
Towards an Interchange Standard for Editable Documents

by Jim Mitchell and Jim Horning

August 31, 1982 4:19 PM

File: Interscript-app.bravo

Appendices: Glossary , Arbitrary Choices, Formal Semantics34

APPENDIX A

GLOSSARY

Italics indicate words defined in this glossary.

abbreviation An invocation used to shorten a script, rather than to indicate structure

attribute A component of an environment, identified by its name, which is bound to a value

base language The part of the Interscript language that is independent of the semantics of
particular properties and attributes

base semantics The semantic rules that govern how scripts in the base language are elaborated to
determine their contents, environments, and labels

binding The operation of associating a value with a name to add an attribute to an
environment; also the resulting association

binding mode A value may be bound to an identifier as local, const or global

Boolean An enumerated primitive type (F, T) used to control selection and as primitive
values

const binding A binding of an attribute that prevents its being rebound in any contained scope

contents The vector of values denoted by a node of a script

definition Another name for a const binding

document The internalization of a script in a representation suitable for some editor

dominant structure The tree structure of a document corresponding to the node structure of its script

editor-specific name A non-standard name used by a specific editor in scripts it generates; an editor
may use editor-specific terms without interfering with the interchangeability of a
script if it provides definitions of the standard names in terms of its editor-specific
names

elaborate (verb) To develop the semantics of a script or a node of a script according to the
Interscript semantic rules. This is a left-to-right, depth-first processing of the script

encoding A particular representation of scripts

environment A value consisting of a set of attributes. An environment may be either free-standing or
nodal. A free-standing environment is a structured value much like a record, with the
components being the attributes of the environment. A nodal environment is associated
with a node of a script and represents the attributes bound in that node.

expression A syntactic form denoting a value

external environment A standard environment relative to which an entire script is elaborated

externalization The process of converting from a document to a script; also the result of that process

fidelity The extent to which an externalization or internalization preserves contents, form,
and structure

hexInt A component of a hexSequence formed from a pair of letters in the set
{A,B,...,O,P}, and representing an integer in the range [0..256)

hexSequence A sequence of hexInt pairs enclosed between "#" pairs and used to encode
characters in string literals, e.g., #ENCODE#

hierarchical name A name containing at least one period, whose prefix unambiguously denotes the
naming authority that assigned its meaning

identifier A sequence of letters used to identify an attribute

integer A mathematical integer in a limited range; one of the primitive types

interchange encoding The standard encoding for scripts

internalization The process of converting from a script to a document; also the result of that process

Towards an Interchange Standard for Editable Documents 35

Interscript The current name of this basis for an editable document standard

invocation The appearance of a name in an expression, except as the attribute of a binding

label A tag, or a source, a target, or a link introduction placed in a node

link The cross product of a source and a target; in general, a link is a set of (source,
target) pairs; in the special case when there is exactly one source and one target,
a link behaves like a directed arc between a pair of nodes

link introduction The appearance of LINKS id in a node, where id is the main identifier of a link

literal A representation of a value of a primitive type in a script

local binding A binding of a value to a name, causing the current environment to be updated
with the new attribute; any outer binding’s scope will resume at the end of the
innermost containing node

name A sequence of identifiers internally separated by periods; e.g., a.b.c

nested environment The initial environment of a node contained in another node

NIL A name for the empty value; it does not lengthen a vector or node in which it appears

node Everything between a matched pair of {}s in a script; this generally represents a
branch point in a document’s dominant structure

NULL Identifies the empty environment; the value it associates with any identifier is NIL

OUTER A standard attribute of every environment:

For a free-standing environment (i.e., a record-like, structured value),
OUTER=NULL

For a nodal environment, OUTER’s value is the environment of the current
node’s parent just prior to the start of the current node.

For the root node of a document, OUTER=X.

For X, OUTER=NULL

global binding A kind of binding (indicated by ":=") that modifies the environment of the root
node of a document only, and hence may endure beyond the end of the current
node and may be seen by nodes to the right of the current node, even those not
hierarchically descended from the current node.

primitive type Boolean, Integer, Real, String, or Universal

primitive value A literal or a node, vector, or environment containing only primitive values

private encoding One of a number of non-standard encodings of a script

property Each tag on a node labels it with a property; the properties of a node determine
how it may be viewed and edited

quoted expression A value which is an expression bracketted by single quotes ("’"); the expression is
evaluated in each environment in which the identifier to which it is bound is
invoked

real A floating point number

scope The region of the script in which invocations of the attribute named in a binding
yield its value; the scope starts textually at the end of the binding, and generally
terminates at the end of the innermost containing node

script An Interscript program; the interchangeable result of externalizing a document

selection A conditional form in a script that denotes one of two expressions, depending on
the value of a Boolean expression in the current environment

source The set of nodes with REF link, which thereby refer to the set of target links.

