
LIMITED DISTRIBUTION: FOR XEROX INTERNAL USE

Towards an Interchange Standard
for Editable Documents

by Jim Mitchell (Mitchell.PA) and Jim Horning (Horning.PA)

Revision 1.1/May 10, 1982

The Interscript standard will define a digital representation of editable documents for
exchange among different editing systems. An Interscript script can be transmitted from one
editor to another over a network, or can be stored for later editing. A script is not limited to
any particular editor: if a script contains editable information some of which is not
understandable by a particular editor, it is still possible to edit the parts of the document
understood by that editor without losing or invalidating the parts it does not understand.

This document is a draft of a proposal for the technical content of the Interscript standard. It
defines and explains the proposed standard, gives examples of its use, explains how to
externalize documents in an editor’s private format into scripts, and how to internalize scripts
into an editor’s private format. It also indicates a number of issues that must still be resolved
to establish a practical standard.

Note: This draft is being circulated to interested parties within Xerox
to report preliminary ideas. It should not be interpreted as a definitive
proposal, and should not be distributed outside.

XEROX
PALO ALTO RESEARCH CENTER
COMPUTER SCIENCE LABORATORY
3333 Coyote Hill Road / Palo Alto / California 94304

Towards an Interchange Standard for Editable Documents

by Jim Mitchell and Jim Horning

Revision 1/May 4, 1982

The Interscript standard will define a digital representation of editable documents for
exchange among different editing systems. An Interscript script can be transmitted from one
editor to another over a network, or can be stored for later editing. A script is not limited to
any particular editor: if a script contains editable information some of which is not
understandable by a particular editor, it is still possible to edit the parts of the document
understood by that editor without losing or invalidating the parts it does not understand.

This document is a draft of a proposal for the technical content of the Interscript standard. It
defines and explains the proposed standard, gives examples of its use, explains how to
externalize documents in an editor’s private format into scripts, and how to internalize scripts
into an editor’s private format. It also indicates a number of issues that must still be resolved
to establish a practical standard.

The standard provides for documents with

a dominant hierarchical structure (e.g., book/chapter/section/paragraph...) while also
providing for documents needing a more general structure than a tree (e.g., for
graphics or cross-references in a textual document),

formatting information (e.g., margins, fonts, line widths, etc.),

definitional structure (such as styles or property sheets), and

intermixed kinds of editable information (e.g., text with imbedded graphics).

This draft deals primarily with the contents of Layers 0 and 1 (the base language) of the
proposed standard.

Contents

1. Introduction

2. The Language Basis: Syntax and Semantics

3. Higher�Level Issues

4. Pragmatics

Appendix A: Glossary

Towards an Interchange Standard for Editable Documents 1

1. Introduction

Interscript provides a means of representing editable documents that is independent of
any particular editor and can therefore be used to interchange documents among editors.

The basis of Interscript is a language for expressing editable documents, or scripts.
Scripts are created by computer programs (usually an editor or associated program); scripts
are "compiled" by programs to produce whatever private or file format a particular editor
uses to represent editable documents.

1.1. Rationale for an interchange standard

An editing program typically uses a private, highly-encoded representation for documents
in order to meet its performance and functionality goals. Generally, this means that different
editors use different, incompatible private formats, and the user can conveniently edit a
document only with the editor used to create it. This problem can be solved by providing
programs to convert between one editor’s private (or file) format and another’s. However, a
set of different editors with N different document representations requires N(N-1) conversion
routines to be able to convert a document directly from each format to every other.

This N(N-1) problem can be reduced to 2(N-1) by noticing that we could write N-1
conversion routines to go from F1 (format for editor1) to F2,. . .,FN, and another N-1 routines
to convert from F2,. . .,FN to F1. Except when converting from or to F1, this scheme requires
two conversions to go from Fi to Fj (j=i); this is a minor drawback. Choosing which editor
should be editor1 is a more critical issue, however, since the capabilities of that editor will
determine how general a class of documents can be interchanged among the N editors.

This presents a truly difficult problem in the case that there is no single functionally
dominant editor. If the pivotal editor1 doesn’t incorporate some of the structures, formats, or
content types used by others, then it will not be possible to faithfully convert documents
containing them. Even if we had a single editor that was functionally dominant, it would place
an upper bound on the functionality of all future compatible editors. Since there are no actual
candidates for a totally dominant editor, we have chosen instead to examine in general what
information editors need and how that information can be organized to represent general
documents.

Since we are not proposing an editor, we do not need to design a private format for its
documents; we only need an external representation that is capable of conveying the
structure, form, and content of editable documents. That external representation has only one
purpose: to enable the interchange of documents among a different editors. It must be easy
to convert between real editors’ formats and this interchange encoding.

Using a standard interchange encoding has the additional advantage that much of the
input and output conversion algorithms will be common to all conforming editors. In fact,
when adding a new version of a previous editor, the only differences in the new version’s
conversion routines will be in the areas in which its internal format has changed from its
previous form; this represents a significant saving of programming. Finally, no special
routines or human procedures would be needed to upgrade documents to a new version of

Towards an Interchange Standard for Editable Documents2

an editor, since each conforming editor will be capable of understanding and producing the
interchange representation anyway.

1.2. Properties that any interchange standard must have

An interchange encoding for editable documents must satisfy a number of constraints.
Among these are the following:

1.2.1. Universal character set

Scripts must be encoded using the graphic (printable) subset of the ISO 646 printing
character set. As well as the obvious rationale that these characters are guaranteed not to
have control significance to any devices meeting the ISO standard, it has the additional
advantage that a script is humanly readable.

1.2.2. Encoding efficiency

Since editable documents may be stored as scripts, may be transmitted over a network,
and must certainly be processed to convert them to various editors’ private formats, it is
important that the encoding be reasonably space-efficient.

Similarly, the time cost of converting between interchange encoding and private formats
must be reasonably low since it will have a significant effect on how useful the interchange
standard is. (If the overheads were small enough, an editor might not even use a private file
format for document storage.)

1.2.3. Open-ended representation

Scripts must be capable of describing virtually all editable documents, including those
containing formatted text, synthetic graphics, scanned images, etc., and mixtures of these
various modes. Nor may the standard foreclose future options for documents that exploit
additional media (e.g., audio) or require rich structures (e.g., VLSI circuit diagrams, database
views). For the same reasons, the standard must not be tied to particular hardware or to a file
format: documents will be stored and transmitted using a variety of media; it would be folly to
tie the representation to any particular medium.

1.2.4. Document structure

Many documents have hierarchical structure; e.g., a book is made of chapters containing
sections, each of which is a sequence of paragraphs; a figure is embedded in a frame on a
page and in turn contains a textual caption and imbedded graphics; and the description of an
integrated circuit has levels corresponding to modular or repeated subcircuits. The standard
should exploit such structure, without imposing any particular hierarchy on all documents.

Hierarchy is not sufficient, however. Parts of documents must often be related in other
ways; e.g., graphics components must often be related geometrically, which may defy

Towards an Interchange Standard for Editable Documents 3

hierarchical structuring, and it must be possible to indicate a reference from some part of a
document to a figure, footnote, or section in way a that cuts across the dominant hierarchy of
the document (section 1.6.4).

Documents often contain structure in the form of indirection. For instance, a set of
paragraphs may all have a common "style," which must be referred to indirectly so that
changing the style alone is sufficient to change the characteristics of all the paragraphs using
it. Or a document may be incorporated "by reference" as a part of more than one document
and may need to "inherit" many of its properties from the document into which it is being
incorporated at a given time.

1.2.5. Document form and content

The complete description of a document component usually requires more than an
enumeration of its explicit contents; e.g., paragraphs have margins, leading between lines,
default fonts, etc. Scripts must record the association between attributes and pieces of
content.

The contents of a document must be represented by a rich space containing scalar
numbers, strings, vectors, and record-like constructs in order to describe items as varied as
distances, text, coefficients of curves, graphics constraints, digital audio, scanned images,
transistors, etc.

Attribute values should also be described in this rich value space.

1.2.6. Transcription fidelity

It must be possible to convert any document from any editor’s private format to a script
and reconvert it back to the same editor’s private format with no observable effect on the
document’s form, structure, or content. This characteristic is called transcription fidelity, and
is a sine qua non for an interchange encoding; if it is not possible to accomplish this, the
interchange encoding or the conversion routines (or both) must be defective.

1.2.7. Comprehending scripts

Even complicated documents have simple pieces. A simple editor should be able to
display document components that it is capable of displaying, even in the presence of
components that it cannot. More precisely, an editor must, in the course of internalizing a
script , be able to discover all the information necessary to recognize and to display the parts
that it understands. This must work despite the fact that different editors may well use
different data structures to represent the structure, form, and content of a document.

At a minimum, this requires that a script contain information by which an editor can easily
determine whether or not it understands a component well enough to display or edit it, and
that it be able to interpret the effect that components that it does not understand have on the
ones it does. For example, if an editor does not understand figures, it should still be possible
for it to display their embedded textual captions correctly, even though a figure might well
dictate some of its caption’s content or attributes such as margins, font, etc.

Towards an Interchange Standard for Editable Documents4

This constraint requires that an interchange encoding must have a simple syntax and
semantics that can be interpreted readily, even by low-capability editors. Along with the
desire for openendedness (section 1.2.3), this suggests a language with some form of
"extension by definition" built around a small core.

1.2.8. Regeneration

Processing a script to internalize it correctly is only half the problem. It is equally
important that an editor, in externalizing a script from its private document format be able to
regenerate the structure, form, and content carried by the script from which the document
originally came.

This problem is much less severe when an editor is transcribing a document that it
"understands" completely, e.g., because the entire document was generated using that
editor. However, when regenerating a script from an edited document, it should be possible
to retain the structure in parts of the original script that were not affected by editing
operations. For example, an editor that understands text but not figures should be able to
edit the text in a document (although editing a caption may be unsafe without understanding
figures) while faithfully retaining and then regenerating the figures when transcribing from its
private format.

