop1 as the
offsets vertically (the long way) and horizontally (the short way) of some
desired pin assuming that pin 1 is installed at x,y. The result is placed in
@px,@py. The result is absolute if the pin is legal, and illegal otherwise.

BoardPinCoord(s, icinst, pinNo, px, py) = {true, false}

ROUTE Program Logic Manual 11

This routine is normally defined by ROUTE itself (using the board’s
FindCoordFromString), but the board module can override ROUTE’s
definition. This routine takes the string name of a board location, a pointer
to an IC instance, and a pin number, and computes the internal co-ordinates
x,y of that pin. The result is true if the pin position is legal, and false
otherwise. This routine would be defined instead of FindCoordFromString
if you want to do screwball ball things like put TTL IC’s upside-down in
Ecl-wired sockets.