string A literal which is a vector of characters bracketed by "<>", e.g., <This is a string!>

style A quoted expression to be invoked in a node to modify the node’s environment,
labels, or contents

Sub A standard component of each environment, which is implicitly invoked to initialize
nested environments

Appendices: Glossary , Arbitrary Choices, Formal Semantics36

SUBSCRIPT A function that can be used to extract a value from a vector,
e.g. SUBSCRIPT[(a b <str>), 3] is the value <str>

tag A universal name labelling a node using the syntax universal$; the properties of a
node correspond to the set of tags labelling it

target The set of nodes labelled with link:

transparency A characteristic of scripts that allows an editor to identify the nodes of a script
that it understands and thereby enables it to operate on those nodes without
disturbing the ones that it doesn’t understand

Units A set of definitions relating various typographical and scientific units to the
Interscript standard units, meters; e.g., inch=2.54E�2*meter, pt=.013836*inch

universal An identifier formed entirely of uppercase letters and digits

value A primitive value, node, vector, environment, universal, or quoted expression

vector An ordered sequence of values that may be subscripted

X The standard outer environment for an entire script; the value of an unbound
identifier in X is the universal consisting of the same letters in upper case

Towards an Interchange Standard for Editable Documents 37

APPENDIX B

ARBITRARY CHOICES

"One of the primary purposes of a standard
is to be definitive about otherwise arbitrary choices."

There are many places in this proposal where we have made an arbitrary choice for
definiteness. It will be important that the ultimate standard make some choice on these
points; it matters little whether it is the same as ours. To forestall profitless debate on these
points, we have tried to list some of the choices that we believe can be easily changed at a
later date:

Encoding choices:

The choice of representations for literals (we generally followed Interpress here).

The selection of particular characters for particular kinds of bracketting, and for
particular operators.

The choice of infix and functional notation for the interchange encoding (as opposed,
e.g., to Polish postfix).

The choice of particular identifiers for basic concepts.

Linguistic choices:

The choice of a particular set of basic operators for the language.

The particular set of primitive data types (we followed Interpress�its set seems about
as small as will suffice).

The choice of particular syntactic sugars for common linguistic forms.

Appendices: Glossary , Arbitrary Choices, Formal Semantics38

APPENDIX C

FORMAL SEMANTICS

C.1. Grammar

Our notation is basically BNF with terminals quoted and augmented by the following
conventions:

a sequence enclosed in [] brackets may occur zero or one times;

a construct followed by * may occur zero or more times;

parentheses () are used purely for grouping.

script ::= header node trailer

header ::= "Interscript/Interchange/1.0 "

trailer ::= "EndScript"

item ::= content | binding | label

content ::= term | node

term ::= primary | primary op term

op ::= "+" | "�" | "*" | "/"

primary ::= literal | invocation | indirection | application | selection | vector

literal ::= Boolean | integer | real | string | universal

invocation ::= name

name ::= id ("." id)*

indirection ::= name "%"

application ::= (name | universal) "[" item* "]"

universal ::= ucID

selection ::= "(" term "|" item* "|" item* ")"

vector ::= "(" item* ")"

node ::= "{" item* "}"

binding ::= localBind | globalBind
localBind ::= name "_" rhs
globalBind ::= (name | universal) ":=" rhs

rhs ::= content | op term | "’" item* "’" | "[" item* "|" binding* "]"

label ::= tag | link

tag ::= universal "$"

link ::= "LINKS" id | "^" name | name ":"

C.2. Notation for environments

Environments bind identifiers to expressions, in various modes ("=", ":=", "_"):
NULL denotes the "empty" environment
[E | id _ e] means "E with id bound to e"
locVal(id, E) denotes the value locally bound to id in E

locVal(id, NULL) = NIL = ""
locVal(id, [E | id’ m e]) = if id=id’ then e else locVal(id, E)

Towards an Interchange Standard for Editable Documents 39

C.3. Semantic functions

R: expression, environment --> expression -- Reduction

R is used for evaluating right-hand sides: identifiers, expressions, etc.