1.3. What the Interscript standard does not do

There are a number of issues that the Interscript standard specifically does not discuss.
Each of these issues is important in its own right, but is separable from the design of an
interchange representation

1.3.1. Interscript is not a file format

The interchange encoding of a script is a sequence of ASCII/ISO 646 characters. The
standard is not concerned with how that representation is held in files on various media
(floppy disks, hard disks, tapes, etc.), or with how it is transmitted over communications
media (Ethernet, telephone lines, etc.).

1.3.2. Interscript is not a standard for editing

A script is not intended as a directly editable representation. It is not part of its function
to make editing of various constructs easier, more efficient, or more compact: those are the
purview of editors and their associated private document formats. A script is intended to be
internalized before being edited. This rendition might be done by the editor, by a utility
program on the editing workstation, or by a completely separate service.

1.3.3. Combining documents is not an interchange function

This exclusion is really a corollary of the statement, "A script is not intended as a directly
editable representation." In general, it is no easier to "glue" two arbitrary documents

Towards an Interchange Standard for Editable Documents 5

together than it is to edit them.

1.3.4. Interscript does not overlap with other standards

There are a number of standards issues that are closely related to the representation of
editable documents, but which are not part of the Interscript standard because they are also
closely related to other standards. For example, the issues of specifying encodings for
characters in documents, how fonts should be named or described, or how the printing of
documents should be specified (i.e., Interpress) are not part of this work.

Towards an Interchange Standard for Editable Documents6

HISTORY LOG

Edited by Mitchell, September 1, 1981 3:12 PM, added first version of glossary

Edited by Mitchell, September 7, 1981 2:11 PM, wrote parts of introduction

Edited by Mitchell, September 10, 1981 10:14 AM, added Tab def to Star property sheets

Edited by Mitchell, September 14, 1981 9:54 AM, renumbered chapters and did minor edits

Edited by Mitchell, September 16, 1981 8:42 AM, folding in comments from JJH’s review and added sections on rendition
and transcription fidelity

Edited by Mitchell, September 18, 1981 1:56 PM, folded in comments from JJH’s review

Edited by Horning, May 3, 1982 6:02 PM, Folded in comments from Truth copy

Edited by Mitchell, May 10, 1982 3:28 PM, changed "Interdoc" to "Interscript", "rendering" to "internalizing", and
"transcribing" to "externalizing" plus various edits necessitated by these substitutions.

Edited by Mitchell, DDD, Explanation

Towards an Interchange Standard for Editable Documents6

1.4. Concepts and Guiding Principles

1.4.1. Layers

The Interscript standard is presented as a sequence of layers:

Layer 0 defines the syntax of scripts; parsing reveals the dominant structure of the
documents they represent.

Layer 1 defines the semantics of the base language, particularly the treatment of
bindings and environments.

Layer 2 defines the semantics of properties and attributes that are expected to have a
uniform interpretation across all editors.

Various Layer 3 extensions will define the semantics of properties and attributes that
are expected to be shared by particular groups of editors.

The present document focusses almost exclusively on Layers 0 and 1, although some of the
examples illustrate properties and attributes likely to be defined in Layer 2.

1.4.2. Transcription and Rendition

Transcription fidelity requires that any document prepared by any editor can be
externalized as a script that will then be internalized by the editor without loss of information.
Ease of internalization requires that the Interscript base language contain only relatively few
(and simple) constructs. We resolve this apparent paradox by including within the base
language a simple, yet powerful, mechanism for abbreviation and extension.

A script may be considered to be a "program" that could be "compiled" to convert the
document in the private representation of a particular editor, ready for further editing. The
Interscript language has been designed so that internalizing scripts into typical editors’
representations can be performed in a single pass over the script by maintaining a few simple
data structures.

1.4.3. Content, Form, Value, and Structure

Most editors deal with both the content of a document (or piece of a document), and its
form. The former is thought of as "what" is in the document, the latter as "how" it is to be
viewed. (E.g., "ABC" has a sequence of character codes as its contents; its format may
include font and position information.) Interscript maintains this distinction.

Another useful distinction is between the value and the structure of either form or content
within a document. When viewing a document, only the value is of concern, but the structure
that leads to that value may be essential to convenient editing. An example of structure in
content is the grouping of text into paragraphs; in form, associating a named "style" with a
paragraph.

Content: Text and graphics are common special cases. Interscript’s treatment of these
has been largely modelled on that of Interpress. Other kinds of content may be represented
by structures built from character strings, numbers, Booleans, and identifiers.

Towards an Interchange Standard for Editable Documents 7

Form: Interscript provides for open-ended sets of properties and attributes. Properties are
associated with content by means of tags. Attributes are name-value pairs that apply
throughout a scope, and are placed in the environment by means of bindings. Contents are
not always present to be simply displayed as text. The way the contents of a document are
to be "viewed" is determined by its properties; Interscript makes it straightforward to
determine what these properties are without having to understand them.

Structure: Most editors structure the content of a document somehow�into words,
sentences, paragraphs, sections, chapters; or lines, pages, signatures; or This assists in
obtaining private efficiency, but, more importantly, provides a conceptual structure for the
user.

Full transcription fidelity requires that the Interscript language be adequate to record any
structure that is maintained by any editor for either form or content. Of course, some editors
provide a number of different structures. A general structure, of which all the editors we
know use special cases, is the labelled directed graph. Interscript provides this structure,
without restricting the purposes for which it may be used. There are also two specializations
of general graphs that occur so frequently that Interscript treats them specially:

Sequences: The most important, and most frequent, relationship between values is
logical adjacency (sequentiality), which is represented by simply putting them one
after another in the script.

Ordered trees: Most editors that structure contents have a "dominant" hierarchy that
maps well into trees whose arcs are implicitly labelled by order. (Different editors use
these trees to represent different hierarchies). Interscript provides a simple linear
notation for such trees, delimiting node values by braces ("{" and "}"). If an editor
maintains multiple hierarchies, the dominant one is the one transcribed into the tree
structure and used to control the inheritance of attributes.

Content structure beyond that contained in the dominant hierarchy is represented by explicit
links in the script; any node may be labelled as the source and/or the target of any number
of links. A link whose target is a single node uniquely identifies that node; links with multiple
targets may be used to represent sets of nodes.

Typical structures recorded for form are expressions (indicating intended relations among
attribute values) and sharing (representable by indirection). Interscript allows expressions to
be composed of literals, identifiers, operators, and function applications, and permits the use
of identifiers to represent expressions.

1.4.4. Features of the Base Language

1.4.4.1 Values

Expressions in a script may denote

Literal values of primitive types

Booleans: F, T

Integers: . . . �3, �2, �1, 0, 1, 2, 3, . . .

Reals: 1.2E5, . . .

Strings: <this is a string>

Towards an Interchange Standard for Editable Documents8

Universal names: TEXT, XEROX, PARAGRAPH

Structured values

Nodes

Vectors of values

Environments

Generic operations

Invocations

Applications

Selections

Operations specific to particular types

Arithmetic

Comparison

Logical

Subscript

. . .

Bindings

Labels

Tags

Targets

Sources

Link introductions

Expressions to be evaluated at the point of invocation

1.4.4.2 Environments and Attributes

Environments bind attribute identifiers to values (or expressions denoting values), in
various modes:

"_" denotes a local binding, which may be freely superseded,

"=" denotes a constant binding (definition), which may not be superseded within the
containing node or any of its subnodes,

We expect definitions to be used by sophisticated editors for such things as styles. Some
scripts will come with a prefix containing non-standard property and attribute definitions that
are global to the document. There may be standard libraries containing definitions that allow
complex documents to be edited in terms of properties and attributes understood by simpler
editors.

":=" denotes a global binding, which prevents the variable name from being reused
for any other purpose.

Null denotes the "empty" environment, containing bindings for no attributes. The (implicit)
outermost environment binds each identifier id to the corresponding universal name ID
(written with all capital letters).

Towards an Interchange Standard for Editable Documents 9

Each piece of content in a document has its own environment. Editors will use relevant
attributes from that environment to control its form. Attributes may also be used in scripts for
two purposes:

abbreviation: an identifier may be bound to a quoted expression; within the scope of
the binding, the use of the identifier is equivalent to the use of the full expression;

indirection: reference through an identifier permits information (such as styles) to be
defined in one place and shared throughout its scope; this is an example of structure
(which must be preserved) in the form of a document.

1.4.4.3 Inheritance

The dominant hierarchy of a document is represented by grouping its pieces within
nodes, which are the most obvious form of content structuring. They also control the scope
of bindings.

The environment of a node is initially inherited from its containing node (except for the
outermost node, which inherits it from the editor), and may be modified by bindings. A
binding takes effect at the point where it appears, and its scope extends to the end of the
innermost node containing it, with two exceptions:

any binding except a definition may be superseded by a (textually) later binding (if
the later binding is in a nested node, the outer binding’s scope will resume at the
end of the inner node), and

a global binding extends over the entire document.

Attributes are inherited only via environments following the dominant structure. Thus the choice of a

dominant structure to represent scripts from a particular editor will be strongly influenced by expectations about
inheritance.

Attributes are "relevant" to a node if they are assumed by any of its tags. In general, a node’s environment
will also contain bindings for many "latent" attributes that are either relevant to its ancestors (and inherited by
default) or are potentially relevant to its descendants.

The interior of each node is implicitly prefixed by Sub, which will generally be bound in the containing
environment to a quoted expression performing some bindings, applying some labels, and/or supplying some
repeated content.

1.4.4.4 Expressions

Expressions involving the four infix ops (+, �, *, /) are evaluated right-to-left (a la APL);
since we expect expressions to be short, we have not imposed precedence rules.

Parentheses are used to delimit vector values. Square brackets are used to delimit the
argument list of an operator application and to denote environment constructors, which
behave much like records.

Towards an Interchange Standard for Editable Documents10

The notation for selections (conditionals) is borrowed from Algol 68:

(<test> | <true part> | <false part>)

This is consistent with our principles of using balanced brackets for compound constructions
and avoiding syntactically reserved words; the true part and false part may each contain an
arbitrary number of items (including none).

1.4.4.5 Tags and Labels

A tag is written as a universal name followed by ��$’’. A tag, t, labels a node that contains
it with its associated properties and also indirectly refers to the component of the
environment with the name "defaults.t". Properties are either present in a node or absent,
whereas attributes have values that apply throughout a scope.

Layer 2 of the standard will be primarily concerned with the definition of a small set of
standard properties that are expected to be shared among all conforming editors. For each
standard property, it will describe

the associated tag that denotes it,

the assumptions it implies about the contents (values that must/may be present and
their intended intepretation, invariant relations that are to be maintained, etc.),

the assumptions it implies about the environment (attributes that must be present and
their intended intepretation).

A label L! on a node makes that node a target of the link L (and its prefixes); a label L@
makes it a source. The "main" identifier of a link must be introduced (using id@!) at the root
of a subtree containing all its sources and targets, and textually preceding them. Each link
represents a set of directed arcs, one from each of its sources to each of its targets. Multiple
target labels make a node the target of multiple links. Labels provide a very general
mechanism for recording structure, such as cross-references, not captured by linear order or
the dominant hierarchy.

1.4.5. Comprehending scripts

The Interscript standard applies to interchange among editors with widely varying
capabilities. It will be important to define some structure to the space of possibilities, just as
Interpress has for printable documents. Dimensions in which we foresee reasonable variations
in script comprehension are:

Abbreviations: only editor-supplied � defined in document.

Dominant structure: single-layer � arbitrary.

Other structure: no links or indirections � links and indirections preserved.

Bindings: Local only � const (=), and global (:=).

Selection: No conditionals � conditionals.

Numbers: Integers only � floating point.

See section 2.4 for further details.

Towards an Interchange Standard for Editable Documents 11

1.4.6. Internalizing a Script

The private representations of low-capability editors are not generally adequate to provide
a full-fidelity internalization of every script that results from externalizing a document
prepared by a high-capability editor. Thus, when internalizing a script, some information may
be lost. The Interscript language has been designed to simplify value-faithful internalization,
even if structure is lost, and content-faithful internalization, even if form is lost�or the
conversion of form to additional content to allow it to be examined (and perhaps even edited)
by a low capability-editor. The standard provides some simple conditions under which a low-
capability editor can safely modify parts of a document that it understands fully, without
thereby destroying the value or structure of parts that it is not prepared to deal with.

A script may be internalized into an editor’s (private or file) representation as follows:

Parse the entire script from left to right.

As each literal is encountered in the script, convert it to the editor’s representation.

As each abbreviation (free-standing invocation) is encountered in the script, replace it
with the value to which it is bound in the environment.

As each structure is recognized in the script, represent the corresponding structure in
the editor’s representation, if possible; if not, use the semantics of Interscript to
compute the value to be internalized.

Update the environment whenever a binding is encountered or a scope is exited,
according to the semantics of Interscript.

Transfer the values of all attributes relevant to each piece of content from the current
environment to the editor’s representation, if possible; if not, apply an invertible
function to convert the attribute-value binding into additional content.

Determine the properties of each node from its tags; this list will be complete at the
end of the node. A node is viewable if any of its tags denotes a property in the set of
those the editor is prepared to display; it is understood if they are all in the set of
those the editor is prepared to edit.

Record the sources and targets of all links; for any link, these lists will be complete at
the end of the node in which its main identifier was introduced. Translate each link to
the corresponding editor structure, according to the properties of the node that
introduces it.

Of course, any process yielding an equivalent result is equally acceptable.

Towards an Interchange Standard for Editable Documents12

HISTORY LOG

Edited by Mitchell, May 10, 1982 3:28 PM, changed "Interdoc" to "Interscript", "rendering" to "internalizing", and
"transcribing" to "externalizing" plus various edits necessitated by these substitutions.

Towards an Interchange Standard for Editable Documents

by Jim Mitchell and Jim Horning

May 10, 1982 4:13 PM

File: Interdoc-1.5.bravo

Towards an Interchange Standard for Editable Documents 1501

1.5. Introduction to the Interscript Base Language

This section is intended to lead the reader through a set of examples, to show what the
language looks like and how it is used to represent a number of commonly occurring features
of editable documents. The examples purposely use rather long identifiers and lots of white
space to make them more readable. In actual use, programs, not people, will generate and
read scripts; names will tend to be short and logically unneeded spaces and carriage returns
will tend to be omitted.

1.5.1. Simple text as a document

The following script defines a document consisting of the string "The text of the main
node of example 1.5.1"; no font, paragraph structure, or formatting information is supplied.
This example will gradually be expanded to represent accurately figure 1.5.1, below. The
numbers at the left margin do not form part of the script; they are used to refer to the various
lines in the discussion below.

0 Interscript/Interchange/1.0
1 {<The text of the main node of example 1.5.1>}

Line 0 is the header denoting version 1.0 of the interchange encoding. Line 1 is the entire
body of this script: it contains a single node enclosed in {} which in turn contains a single
string value enclosed in <>.

The text of the main node of
example 1.5.1

The text of the first subnode of example 1.5.1

Example 1.5.1: A simple document

The next version of the example adds the tag, TEXT$ to the node. The identifier TEXT is
called a universal name (or atom), which is indicated by its being composed of all uppercase
letters. Universal names have no definition within the base language (they are expected to be
defined in Layers 2 and 3).

0 Interscript/Interchange/1.0
1 {TEXT$
2 <The text of the main node of example 1.5.1>
3 }

A tag is denoted by placing "$" after a universal name. A node’s tags are strictly local
(they are not inherited by other nodes in the script) and serve as "type information" about
the node. The tag TEXT$ labels this node as one that can be viewed as textual data. Tags also

create implicit indirections; see section 1.6.5.

0 Interscript/Interchange/1.0

1 {PARAGRAPH$

2 leftMargin_3.25*inch rightMargin_5.0*inch

3 <The text of the main node of example 1.5.1>
4 }

This example shows how auxiliary information, such as margins, may be associated with a
node of a script. The binding leftMargin_3.25*inch adds the attribute leftMargin to the node’s

Towards an Interchange Standard for Editable Documents1502

environment and binds the value of the expression 3.25*inch to it (inch is a constant whose
dimensions are inches/meter; meters are the standard Interscript units of distance). The
bindings to leftMargin and rightMargin convey the fact that this node has margins for display. To
denote the change in character of the node, we have tagged it as PARAGRAPH instead of
TEXT. Figure 1.5.1 uses these margins for its first line of text.

0 Interscript/Interchange/1.0

1 {PARAGRAPH$

2 leftMargin_3.25*inch rightMargin_5.0*inch

3 <The text of the main node of example 1.5.1>

4 {PARAGRAPH$ leftMargin_+0.5*inch

5 <The text of the first subnode of example 1.5.1>

6 }
7 }

We have further elaborated the example by nesting another text node in the primary one,
with its text following the primary node’s text and with an indented leftMargin. The binding
leftMargin_+0.5*inch is a contraction of leftMargin_leftMargin+0.5*inch. The right side of the binding is
evaluated, and since there is as yet no binding in the inner node’s (lines 4�6) environment for
leftMargin, it is looked up in the environment of the containing node (lines 1�3). The value of
the right hand side expression is thus 3.75*inch. This value is then bound to the identifier
leftMargin in the inner node’s environment. Since no value is bound to rightMargin in the inner
node’s environment, it will have the same rightMargin as its parent node.

0 Interscript/Interchange/1.0

1 p=’PARAGRAPH$ leftMargin_3.25*inch rightMargin_6.0*inch’

2 {p rightMargin_5.0*inch

3 <The text of the main node of example 1.5.1>

4 {p leftMargin_+0.5*inch

5 <The text of the first subnode of example 1.5.1>

6 }
7 }

One can also define an abbreviation by binding a sequence of unevaluated expressions to
an identifier and subsequently using the identifier to cause those expressions to be evaluated
at the point of invocation. This example binds the quoted expression
’PARAGRAPH$�leftMargin_3.25*inch�rightMargin_6.0*inch’ to the identifier p. The binding operator is =
instead of _ to denote the fact that this binding may not be superseded in this node or any of
its subnodes; for this reason such a binding is called a definition. When p is invoked in lines 2
and 4, the quoted expression replaces the invocation and is evaluated there.

Invoking p places the tag PARAGRAPH$ on the node, sets the leftMargin to 3.25*inch and the
rightMargin to 6.0*inch. In line 2, the rightMargin is then rebound to 5.0*inch, overriding the default
binding created by invoking p. Similarly, the binding for leftMargin in line 4 overrides the one
resulting from invoking p, resulting in its leftMargin being 3.75*inch and its rightMargin being 6.0*inch.

An identifier can also be bound to an environment value as a convenient record-like
manner of naming a set of related bindings. For example, a font might be defined as follows
(a more complete definition is given later in section 1.6.3):

Towards an Interchange Standard for Editable Documents 1503

font = [| family_TIMES size_10*pt face_[| weight_NORMAL style_ROMAN slant_NIL]]

This defines font to be the environment formed by taking the empty or Null environment
and altering it according to the series of bindings following the initial "[|." In this case font is
an environment having bindings for three attributes, family, size, and face. face is itself bound to
an environment (with attributes weight, style, and slant). Since font is bound using "=", it cannot
directly be changed in its scope, although its components can be since they are bound using
"_". The set of default bindings in font specify a normal weight (non-bold), non-italic Times
Roman 10-point font.

We can incorporate this font definition in the example and then use it to indicate that the
word "first" in the subnode should be in italics:

0 Interscript/Interchange/1.0
1 p=’PARAGRAPH$ leftMargin_3.25*inch rightMargin_6.0*inch’
2 font = [| family_Times size_10*pt face_[| weight_NORMAL style_ROMAN slant_NIL]]
3 {p rightMargin_5.0*inch
4 <The text of the main node of example 1.5.1>
5 {p leftMargin_+.5*inch
6 <The text of the >
7 font.face.slant_ITALIC <first> font.face.slant_NIL
8 < subnode of example 1.5.1>
9 }
10 }

Bindings affect node contents to their right: so, "first" will be italic, while "�subnode of
example 1.5.1" will be non-italic due to the binding immediately preceding it. If we expected
to switch between italics and non-italics frequently, it might be profitable to introduce
abbreviations to shorten what must appear. For example, in the scope of the definition

 l=[| i=’font.face.slant_ITALIC’ nI=’font.face.slant_NIL’]

 line 7 could be abbreviated

l.i<first>l.nI

1.6. Further Examples

This section gives some more realistic examples of the use of the Interscript language
and explores the issues of making sets of standard definitions for use in scripts.