C: expression --> expression -- Contents

C is basically used to indicate which evaluated expressions become part of the
content of a node

B: expression, environment --> environment -- Bindings

B indicates the effect a binding has on an environment. B and R are mutually
recursive functions (e.g., the evaluation of an expression may cause some bindings
to occur as well)

The following four semantic functions occur less frequently in any substantive way in the
semantics below. You might wish to skip them until they occur in a nontrivial manner in the
semantics.

T: expression --> expression -- Tags

T indicates when an identifier is to be included in the tag set for a node

L: expression --> expression -- Links

L indicates link declarations

Ls: expression --> expression -- Link sources

Ls indicates a link to the set of nodes having associated target links

Lt: expression --> expression -- Link targets

Lt indicates that the node is to be included in the target set of all the names which
are prefixes of the name to which the expression should evaluate

C.4. Presentation by feature

[E is used to represent the value of the environment in which the feature occurs.]

script ::= header node trailer
header ::= "Interscript/Interchange/1.0 "
trailer ::= "EndScript"

The semantics of the root node of a script are equivalent to the following general semantics
for a node with the initial environment being the outermost, external environment X instead of
E:

node ::= "{" item* "}"
R = C = "{" R<"Sub" item*>([NULL | "OUTER" "=" E]) "}"
B = locVal("OUTER", (B<"Sub" item*>([NULL | "OUTER" "=" E])))
T = L = Ls = Lt = NIL

Nodes have nested environments, and can have more global effects only through global (:=)

Appendices: Glossary , Arbitrary Choices, Formal Semantics40

bindings. The items of a node are implicitly prefixed with the identifier Sub, which may be
bound to any information intended to be common to all subnodes in a scope.

item* ::= ""
R = C = T = L = Ls = Lt = NIL

B = E

The empty sequence of items has no value and no effect; this is the basis for the following
recursive definition.

item* ::= item1 item*
R = R<item1>(E) R<item*>(B<item1>(E))
B = B<item*>(B<item1>(E))

 For F in {C, T, L, Ls, Lt}:
F = F<item1> F<item*>

In general, the value of a sequence of items is just the sequence of item values; binding
items affect the environment of items to their right; NIL does not change the length of a result
sequence.

term ::= primary op term
op ::= "+" | "-" | "*" | "/"

R = C = R<primary>(E) op R<term>(E)
B = E
T = L = Ls = Lt = NIL

Both the primary and the term must reduce to numbers; the arithmetic operators are
evaluated right-to-left (�a la APL, without precedence) and bind less tightly than application.

primary ::= literal
literal ::= Boolean | integer | hexint | real | string

R = C = literal
B = E
T = L = Ls = Lt = NIL

The basic contents of a document.

invocation ::= id
R = R<valOf(id, E)>(E)
B = B<valOf(id, E)>(E)

 where
valOf(id, E) = locVal(id, whereBound(id, E)) -- Gets innermost value
whereBound(id, E) = CASE -- Gets innermost binding

locBinding(id, E) ~= NONE => E
locBinding("OUTER", E) ~= NONE =>

whereBound(id, locVal("OUTER", E))
True => NULL

Both attributes and definitions are looked up in the current environment; depending on the
current binding of id, this may produce values and/or bindings; if the binding’s rhs was
quoted, the expression is evaluated at the point of invocation.

When an id is referred to and locBinding(id, E)=NONE, then the value is sought recursively in
locVal("OUTER"). The outermost environment, X, binds each id to the "universal" name
which is the uppercase equivalent of id.

Towards an Interchange Standard for Editable Documents 41

invocation ::= name "." id
R = R<valOf(id, R<name>(E))>(E)
B = B<valOf(id, R<name>(E))>(E)

Qualified names are treated as "nested" environments.

universal ::= ucID
R = C = ucID
B = E
T = L = Ls = Lt = NIL

Uppercase-only identifiers are presumed to be directly meaningful and are not looked up in
the environment.

application ::= invocation "[" item* "]"
R = apply(invocation, R<item*>(E), E)
B = E

 where
apply(invocation, value*, E) =
 CASE R<invocation>(E) OF

"EQUAL" => value1 = value2
"GREATER" => value1 > value2
. . .
"SUBSCRIPT" => value1[value2] -- value1: sequence, value2: int
"CONTENTS" => "(" C<inner(value1)> ")"
"TAGS" => "(" T<inner(value1)> ")"
"LINKS" => "(" L<inner(value1)> ")"
"SOURCES" => "(" Ls<inner(value1)> ")"
"TARGETS" => "(" Lt<inner(value1)> ")"