1.6.1. A Laurel Message

Here is a possible Interscript transcription of a Laurel message:

0 Interscript/Interchange/1.0 -- standard heading --
1 {LAURELMSG$ -- tag for a Laurel document --
2 Sub=’PARAGRAPH$ leftMargin_1.0*inch rightMargin_7.5*inch’
3 justified_F -- "_" means overridable default --
4 font.family_TIMES font.size_10
5 leading.x_1
6 leading.y_1 -- overridable default leadings --
7 heading@! -- declare a label --
8 laurelInfo = -- Laurel information for easy access; none is changeable --
9 (Heading.time@ Heading.from@ Heading.subject@ Heading.to@ Heading.cc@)

Towards an Interchange Standard for Editable Documents1504

10 {<Date: > {Heading.time! <18 June 1981 9:18 am PDT (Thursday)>}
11 <From: > {Heading.from! <Mitchell.PA> AUTHENTICATED$}
12 <Subject: > {Heading.subject! <A Sample Document Syntax>}
13 <To: > {Heading.to! <Horning.PA>}
14 <cc: > {Heading.cc! <Mitchell, Interscript.PA>}}
15 leading.y_6 -- override outer y leading --
16 {<text of paragraph1>} -- node which is a paragraph --
17 {<text of paragraph2>}
18 {<text of paragraph3>}
19 }

Line 1 tags this document (by tagging its root node) as a Laurel message, and line 2 tags its
subnodes (starting on lines 10, 16, 17, and 18) as paragraphs with default margins. Lines 3�6
bind some other attributes, likely to be relevant to paragraphs. Line 7 declares the main link
identifier heading, and lines 8�9 bind to laurelInfo a vector of source links whose targets are the
parts of the document of interest for mail transport. Lines 10�14 have similar structures: each
consists of a string followed by a node containing a target link for the label heading and text
for that Laurel "field." Line 11 is additionally tagged as AUTHENTICATED. Lines 16�18 contain
paragraphs constituting the body of the message.

Alternatively, the external environment might well contain a definition of laurel60 that
establishes a suitable environment for a Laurel 6.0 document:

1 laurel60= ’

2 time@! from@! subject@! to@! bodyNodes@! cc@!

3 LAURELMSG$

4 cr = <#13#> tab = <#9#>
5 p=’PARAGRAPH$ leftMargin_1.0*inch rightMargin_7.5*inch’
6 justified_F

7 font.family=TIMES font.size=10

8 margins.left_2540 margins.right_19050
9 leading.x_1 leading.y_1 -- overridable default leadings --
10 printForm=

11 ’{p <Date: > time@ tab

12 <From: > from@ cr

13 <Subject: > subject@ cr

14 <To: > to@

15 leading.y_6

16 bodyNodes@

17 <cc: > cc@

18 }’

19 heading = ’LAURELHEADING$ Sub_’TEXT$ LAURELFIELD$’ ’

20 body = ’Sub_’p bodyNodes!’ ’
21 ’

One advantage of using source labels for the "bodies" of the To:, From:, etc. fields (lines
11�14, 17) is that they can represent sets of nodes as well as single nodes.

Now the Laurel document would be described by the following script:

22 Interscript/Interchange/1.0 -- standard heading --
23 {laurel60% -- invoke Laurel 6.0 definitions
24 {heading% -- invoke heading style --
25 {time! <18 June 1981 9:18 am PDT (Thursday)>}
26 {from! AUTHENTICATED$ <Mitchell.PA>}

Towards an Interchange Standard for Editable Documents 1505

27 {subject! <A Sample Document Syntax>}
28 {to! <Horning.PA>}
29 {cc! <Mitchell, Interscript.PA>}
30 }
31 {body% -- Invoke body style --
32 {<text of paragraph1>}
33 {<text of paragraph2>}
34 {<text of paragraph3>}
35 }
36 }

Invoking laurel60 in line 23 introduces the quoted expressions heading and body into the root
node’s environment, tags it as LAURELMSG and declares the labels time, from, etc. It also
acquires a definition for a print form, which could be used to format the message for sending
to a printer. The "%" (indirection) operator indicates that this is intentional structure, to be
preserved by each internalization, rather than merely an abbreviation. Thus the message
heading and body should "see" the effects of any future changes made to laurel60, by
editing its definition. By contrast, p is used as an abbreviation; when the script is rendered, its
value may safely be copied at each use.

Look at the definition of heading (line 19): the right side is a quoted expression sequence.
The first expression of the sequence produces the tag LAURELHEADING$ and the second
binds the quoted expression ’TEXT$ LAURELFIELD$’ to Sub. As a result, each subnode of the
one beginning on line 24 will be initialized by invoking Sub from its containing node, which
gives each the tags TEXT$ and LAURELFIELD$.

Similarly, the definition of body (line 20) defines Sub, and the nodes on lines 32�34 will be
initialized by invoking p and having the target link bodyNodes placed on it. Labelling the set of
body nodes this way means that the source link, bodyNodes@, in printForm (line 19) denotes the
entire sequence of body nodes, in left-to-right depth-first tree order.

1.6.2. A page of a Star document

This example is taken from page 71 of the Star Functional Specification and shows one
page of a paginated document with a diagram and a footnote (we recommend that you have
that page in front of you when analyzing this transcription):

-- pages 1 .. 6 supposedly precede this one --
{pg.a7!

Sub_’PARAGRAPH$’
{<Many of these conclusions are based on prior experience>

{fn.n1! -- just a unique label: fn! introduced somewhere earlier --
FOOTNOTE$
<See the 1970 report titled "Organizational Changes and Sales Margin" and other documents referenced in that
document. Further reports are available if you need them.>
}

< which has shown our techniques to be valid. Other data can be collected by future changes to your accounting and
billing packages, which will allow us to perform even better analyses and lead to better problem discovery and
correction.>
}
{<The results of the sales analysis suggest that certain organizational changes can improve the overall efficiency of the
operation. The March figures, in particular, bear this out. You will note below a suggested change that we feel will
correct the problems noted in the analysis above.>
}

Towards an Interchange Standard for Editable Documents1506

Sub_’FRAME$’ -- change to subnode tag FRAME --
{Alignment.horizonally_FlushLeft Alignment.vertically_Floating

height_2.8*inch width_3.67*inch
edges.expandingRightEdge_T
border_dots1
-- change to default subnode environment Rectangle with solid, double width outline --
Sub_’RECTANGLE$ lineType.width_2 lineType.style_solid’
rect@! -- declare label class to be used below --
{rect.a1! UpperLeft_(.0254 .07) shading_7 height_.01 width_.027 {Title <Headquarters>} }
{rect.a2! UpperLeft_(.073 .015) height_.01 width_.018 {Title <Staff Support>} }
height_.013 -- attribute value shared by following subnodes
{rect.a3! UpperLeft_(.02 .03) width_.025 {Title <Development>} }
{rect.a4! UpperLeft_(.02 .03) width_.028 {Title <Manufacturing>} }
{rect.a5! UpperLeft_(.042 .055) width_.016 {Title <West Coast>} }
{rect.a6! UpperLeft_(.067 .055) width_.016 {Title <East Coast>} }
-- default subnode environment is LINE with solid, double width outline --
Sub_’LINE lineType.width_2 lineType.style_solid’
ln@!
{ln.out1! rect.a1@ ln.in34@}
{ln.out2! rect.a2@ ln.out1@}
{ln.in3! ln.in34@ rect.a3@}
{ln.in4! ln.in34@ rect.a4@}
{ln.in34! ln.in3@ ln.in4@}
{ln.out4! rect.a4@ ln.in56@}
{ln.in56! ln.in5@ ln.in6@}
{ln.in5! ln.in56@ rect.a5@}
{ln.in6! ln.in56@ rect.a6@}

} -- end of Frame1 --
Sub_’PARAGRAPH$’ -- restore default subnode initialization to PARAGRAPH --
{<The process of switching to this new organization will not be an easy one. However, the reports seem to suggest many
reasons why it should not be postponed. In particular, the separation of Manufacturing from Development should have
significant impact.>}
{<Also, we feel strongly that merging East and West Coast Development will help. As we have suggested in past reports,
there has always been considerable replication of effort due to this geographic separation. You will recall the events
leading up to the initial contract with our firm.>}

} -- end of page --

1.6.3. Some Star property sheets

Here a few of the definitions invoked in the above example (these were derived from page
148 of the Star Functional Specification). Some of them simply give default values for various
attributes; some, like default.font, define a collection of related attributes as an environment;
and most are quoted expression sequences for providing abbreviations or "decorating"
nodes with tags and their environments with relevant attributes. These definitions would exist
in the external environment for Star�produced scripts. They would be made accessible to
other editors as part of the definition of XEROX.Star.Version1.