 ELSE => R<invocation>([[NULL | "OUTER" "=" E] | "Value" "=" value*])
inner("{" value* "}") = value*

If the invocation does not evaluate to one of the standard external function names, the
current environment is augmented with a binding of the value of the argument list to the
identifier Value, and the value is the result of the invocation in that environment; this allows
function definition within the language.

selection ::= "(" term "|" item1* "|" item2* ")"
R = if R<term>(E) then R<item1*>(E) else R<item2*>(E)
B = if R<term>(E) then B<item1*>(E) else B<item2*>(E)

The notation for selections (conditionals) is borrowed from Algol 68:
(<test> | <true part> | <false part>)

This is consistent with our principles of using balanced brackets for compound constructions
and avoiding syntactically reserved words; the true part and false part may each contain an
arbitrary number of items (including none).

sequence ::= "(" item* ")"
R = C = "(" R<item*>(E) ")"
B = B<item*>(E)
T = L = Ls = Lt = NIL

Parentheses group a sequence of items as a single value; bindings in the sequence affect
the environment of items to the right in the containing node, but labels are disallowed.
Parentheses may also be used to override the right-to-left evaluation of arithmetic operators;
an operand sequence must reduce to a single numeric value.

Appendices: Glossary , Arbitrary Choices, Formal Semantics42

binding ::= name "_" rhs
R = NIL
B = localBind(name, R<rhs>(E), E)

 where
localBind(id, value, E) = [E | id _ value]
localBind(id "." name, value, E) = [E | id _ localBind(name, value, valOf(id, E))]

This adds a single binding to E; bindings have no other "side effects" and no value.

binding ::= universal ":=" rhs
binding ::= name ":=" rhs

R = NIL
B = globalBind(name, R<rhs>(E), E)
where

globalBind(name, value, E) = if
locVal("OUTER", E)=NIL then localBind(name, value, E)
else [E | "OUTER" _ globalBind(name, value, locVal("OUTER", E))]

Each environment, E, initially contains only its "inherited" environment (bound to OUTER).
Most bindings take place directly in E. To allow for "global" bindings, the value of a
globalBind(name, R<rhs>(E), E) will change E by rebinding id in the outermost environment X
(reached in the semantics by following the OUTER path from E until the outermost one is
reached; if we started in a nodal environment, this will be X).

Note that a global binding to some variable b does not guarantee that using b in a rhs context will result in
accessing the global b because a local binding to b may intervene.

Note that in a context such as [| a := 7], the effect of the above semantics is the same as [| a _ 7].

binding ::= name mode op term
= <name mode name op term>

This is just a convenient piece of syntactic sugar for the common case of updating a
binding.

rhs ::= "’" item* "’"
R = item*

If the rhs of a binding is surrounded by single quotes, it will be evaluated in the
environments where the name is invoked, rather than the environment in which the binding is
made.

rhs ::= "[|" binding* "]"
R = [B<binding*>([NULL | "OUTER" "=" E]) | "OUTER" "=" NULL]

This creates a new environment value that may be used much like a record.

rhs ::= "[" invocation "|" binding* "]"
R =[B<binding*>([R<invocation>(E) | "OUTER" "=" E]) | "OUTER" "=" NULL]

This creates a new environment value that is an extension of an existing one.

tag ::= universal "$"
R = R<valOf(universal, E)>(E)
B = B<valOf(universal, E)>(E)
T = universal
C = L = Ls = Lt = NIL

This gives the containing node the property denoted by the universal and also invokes the

Towards an Interchange Standard for Editable Documents 43

universal in the outermost environment (if it is not bound there, NIL will be produced, which
contributes nothing to R).

link ::= "LINKS" id
R = "LINKS" id
L = id
B = E
C = T = Ls = Lt = NIL

This defines the scope of the set of links whose "main" component is id.

A label N: on a node makes that node a "target" of the link N (and its prefixes); a reference
^N makes it a "source." The "main" identifier of a link must be declared (using LINKS id) at
the root of a subtree containing all its sources and targets. The link represents a set of
directed arcs, one from each of its sources to each of its targets. Multiple target labels
make a node the target of multiple links. A target label that appears only on a single node
places it in a singleton set, i.e., identifies it uniquely.

link ::= "^" name
R = "^" name
Ls = name
B = E
C = T = L = Lt = NIL

This identifies the containing node as a "source" of the link name.

link ::= name ":"
R = name ":"
Lt = prefixes(name)
B = E
C = T = L = Ls = NIL

where
prefixes(id) = id
prefixes(name "." id) = name "." id prefixes(name)

This identifies the containing node as a "target" of each of the links that is a prefix of name.