1.6.3.1. Font-related defaults and definitions

baseline_0 -- the base line for characters --

underlined_F -- whether or not text in node is to be underlined --

strikeOut_F -- whether or not text in node is to have strike-out line through it --

-- there is no rhyme and little reason behind the names of type fonts. The following definition is intended to provide enough
choice, using standard "terms" to name any existing font in an arbitrary font catalog (of course, it doesn’t, but perhaps it is
close enough) --
default.font = [| -- Definition --

family_Times -- a font family name --

Towards an Interchange Standard for Editable Documents 1507

face_[| -- Definition --
weight_NORMAL -- In (EXTRALIGHT, LIGHT, BOOK, NORMAL, MEDIUM,

DEMIBOLD, SEMIBOLD, BOLD, EXTRABOLD, ULTRABOLD,
HEAVY, EXTRAHEAVY, BLACK, GROTESQUE) --

lineType_SOLID -- In (SOLID, INLINE, OPEN, OUTLINE, DISPLAY, SHADED) --
proportions_NORMAL -- In (NORMAL, CONDENSED, EXPANDED, EXTENDED,

WIDE, BROAD, ELONGATED) --
style_ROMAN -- In (ROMAN, GOTHIC, EGYPTIAN, CURSIVE, SCRIPT) --
slant_NIL -- In (NIL, ITALIC, OBLIQUE) --
swash_F -- T => use swash capitals --
lowercase_T -- T => use lowercase letters --
uppercase_T -- T => use uppercase letters --
smallCaps_F -- T => use small capitals --
]

size_10*pt -- distance --
]

-- some useful font shorthands: --
Helvetica = ’font _ [default.font% | family_HELVETICA]’
Italic = ’font.face.slant_ITALIC’
Bold = ’font.face.weight_BOLD’
Helvetica10BI = ’Helvetica font.size_10*pt Bold Italic’

1.6.3.2. Footnote-related definitions

fnCount:=0 -- global variable for counting footnotes
FOOTNOTE = ’fnCount:=+1 font.size_8*pt FootnoteRef%’

FootnoteRef = ’{FOOTREF$ baseline_+5*pt fnCount}’ -- raise 5 pts --

1.6.3.3. Paragraph-related definitions

Tab = [|
position_0
type_LEFT -- In (LEFT, CENTERED, RIGHT, DECIMAL) --
]

MakeTabs=’n_0 tabs_(RecursiveMakeTab[Value])’
RecursiveMakeTab=’(EQ[Value 0] | NIL | n_+.25*inch [Tab | position_n] RecursiveMakeTab[Value-1])’

Default.PARAGRAPH = ’Indent = [| Left_0.0 Right_0.0] -- distance --
Alignment_FLUSHLEFT -- In (FLUSHLEFT, FLUSHRIGHT, BOTH, CENTERED) --
Justified_F
leading_[leading | between_1*pt above_12*pt below_0]
charStyle_[|

Normal_’font_default.font’
Emphasis1_’font_default.font Italic’
Emphasis2_’font_default.font Bold’
]

Hyphenation_F
KeepOn_NIL -- In (NIL, SamePageAsNextParagraph) --
MakeTabs[8] -- binds tabs to a sequence of 8 tabs (0, .25 inch, .50 inch, . . .) --
charStyle.Normal -- initializes to normal style

1.6.3.4. frame, rectangle, and line definitions

Def.UpperLeft = ’UpperLeft_(0.0 0.0)’ -- Def is just a convenient environment in which to put useful auxiliary
definitions --

Def.lineType = ’
lineType_[|

Visible_T

Towards an Interchange Standard for Editable Documents1508

Width_1
Style_SOLID] -- IN (SOLID, DOT, DASH, DOTDASH, DOUBLE, . . .) --

’

Def.Shading = ’Shading_0’

Def.Box = ’Def.UpperLeft Def.lineType Def.Shading’

Frame = ’FRAME$ Def.Box’

Rectangle = ’RECTANGLE$ Def.Box
Constraint_MagnifyOnly -- IN (NIL MagnifyOnly) --
’

Def.LineEnd = ’
LineEnd_(LeftUpper_Flush RightLower_Flush) -- IN (Flush Round Square arrow1 arrow2 arrow3) --
’

Line = ’LINE$ constraint_FixedAngle Def.lineType Def.LineEnd’

Title = ’CAPTION$ Paragraph’

1.6.4. Using links

Links are intended to provide the means for associating nodes in non-hierarchical ways.
They can be used for referring to figures, examples, tables, etc., for describing tables of
contents, for denoting index items, keeping lists, etc.

1.6.4.1. References to figures

The following outlines how the labelling facilities and global bindings can be used to
generate references to (source links for) a figure whose number may not be known at the
point of reference. The identifier n5 is assumed to have been generated by the program that
produced the script and is assumed to be unique over the target labels with naming prefix
"figures." in the script.

figures@! figCount:= 0 -- should appear in a script’s root node --
makeFigureNum = ’HIDDEN$ figCount:=+1 figCount’

{. . . figures.n5@ . . .} -- ref to node with label figures.n5! --

{ . . . {figures.n5! makeFigureNum} . . .} -- a hidden node holding the figure number --

The node in which the figure number for figure n5 is defined contains a tag, HIDDEN,
which means that the node is not to be considered a part of the dominant structure for
display purposes even though it is part of it. The node’s sole content is the value of figCount
after it has been (persistently) incremented by 1. Because figCount is bound with ":=", the
scope of the binding is global.

1.6.4.2. Collections of index items

Assume that the word "framble" is to be considered an index item in certain places
where it occurs in a document. The link class Indexable@! should be introduced at the root of
the document, and each to-be-indexed occurrence of "framble" in a string, e.g., <When a

framble is found, it . . .>, should be replaced by the sequence <When a > framble% < is found, it . . .>.
Somewhere in the script within the scope of the declaration of Indexable, at the root of a
subtree containing all the uses of framble should be the following definition:

Towards an Interchange Standard for Editable Documents 1509

framble=’{HIDDEN$ indexable.framble! pageNumber} <framble>’

Invoking framble results in the appearance of a hidden node containing the current page
number (assumed to be held in the attribute pageNumber) and labelled as being in the set of
target links indexable and indexable.framble. The index for the document might then contain the
following entry for "framble":

{INDEXENTRY$ <framble> indexable.framble@}

This entry contains the minimal information needed to generate the sequence of page
numbers corresponding to indexable occurrences of framble. If some occurrences are
considered primary and some secondary, then these mechanisms can be generalized to have
framble defined as

framble=[| primary=’{HIDDEN$ indexable.framble.primary! pageNum} <framble>’
secondary=’{HIDDEN$ indexable.framble.secondary! pageNum} <framble>’]

Primary references are denoted in the script as framble.primary% and secondary ones as
framble.secondary%. Similarly, the index entry takes the form:

{INDEXENTRY$ <framble> indexable.framble.primary@ indexable.framble.secondary@}

1.6.5. Using indirections

Indirections provide a way to centralize (and delay) the binding of information within a
document. They can be used to share information that is intended to be consistent.

1.6.5.1 Styles and style sheets

Documents generally follow stylistic conventions for presenting different kinds of content.
E.g., major headings may be in bold face with twelve points of extra leading, minor headings
in italic with six points of extra leading. If this information is explicitly bound for each piece of
content, then a stylistic change may require locating and changing all the relevant bindings
(note that italic is likely to be also used for other purposes, such as emphasis). If, however,
the binding is done indirectly, through a style, a single change will be effective for all places
where the style is referenced. Note that each occurrence of a tag implicitly establishes an
indirection through the same identifier; this is convenient in associating styles with
semantically meaningful tags. For example:

MajorHeading = ’PARAGRAPH$ Bold leading_+12’
MinorHeading = ’PARAGRAPH$ Italic leading_+6’

1.6.5.2 Technical terms

Terminology may be undergoing change while a document is in production. For example,
the previous version of this document used "mark" for what is now called "tag." One way to
defer decisions on terminology, while ensuring that each version of the document is self-
consistent, is to use an indirect reference for each occurrence of a term that may have to be
rebound later.

Towards an Interchange Standard for Editable Documents1510

HISTORY LOG

Edited by Mitchell, September 1, 1981 3:12 PM, added first version of glossary

Edited by Mitchell, September 7, 1981 2:11 PM, wrote parts of introduction

Edited by Mitchell, September 10, 1981 10:14 AM, added Tab def to Star property sheets

Edited by Mitchell, September 14, 1981 9:54 AM, renumbered chapters and did minor edits

Edited by Mitchell, September 17, 1981 1:37 PM, folding in JJH’s edits.

Edited by Mitchell, September 18, 1981 12:45 AM, added considerable annotation of examples.

Edited by Horning, May 4, 1982 12:30 PM, Fold in Truth Copy edits

Edited by Horning, May 10, 1982 4:12 PM, changed "Interdoc" to "Interscript", "rendering" to "internalizing", and
"transcribing" to "externalizing" plus various edits necessitated by these substitutions.

Towards an Interchange Standard for Editable Documents20

2. The Language Basis: Syntax and Semantics

2.1. Grammar

Our notation is basically BNF with terminals quoted and augmented by the following
conventions:

a sequence enclosed in [] brackets may occur zero or one times;

a construct followed by * may occur zero or more times;

parentheses () are used purely for grouping.

script ::= versionId node
versionID ::= "Interscript/Interchange/1.0 "
item ::= content | binding | label
content ::= term | node
term ::= primary | primary op term
op ::= "+" | "�" | "*" | "/"
primary ::= literal | invocation | indirection | application | selection | vector
literal ::= Boolean | integer | intSequence | real | string | universal
invocation ::= name
name ::= id ("." id)*
indirection ::= name "%"
application ::= (name | universal) "[" item* "]"
universal ::= ucID ("." ucID)*
selection ::= "(" term "|" scope* "|" scope* ")"
vector ::= "(" scope* ")"
node ::= "{" scope* "}"
scope ::= (binding | label)* content content*
binding ::= name mode rhs
mode ::= "_" | "=" | ":" | ":="
rhs ::= content | op term | "’" scope* "’" | "[" [item*] "|" binding* "]"
label ::= tag | link
tag ::= universal "$"
link ::= id "@!" | name "@" | name "!"

2.2. Discussion of Features

[Note that we have a formal semantic definition for this language that is every bit as precise
as the grammar above. However, we have not yet figured out how to present it in a form that
humans find equally palatable, so we postpone it to an appendix.]

primary ::= literal
literal ::= Boolean | integer | intSequence | real | string

The primitive elements by which the value of a document is represented.

Towards an Interchange Standard for Editable Documents 21

term ::= primary op term
op ::= "+" | "�" | "*" | "/"

Both the primary and the term must reduce to numbers; the arithmetic operators are
evaluated right-to-left (a la APL, without precedence) and bind less tightly than function
application. The result is a real if either operand is.

invocation ::= id

Id is looked up in the current environment; depending on its current binding, this may
produce contents, bindings, and/or labels; if the rhs bound to id was quoted, that expression
is evaluated in the current environment. In the (implicit) outermost environment, every id is
bound to the corresponding universal (ID).

invocation ::= name "." id

Qualified names represent lookup in "nested" environments; name must have been bound
to an environment, in which id is looked up.

indirection ::= name "%"

This indicates an intentional indirection through name, which should be preserved as part
of the structure; replacing the indirection by its value in the current environment is a value-
preserving loss of structural fidelity. (An invocation that is simply a name is an abbreviation
that need not be preserved.)

universal ::= ucID ("." ucID)*

Universals are like names, but written entirely in upper case letters. They are presumed to
be defined externally, so they are not looked up in the environment.

application ::= (name | universal) "[" item* "]"

If the application involves a universal (either explicitly, or because the name is bound to a
universal), the corresponding function is applied to the argument list that results from
evaluating item*. Part of the definition of Layer 2 will involve the specification of a small set of
standard functions, which may be expanded in various Layer 3 extensions.

If name is not bound to a universal, the current environment is temporarily augmented with
a binding of the value of item* to the identifier value, and the value of the application is the
result of evaluating name in that environment; this allows function definition within the
language.

Neither form of application changes the environment of succeeding expressions.

selection ::= "(" term "|" scope1* "|" scope2* ")"

This is a standard conditional item sequence, using syntax borrowed from Algol 68. The
value and effect are those of item1* if the term evaluates to "T" in the current environment,

Towards an Interchange Standard for Editable Documents22

those of item2* if it evaluates to "F".

vector ::= "(" scope* ")"

Parentheses group a sequence of items as a single vector; bindings in scope* affect the
environment of items to the right in the containing node, but labels have no meaning.

node ::= "{" scope* "}"

Nodes have nested environments, and affect the containing environment only through
global (:=) bindings to ids. Scope* is implicitly prefixed by an invocation of Sub, which may be
bound to any sequence of items intended to be common to all subnodes in a scope.

item* ::= ""

The empty sequence of items has no value and no effect; this is the basis for the
following recursive definition.

item* ::= item1 item*

In general, the value of a sequence of items is just the sequence of item values; binding
items change the environment of items to their right in the sequence.

binding ::= name mode rhs

This adds a single binding to the current scope (i.e., to its associated environment);
bindings have no other "side effects" and no value (i.e., they do not change the length of a
containing vector or node value).

binding ::= name mode op term

"name mode op term" is just a convenient piece of syntactic shorthand for
"name mode name op term".

rhs ::= "’" scope* "’"

A quoted rhs is evaluated in the environment of invocation, rather than the environment
current at the point of binding.

rhs ::= "[|" binding* "]"

This creates a new environment value that may be used much like a record.

rhs ::= "[" item* "|" binding* "]"

This creates a new environment value that is an extension of the environment that is the
value of item*.

tag ::= universal "$"

Towards an Interchange Standard for Editable Documents 23

This gives the containing node the property denoted by the universal.

link ::= id "@!"

This introduces the set of links whose main component is id, and defines their scope.

link ::= name "@"

This identifies the immediately containing node as a source of the link name.

link ::= name "!"

This identifies the immediately containing node as a target of each of the links that is a
prefix of name.

2.3. Safety Rules for Low-capability Editors

Conservative rules for editor treatment of script nodes created by other editors:

It’s OK to display a node if

you understand at least one of its properties.

It’s OK to edit (the items in) a node if

you understand all of its (local) properties, and either

you don’t remove any of them, or

you also understand all properties of its parent.

It’s OK to copy a node if

you understand all properties of its new parent,

no labels are moved outside their scope, and

the two environments have the same bindings for all attributes that you don’t
either

understand, or

know can’t be relevant, and anywhere in the node or its subnodes.

It’s OK to delete a node if

you understand all properties of its parent.

[Less stringent rules will suffice if the document is merely to be viewed, rather than
edited, using the original editor.]

2.4. Encodings

[Any resemblance between the following material and the corresponding section of the
Interpress standard is purely an intentional consequence of plagiarism.]

The script for a document can be encoded in many different ways. This section gives the
rules for designing encodings. The purpose of these rules is to ensure that information is not

Towards an Interchange Standard for Editable Documents24

lost or added by conversions from one encoding to another. There are two types of
encodings: a single interchange encoding and many possible private encodings.

The interchange encoding is used to transmit a script from one site to another when the
two sites must be assumed to be arbitrarily different. A private encoding is used to transmit
scripts from one site to another when the two sites share the private encoding conventions.
For example, a line of document-preparation products made by the same manufacturer might
share a private encoding, which can be used to transmit documents from one editor in the
product line to another; presumably this encoding is designed to make these transfers simpler
or more efficient. However, when one of these editors transmits a document to an unknown
editor, the interchange encoding must be used. The interchange encoding is designed to
allow easy generation, transmission, and interpretation by many different editors, possibly at
the expense of compactness and speed of encoding and decoding.

2.4.1. The interchange encoding

The interchange encoding is designed to simplify creation, communication and
interpretation of scripts for the widest possible range of editors and systems. For this reason,
a script in the interchange encoding is represented as a sequence of graphic (printable)
characters taken from the ASCII set; the subset of ASCII used is also a subset of ISO 646.
Communication of a script in the interchange encoding requires only the ability to
communicate a sequence of ASCII characters; Interscript does not specify how the
characters are encoded. In effect, we define a text representation of the commands to be
executed.

The choice of a text format for the interchange encoding leads to rather lengthy scripts in
some cases. The bulk of an interchange script presents no great problem for document
storage, since a document need not be stored in this form. Rather, as it is transmitted, the
sending editor can translate its own private encoding into the interchange encoding.
Similarly, the receiving editor can translate the interchange encoding into its own, usually
different, private encoding for storage. However, a bulky interchange script may be more
expensive to transmit. If a document consists mostly of text, the interchange encoding is
quite efficient�very few characters are required in addition to those appearing in the
document itself.

Character set. The character set used in the interchange encoding is described by the
ISO 646 7-bit Coded Character Set For Information Processing Interchange. The interchange
encoding interprets the 94 characters of the G1 set defined in the International Reference
Version (ISO 646, Table 2) and the space character (2/0). This set of 95 characters is called
the interchange set. Note that except for the concise "string" encoding of vectors described
below, the interchange encoding has nothing to do with the integers corresponding to the
characters, but depends only on the character set itself.

It is extremely important to understand that the choice of the ISO standard for
the interchange format has nothing to do with character mappings in Interscript
fonts. Although these mappings must adhere to a character set standard that is shared by
interchanging editors, that standard is not part of Interscript. It is expected that Xerox will
develop a separate corporate standard in this area.

Towards an Interchange Standard for Editable Documents 25

If the underlying encoding of the ISO character set can also encode other characters
(e.g., the control characters (0/0 through 1/15) and del (7/15), or another group of 128
characters if eight bits are being used to encode each character), these are ignored in
interpreting an interchange script. This does not mean that these characters are converted to
spaces, but that they are treated as if they were not present.

There are several reasons for this choice:

Control characters may be inserted freely by software that generates the interchange
encoding. For example, carriage returns (0/13), line feeds (0/10), and form feeds
(0/12) may be inserted at will to conform to limitations that may be imposed by an
operating system. Restrictions on line length or the use of fixed-length records thus
become straightforward.

Control characters may be removed or inserted freely by software that receives the
interchange encoding. In this way, the receiving software can adhere to any
restrictions imposed by its operating system.

The absence of control characters allows certain kinds of "non-transparent" data
communication methods (such as binary synchronous communication) to be used
freely.

A minor disadvantage of these conventions is that if a script is typed in, care must be
taken not to omit a significant space at the end of a line. Since scripts are normally
generated by programs, this is not important. A system for manually generating (and perhaps
interactively debugging) Interscript should provide for various convenience features on input,
and for prettyprinting the script on output.

Any number of space characters may also be added after any token without changing the
meaning. Throughout the following, a delimiter is a space or comma, which may be omitted if
the next character is not an alphanumeric, "�" or ".".

VersionId. The first characters of an interchange script conforming to this version of the
Interscript standard must be "Interscript/Interchange/1.0 ". Note that the VersionId is of
variable length, and ends with a space. These conventions simplify the design of systems that
must deal with more than one kind of encoding.

If a privately encoded script can be interpreted as a sequence of characters, its first
characters must be "Interscript/private/i.j", where private is replaced by an
appropriately chosen hierarchical name that identifies the encoding, e.g., "Xerox/860",
and i.j is replaced by an appropriate version identification, e.g., "2.4"; the resulting
header would be "Interscript/Xerox/860/2.4".

A private encoding that cannot be interpreted as a sequence of characters (e.g., a
binary, word-oriented encoding on a 36-bit machine which packs five 7-bit characters
into a word) should use any available convention to make its scripts self-identifying.

Following the versionId is a node constituting the body of the script, with values encoded
as follows.

Integer. An integer is represented in radix 10 notation using the characters "0" through "9"
as digits, followed by a delimiter. A negative integer is preceded by a minus sign "�". Thus
the decimal number 1234 is encoded as "1234�", and �1234 is encoded as "�1234�". The

Towards an Interchange Standard for Editable Documents26

delimiter may be empty if the following character is a letter.

A sequence of integer literals in the range 0..255 can be represented in radix 16 notation
using the characters "A" through "P" as digits ("A" corresponds to 0, "P" to 15). The entire
sequence is enclosed in "#" brackets. For example, the integer 93 is represented as
"#FN#", and the sequence of integers 93, 94, 95, 96 as "#FNFOFPGA#". These
sequences require only two characters for each integer (plus two characters of overhead).
Note that there is no delimiter between the integers in this encoding. Ordinary integer literals,
with their delimiters, may be included in the sequence; e.g., 7, 93, 400, 40 could be
represented by "#7,FN400CI#".

Booleans are represented by the characters "F" and "T", followed by a delimiter.

Real. A real is represented using Fortran E or F notation, with a trailing delimiter. Thus
"12.34�" is the same as "1.234E1�". Minus signs may precede the mantissa or the exponent:
"�12.34E�3 ".