C.5. Discussion

Each script is evaluated in the context of an initial environment, X, which can contain
attributes global to all scripts, attributes that specify values for system-specific identifiers,
and in which all global bindings are made.

Each environment, E, initially contains only its "inherited" environment (bound to the OUTER).
Most bindings take place directly in E. To allow for more persistent bindings, the value of a
bind(id, ":=", val, E) will change E by rebinding id in X. For the root node of a script, OUTER

= X.

If the right-hand side of a binding is surrounded by single quotes, it will be evaluated in the
environments where the name is invoked, rather than the environment in which the binding is
made.

When an id is referred to and locBinding(id, E)=NONE, then the value is sought recursively in

Appendices: Glossary , Arbitrary Choices, Formal Semantics44

locVal("OUTER"). The X environment binds each id to the "universal" name which is its
uppercase equivalent (e.g., the universal for iDentiFieR is IDENTIFIER).

Nodes are delimited by brackets. The contents of each node are implicitly prefixed by Sub,
which will generally be bound in the containing environment to a quoted expression
performing some bindings, and perhaps supplying some labels (tags and links).

Parentheses are used to delimit sequence values. Square brackets are used to delimit the
argument list of an operator application and to denote environment constructors, which
behave much like records.

Expressions involving the four infix ops (+, -, *, /) are evaluated right-to-left (�a la APL);
since we expect expressions to be short, we have not imposed precedence rules.

The notation for selections (conditionals) is borrowed from Algol 68:
(<test> | <true part> | <false part>)

This is consistent with our principles of using balanced brackets for compound constructions
and avoiding syntactically reserved words; the true part and false part may each contain an
arbitrary number of items (including none).

 A label N: on a node makes that node a "target" of the link N (and its prefixes); a reference
^N makes it a "source." The "main" identifier of a link must be declared (using LINKS id) at
the root of a subtree containing all its sources and targets. The link represents a set of
directed arcs, one from each of its sources to each of its targets. Multiple target labels
make a node the target of multiple links. A target label that appears only on a single node
places it in a singleton set, i.e., identifies it uniquely.

C.6. Grammatical feature X Semantic function matrix

LEGEND:
- Semantic function produces NIL or E or does not apply.
+ Non-trivial semantic equation.
=�For R: passes value unchanged; for C: value same as R.

FEATURES: ����FUNCTIONS:
R C B T L Ls Lt

term ::= primary op term + = - - - - -
primary ::= literal = = - - - - -
invocation ::= id + - + - - - -
invocation ::= name "." id + - + - - - -
universal ::= name "$" = = - - - - -
application ::= invocation "[" item* "]" + - - - - - -
selection ::= "(" term "|" item1* "|" item2* ")" + - + - - - -
node ::= "{" item* "}" + = + - - - -
sequence ::= "(" (value | binding)* ")" + = + - - - -
item* ::= item1 item* + + + + + + +
binding ::= name mode rhs - - + - - - -
rhs ::= "’" item* "’" + - - - - - -
rhs ::= "[|" binding* "]" + - - - - - -

Towards an Interchange Standard for Editable Documents 45

rhs ::= "[" invocation "|" binding* "]" + - - - - - -
tag ::= invocation "%" + - - + - - -
link ::= "LINKS" id = - - - + - -
link ::= "^" name = - - - - + -
link ::= name ":" = - - - - - +

- Semantic function produces NIL or E or does not apply.
+ Non-trivial semantic equation.
=�For R: passes value unchanged; for C: value same as R.

Appendices: Glossary , Arbitrary Choices, Formal Semantics46

HISTORY LOG

Edited by Mitchell, September 1, 1981 3:12 PM, added first version of glossary

Edited by Mitchell, September 7, 1981 2:11 PM, wrote parts of introduction

Edited by Mitchell, September 10, 1981 10:14 AM, added Tab def to Star property sheets

Edited by Mitchell, September 14, 1981 9:54 AM, renumbered chapters and did minor edits

Edited by Horning, May 4, 1982 5:16 PM, Fold in Truth Copy changes, add Appendix B

Edited by Mitchell, May 10, 1982 5:40 PM, changed "Interdoc" to "Interscript", "rendering" to "internalizing", and
"transcribing" to "externalizing" plus various edits necessitated by these substitutions.

Edited by Mitchell, August 19, 1982 4:55 PM, preparing the final version: eliminated const bindings, changed syntax for
links, renamed Outermost to be X.