Identifier. An identifier is encoded by its characters (which are limited to letters and
digits), followed by a delimiter: "x�", "arg1�". The first character of an identifier must be a
letter, and must be written in lower case to distinguish identifiers from universals. Other letters
may be written in either case for readability, since case is not significant in distinguishing
identifiers.

Vector. A vector is encoded by surrounding a sequence of values with parentheses, "("
and ")".

String. A text vector usually contains integers that are interpreted as character codes. Often
these codes lie in the range 32 to 126 inclusive, which are the numbers assigned to the
characters of the interchange set by ISO 646. It is convenient to encode an element of such
a vector by the character whose ISO code is the desired value. Such a string can be encoded
by surrounding the characters with "<" and ">", thus "<Hello!>". If the string contains
elements outside the allowed range (i.e., if the value is less than 32 or greater than 126) or
the value 62 or XX (the ISO codes for the characters ">" and "#"), those elements must be
represented as integers inside "#" brackets, as described above. The two-character
encoding of small integers is designed to make escape sequences compact. Thus "<Hello!>",
"<Hello#CB#>", "<Hel#GMGP#!>", and "<Hello#33#>" are all equivalent.

Universal names. A universal is encoded by giving its name in upper case letters, followed
by a delimiter. E.g., "TEXT�".

Node. A node is encoded by a "{", followed by a sequence of items, followed by a "}".

Comment. The beginning and end of a comment are both marked by a double minus sign:
the sequence "��" <any characters other than "��"> "��" is a comment and may occur
between any two tokens. Comments are ignored in rendering the script.

Towards an Interchange Standard for Editable Documents 27

The tokens of the interchange encoding are defined by the following BNF grammar,
together with rules about delimiters:

The delimiter that terminates an identifier or universal may only be empty if the next
character is not an alphanumeric, "�", or ".".

The delimiter that terminates an integer may only be empty if the next character is not
a digit, "E", "F", "�", or ".".

extra delimiters may be inserted after any token.

token ::= literal | id | ucID | op | bracket | punctuation | comment
literal ::= Boolean | integer | intSequence | real | string
Boolean ::= ("F" | "T") delimiter
delimiter ::= " " | "," | empty
empty ::= ""
integer ::= ["�"] digit digit* delimiter
digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
intSequence ::= "#" intOrHex* "#"
intOrHex ::= integer | hexChar hexChar
hexChar ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" |

"N" | "O" | "P"
real ::= ["�"�] digit digit* "." digit* ["E" integer] delimiter
string ::= "<" stringElem* ">"
stringElem ::= stringChar | intSequence
stringChar ::= �� any character but "#" or ">" ��
id ::= lowerCase idChar* delimiter
idChar ::= letter | digit
letter ::= lowerCase | upperCase
lowerCase ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | l" | "m" | "n" |

"o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
upperCase ::= hexChar | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
ucID ::= upperCase* delimiter
op ::= "+" | "�" | "*" | "/"
bracket ::= "(" | ")" | "{ " | "}" | "<" | ">" | "[" | "]" | "�"’
punctuation ::= "." | ";" | ":" | "=" | "_" | "!" | "#" | "@" | "|"
comment ::= "��" commentString "��"
commentString ::= �� any sequence of characters not containing "��" ��
alphanumeric ::= letter | digit

A simple listing of an interchange script can just print the character sequence, with line
breaks every n characters, or perhaps at the nearest convenient delimiter. Such a listing is
reasonably easy to read, so that problems can be tracked down simply by studying it.
Additional help in reading the file can be furnished by utility programs which format the file
for more pleasant reading.

2.4.2. Normalization

Every encoding must define a normalization function N, which maps a script in the
encoding into another script in the encoding which generates the same output. N must be

Towards an Interchange Standard for Editable Documents28

idempotent (i.e., N2=N); it may not change the fidelity level of the script (see 2.4.3). If a script
violates the definition of Interscript, a normalization function may report this fact instead of
producing a normalized result. In other words, normalization need not be defined on
erroneous scripts.

The purpose of this function is to make possible a precise description of the rules for
private encodings in section 2.4.4. The idea is that when an encoding provides several ways
of saying the same thing (typically a basic way, and some more concise ways which work in
common special cases), the normalized script will uniformly choose one way of saying it.
Note that the normalized script is not intended for any purpose other than precisely defining
a notion of equivalent script; it is neither especially compact nor especially readable.

The normalization function for the interchange encoding is defined as follows:

Comments are omitted.

Delimiters are replaced by empty if possible, otherwise with ",".

An integer encoded in hex is replaced by the same integer encoded in digits; except
in strings, "#" brackets are replaced by parentheses.

Leading zeros are dropped from a digits encoding of an integer.

Reals are uniformly encoded in E format with a single non-zero digit to the left of the
"." and no trailing zeros; 0 is encoded by "0.0".

An upper case letter in an identifier is replaced by the corresponding lower case letter.

Each direct invocation (abbreviation) is replaced by its binding.

2.4.3. Level restriction

For each rendition fidelity level L of Interscript, there is an (idempotent) level restriction
function RIL which converts an arbitrary interchange script into an interchange script of level
L. An interchange script is of level L if RIL applied to it is the identity. A restriction function
replaces an excluded structure with its value according to the semantics of Interscript,
converts excluded form information into additional content with a special property, and
removes excluded tags.

2.4.4. Private encodings

A private encoding may use any scheme for expressing the content of a script. Certain
requirements are imposed on private Interscript encodings to ensure that they can express
the entire content of a script at a given level, and no more. Since no general statements can
be made about the bits, characters or other low level constituents of a private encoding,
these constraints are stated in terms of the existence of certain functions that convert private
encodings to interchange encodings and vice versa. An encoding for which these functions
do not exist is not an Interscript encoding. The recommended way of demonstrating that the
functions exist is to exhibit them as executable programs. This makes it easy to run test
cases.

A particular private encoding has a fixed fidelity level. Informally, this means that it can
encode any script of that level.

Towards an Interchange Standard for Editable Documents 29

For any private Interscript encoding P of fidelity level L, the following functions must exist:

NP, the normalization function for P; see 2.4.2.

CPI, a conversion function from a script in P to an interchange script of level L.

CIP, a conversion function from an interchange script of level L to a script in P.

If a script violates the definition of Interscript, a conversion function may report this fact
instead of producing a converted result. In other words, conversion need not be defined on
erroneous scripts.

Given these functions, we can define functions which convert normalized private scripts
to normalized interchange scripts of level L and conversely:

NPI=NIoCPI

NIP=NPoCIP

In other words, first convert to the other encoding, and then normalize. These functions must
be inverses of each other.

This means that after normalization (which does not change the output), a private script
can be converted to an interchange script and then back to the same private script, and vice
versa. Hence it seems reasonable to say that the private encoding can express exactly the
same information.

[We need to say similar things about editor representations, transcription
fidelity, and rendition fidelity.]

Many tricks are available for designing private encodings with desirable properties. With
some knowledge of the statistics of actual scripts, encodings can minimize the number of bits
required to represent the average script, by Huffman or conditional coding of the primitives.
For example, if strings consist primarily of ordinary written English text, an encoding with five
bits per character might be attractive: lower case letters except "q", "x", and "z" (23), space,
comma space, semicolon space, colon space, dot space space one upper case character,
escape to upper case, one upper case character, escape to digits, one digit character (32
total). The upper case and digits sets would be analogous. A more complex, but perhaps
even more compact encoding would take account of the letter frequencies in English text.
Similarly, the most common labels can be encoded compactly.

There are other useful ideas for private encodings. The bracketting constructs may be
replaced by constructs with explicit length fields; these can be shorter, it is easy for the
decoder to skip the bracketted constructs, and if the script is damaged it is easier to recover
than from the loss of a closing bracket. Hints can be associated with nodes that will speed
translation to a particular editor’s representation.

In designing a private encoding, it is advisable to handle all the constructs of Interscript
reasonably compactly, rather than allowing some "unpopular" ones to be encoded very
clumsily. Otherwise scripts originally generated in another encoding may cause terrible
performance.

Towards an Interchange Standard for Editable Documents

by Jim Mitchell and Jim Horning

May 10, 1982 5:40 PM

File: Interdoc-3ff.bravo

Towards an Interchange Standard for Editable Documents 3001

3. Higher-Level Issues

3.1. Standard and Editor-Specific Transcriptions:

We need a two-level structure for documents expressed in the base language to be both
(a) interchangeable among different editors, and (b) retain information of special significance
to a specific editor. We call (a) the interchange standard information, or standard information
and (b) editor-specific information.

Basically, an editor X is free to couch properties in its own terms, which can make it easy
for it to consume a script produced by itself, but it must provide a set of mappings which will
transform properties into the interchange standard. The recommended method for doing this
is to invoke its name as the very first item in the root node of any X-specific subtree. The
rules for inheritance of properties mean that often only the root node of a document will need
to have this property, but there is nothing wrong with nodes being in different editor-specific
terms provided they invoke the appropriate editor properties.

Now, to be a valid standard script, the document must have the definition of the name X
placed in the script itself (There is nothing wrong with having libraries of editor-specific _
standard mappings in a library of some sort to avoid having copies of them in each script).

When X parses an X-specific script, it will use its X-specific attributes and never invoke
the mappings from X-specific information to standard terms; i.e., it can use a null definition
for the name X. However, when such a document is interpreted by some other editor Y, any
time it tries to access a standard name, the mapping from that name to the corresponding
expression in terms of the X-specific values in the script will have been provided by the
definition of X. What guarantee is there that this can always be done?

It is worth noting first that we are speaking here of a script being rendered for an editor,
rather than produced. Consequently, it will never be necessary to access standard names in
left-hand contexts; i.e., to do bindings that are not part of the script in order to interpret it. It
may, however, need to access the components of environments in order to render the script
into its private format. These are always values in right-hand side contexts, and must be
computed in terms of the X-specific information that X put in the script. We can examine this
issue on a case-by-case basis. Below is a list of examples of possible editor-specific uses of
the base language and the mappings that would allow another editor to treat the document in
standard terms:

Symbolic values used instead of numbers: supply standard values for the symbolic values:
Standard:

leading.between _ 1*pt -- some numeric value --
Editor-specific:

leading.betweenLines _ single
leading.above _ double

mapping:
single = 2*pt
double = 4*pt

Different names used for standard names: supply a binding to the standard name from
the editor-specific name using a quoted expression so that it is only evaluated when needed

Towards an Interchange Standard for Editable Documents3002

in a right�hand context:
Standard:

leading _ [above_10*pt between_2*pt below_0*pt]
Editor-specific:

Space _ [BetweenLines_single BeforePara_double AfterPara_single]
mapping:

leading.between _ ’Space.BetweenLines’
leading.above _ ’Space.BeforePara’
leading.below _ ’Space.AfterPara’

Different concepts used for standard ones: supply a binding to the standard attribute
names from the editor-specific concepts using quoted expressions so that they are only
evaluated when needed in right�hand contexts:

Standard:
leading _ [above_10*pt between_2*pt below_0*pt]

Editor-specific:
Spacing _ [fontSize_10 on_14 leading_1] -- all units assumed to be pts --

mapping:
leading.between _ ’pt*Spacing.on�Spacing.fontSize’ -- value is in pts --
leading.above _ ’pt * Spacing.leading+Spacing.on�Spacing.fontSize’
leading.below _ 0

In general, one can use the facilities of the base language to write essentially arbitrary
programs that can, by being quoted, be bound to a standard identifier to cause the
appropriate value to be computed based on editor-specific information put in the document
by the editor that produced it. Moreover, since the mappings provided by editor X can be
overridden in any subtree of the document, an editor that does not "understand" some
subtree of a document produced by another editor Y can simply leave that subtree intact
when producing an edited version of the original script except to ensure that that subtree’s
root node’s first expression is an invocation of "Y", which will cause Y’s editor-specific
mappings to obtain in that subtree.

3.2. Standard External Environment

It will be important to provide for a standard external environment for rendering scripts so
that standard definitions need not be carried along with every script that uses them. The
external environment will contain definitions for units (inch, pt, etc.), various "styles" (para,
figure, etc.), and useful abbreviations (italic, bold, etc.).

3.2.1. Units

The Interscript standard assumes that distances are in meters and angles are in degrees.
Using the language and the following constants defined in the standard external environment,
a script can readily express distances and meters in other, possibly more convenient units:

meter=1.0 -- IN TERMS OF METERS --
mica=1.E-5*meter -- mica = 1.E-5 --
inch=.0254*meter -- inch = .0254 --
pt=.013836*inch -- pt = .00035143 --
pica=12*pt -- pica = .00421752 --
tenPitch=inch/10 -- tenPitch = .00254 --
twelvePitch=inch/12 -- twelvePitch = .00211667 --

Towards an Interchange Standard for Editable Documents 3003

degree=1.0 -- ANGLES ARE IN DEGREES --
pi=3.14159265
radian=180*degree/pi -- = 57.29577951 --

4. Pragmatics

Private encodings and private representations
Conversion efficiency
Implementation considerations

Towards an Interchange Standard for Editable Documents3004

APPENDIX A

GLOSSARY

An italicized word in a definition is defined in this glossary.

abbreviation An invocation used to shorten a script, rather than to indicate structure

attribute A component of an environment, identified by its name, which is bound to a value

base language The part of the Interscript language that is independent of the semantics of particular
properties and attributes

base semantics The semantic rules that govern how scripts in the base language are elaborated to
determine their contents, environments, and labels

binding The operation of associating a value with a name to add an attribute to an
environment; also the resulting association

binding mode A value may be bound to an identifier as const, var, local, or persistent

Boolean An enumerated primitive type (F, T) used to control selection and as primitive values

const binding A binding of an attribute that prevents its being rebound in any contained scope

contents The vector of values denoted by a node of a script

definition Another name for a const binding

document The rendition of a script in a representation suitable for some editor

dominant structure The tree structure of a document corresponding to the node structure of its script

editor-specific name A non-standard name used by a specific editor in scripts it generates; an editor
may use editor-specific terms without interfering with the interchangeability of a script
if it provides definitions of the standard names in terms of its editor-specific names

elaborate (verb) To develop the semantics of a script or a node of a script according to the
Interscript semantic rules. This is a left-to-right, depth-first processing of the script

encoding A particular representation of scripts

environment A value consisting of a set of attributes

expression A syntactic form denoting a value

external environment A standard environment relative to which an entire script is elaborated

fidelity The extent to which a transcription or rendition preserves contents, form, and structure

hexInt A component of an intSequence formed from a pair of letters in the set {A,B,. .
.,O,P}, representing an integer 0 .. 255

hierarchical name A name containing at least one period, whose prefix unambiguously denotes the
naming authority that assigned its meaning

identifier A sequence of letters used to identify an attribute

integer A mathematical integer in a limited range; one of the primitive types

interchange encoding A standard encoding of scripts

Interscript The current name of this basis for an editable document standard

intSequence An abbreviated notation for sequences of small integers

invocation The appearance of a name in an expression, except as the attribute of a binding

label A tag, or a source, a target, or a link introduction placed in a node

link The cross product of a source and a target; in general, a link is a set of (source,
target) pairs; in the special case when there is exactly one source and one target, a
link behaves like a directed arc between a pair of nodes

link introduction The appearance of id@! in a node, where id is the main identifier of a link

Towards an Interchange Standard for Editable Documents 3005

literal A representation of a value of a primitive type in a script

local binding A binding of a value to a name, causing the current environment to be updated with
the new attribute; any outer binding’s scope will resume at the end of the innermost
containing node

name A sequence of identifiers internally separated by periods; e.g., a.b.c

nested environment The initial environment of a node contained in another node

NIL A name for the empty value; it does not lengthen a vector or node in which it appears

node Everything between a matched pair of {}s in a script; this generally represents a
branch point in a document’s dominant structure

Null Identifies the empty environment; the value it associates with any identifier is NIL

Outer A standard attribute of every environment, whose value is the environment just prior
to the start of the current node

Outermost The standard outer environment for an entire script; the value of an identifier in
Outermost is the universal consisting of the same letters in upper case

persistent binding A kind of binding within the scope of a var binding that acquires the scope of the var
binding, and hence may endure beyond the end of the innermost containing node

primitive type Boolean, Integer, Real, String, or Universal

primitive value A literal or a node, vector, or environment containing only primitive values

private encoding One of a number of non-standard encodings of a script
property Each tag on a node labels it with a property; the properties of a node determine how

it may be viewed and edited

quoted expression A value which is an expression bracketted by single quotes ("’"); the expression is
evaluated in each environment in which the identifier to which it is bound is invoked

real A floating point number

rendition The process of converting from a script to a document; also the result of that process

scope The region of the script in which invocations of the attribute named in a binding yield
its value; the scope starts textually at the end of the binding, and generally terminates
at the end of the innermost containing node

script An Interscript program; the interchangeable result of transcribing a document

selection A conditional form in a script that denotes one of two expressions, depending on the
value of a Boolean expression in the current environment

source The set of nodes labelled with link@

string A literal which is a vector of characters bracketed by "<>", e.g., <This is a string!>

style A quoted expression to be invoked in a node to modify the node’s environment,
labels, or contents

Sub A standard component of each environment, which is invoked to initialize nested
environments

SUBSCRIPT A function that can be used to extract a value from a vector, e.g. SUBSCRIPT[(a b <str>), 3]
is the value <str>

tag A universal name labelling a node using the syntax universal$; the properties of a
node correspond to the set of tags labelling it

target The set of nodes labelled with link!

transcription The process of converting from a document to a script; also the result of that process

transparency A characteristic of scripts that allows an editor to identify the nodes of a script that it
understands and thereby enables it to operate on those nodes without disturbing the
ones that it doesn’t understand

Units A set of definitions relating various typographical and scientifc units to the Interscript
standard units, meters; e.g., inch=.0254 pt=.013836*inch

Towards an Interchange Standard for Editable Documents3006

universal A name whose first identifier is all uppercase; a universal name can be used at the
top level in the external environment, e.g., XEROX.fonts.Helvetica

value A primitive value, node, vector, environment, universal, or quoted expression

var binding A binding that is intended to be superseded by persistent bindings within its scope;
useful for maintaining such things as running figure numbers

vector An ordered sequence of values that may be subscripted

Towards an Interchange Standard for Editable Documents 3007

APPENDIX B

ARBITRARY CHOICES

"One of the primary purposes of a standard
is to be definitive about otherwise arbitrary choices."

There are many places in this proposal where we have made an arbitrary choice for
definiteness. It will be important that the ultimate standard make some choice on these
points; it matters little whether it is the same as ours. To forestall profitless debate on these
points, we have tried to list some of the choices that we believe can be easily changed at a
later date:

Encoding choices:

The choice of representations for literals (we generally followed Interpress here).

The selection of particular characters for particular kinds of bracketting, and for
particular operators.

The choice of infix and functional notation for the interchange encoding (as opposed,
e.g., to Polish postfix).

The choice of particular identifiers for basic concepts.

Linguistic choices:

The choice of a particular set of basic operators for the language.

The particular set of primitive data types (we followed Interpress�its set seems about
as small as will suffice).

The choice of particular syntactic sugars for common linguistic forms.

Towards an Interchange Standard for Editable Documents3008

APPENDIX C

RELATION TO OTHER STANDARDS

Towards an Interchange Standard for Editable Documents 3009

APPENDIX D

HISTORY LOG

Edited by Mitchell, September 1, 1981 3:12 PM, added first version of glossary

Edited by Mitchell, September 7, 1981 2:11 PM, wrote parts of introduction

Edited by Mitchell, September 10, 1981 10:14 AM, added Tab def to Star property sheets

Edited by Mitchell, September 14, 1981 9:54 AM, renumbered chapters and did minor edits

Edited by Horning, May 4, 1982 5:16 PM, Fold in Truth Copy changes, add Appendix B

Edited by Mitchell, May 10, 1982 5:40 PM, changed "Interdoc" to "Interscript", "rendering" to "internalizing", and
"transcribing" to "externalizing" plus various edits necessitated by these substitutions.

