SXTechnologyImpl.mesa
Copyright © 1984, 1985 by Xerox Corporation. All rights reserved.
Written by Shand, June 12, 1984 3:11:49 pm PDT
Last Edited by: Shand, March 12, 1985 3:04:13 pm PST
Last Edited by: Jacobi, July 17, 1985 7:57:30 pm PDT
Last edited by: Christian Jacobi, November 7, 1986 1:18:42 pm PST
Last edited by: gbb June 6, 1986 3:27:26 pm PDT
DIRECTORY
CD USING [CreateDrawRef, DrawOb, DrawRectProc, DrawRef, Error, FetchObjectClass, Layer, Number, ObjectClass, Object, Transformation, Rect, Technology],
CDBasics USING [Extend, NonEmpty, universe],
CDProperties USING [PutTechnologyProp, PutProp],
CStitching USING [Area, ChangeRect, EEdge, EN, EnumerateArea, ListArea, ChangeTile, NE, NewTesselation, NEdge, TileProc, Region, SEdge, SW, Tesselation, Tile, WEdge, WS],
SX USING [AddBox, AddRect, Circuit, CircuitNode, Constraint, ConstraintArray, ConstraintIndex, ConstraintResolution, ConversionProc, excludeIndex, LogicalCell, LookupNode, SpinifexLayerIndex, TechHandle, violateIndex],
SXAccessInternal USING [GetLogicalCell],
SXAtoms USING [fini, rosePrint, spinifex, thymePrint],
SXOutput USING [LinkageHousekeeper, LinkagePrintProc],
SXTechnology USING [PerDrawRectProc, ReportDifProc, ResolutionTable, TransistorMaterial];
SXTechnologyImpl: CEDAR PROGRAM
IMPORTS CD, CDBasics, CDProperties, CStitching, SX, SXAccessInternal, SXAtoms
EXPORTS SXTechnology
SHARES CStitching = BEGIN
TilePtr: TYPE = CStitching.Tile;
polPtr: REF INTNEW[INT];
difPtr: REF INTNEW[INT];
chanPtr: REF INTNEW[INT];
Post: TYPE ~ RECORD [
r: CD.Rect,
l: CD.Layer
];
AddRectParameters: TYPE ~ RECORD [
tes: CStitching.Tesselation,
cir: REF SX.Circuit,
PerDrawRect: SXTechnology.PerDrawRectProc,
gateNode: REF SX.CircuitNode,
postRectList: LIST OF REF Post,
clientData: REF ANY
];
AddRectangle: CD.DrawRectProc -- [r: Rect, l: Layer, pr: DrawRef] -- ~ {
I don't care about efficiency here I'm afraid
data: REF AddRectParameters ~ NARROW[ pr.devicePrivate];
level: SXTechnology.TransistorMaterial ~ data.PerDrawRect[r, l, data.clientData];
IF ~CDBasics.NonEmpty[r] THEN RETURN;
SELECT level FROM
nothing => NULL;
diffusion => {
occupants: LIST OF REF CStitching.Region ← NARROW[CStitching.ListArea[data.tes,r]];
data.tes.ChangeRect[ r, difPtr];
WHILE occupants # NIL DO
SELECT occupants.first.value FROM
polPtr => data.tes.ChangeRect[ rect~occupants.first.rect, new~chanPtr];
chanPtr => data.tes.ChangeRect[ rect~occupants.first.rect, new~chanPtr];
ENDCASE;
occupants ← occupants.rest
ENDLOOP
};
polysilicon => {
occupants: LIST OF REF CStitching.Region ← NARROW[CStitching.ListArea[data.tes,r]];
data.tes.ChangeRect[ r, polPtr];
WHILE occupants # NIL DO
SELECT occupants.first.value FROM
difPtr => data.tes.ChangeRect[ rect~occupants.first.rect, new~chanPtr];
chanPtr => data.tes.ChangeRect[ rect~occupants.first.rect, new~chanPtr];
ENDCASE;
occupants ← occupants.rest
ENDLOOP;
IF data.gateNode = NIL THEN
data.gateNode ← data.cir.AddRect[lev~l, dim~r]
ELSE
[] ← data.cir.AddRect[lev~l, dim~r, value~data.gateNode];
};
postProcess => {
-- Save on list and process and enumerate Diffusion nodes in this region later.
data.postRectList ← CONS[ NEW[Post ← [r~ r, l~ l]], data.postRectList];
};
ENDCASE; -- I guess the end case is implant, well let me tell you one thing I don't deal with implant OK.
};
ProcessMosTransistor: PUBLIC PROCEDURE [
ob: CD.Object,
trans: CD.Transformation,
cir: REF SX.Circuit,
difSpinifex, polSpinifex: SX.SpinifexLayerIndex,
difChannel, channelEdge: REF SX.Constraint,
difChanSep, difToPolSep: CD.Number,
PerDrawRect: SXTechnology.PerDrawRectProc,
data: REF ANYNIL,
PostProcessor: SXTechnology.ReportDifProc ← NIL]
RETURNS
[gateNode: REF SX.CircuitNode, sourceDrainNodes: LIST OF REF SX.CircuitNode, sourceDrainCount: INTEGER] ~ {
When we get these crazy bent guys well I tell you we just don't know what to do, so we grab ourselves a tile world and plunk it down in that, then maybe we can start to make sense of it.
FindChannelEdge: CStitching.TileProc -- [tile: TilePtr, data: REF ANY] RETURNS [REF ANY] -- ~{
occupants, tmp: LIST OF REF CStitching.Region;
tes: CStitching.Tesselation ~ NARROW [data];
IF tile.value = chanPtr THEN {
occupants ← NARROW[CStitching.ListArea[tes,CDBasics.Extend[tile.Area, difToPolSep]]];
WHILE occupants # NIL DO
tmp ← occupants.rest;
IF occupants.first.value = difPtr THEN {
occupants.rest ← chEdge;
chEdge ← occupants
};
occupants ← tmp
ENDLOOP
}
};
ConvertMaskGeom: CStitching.TileProc -- [tile: TilePtr, data: REF ANY] RETURNS [REF ANY] -- ~{
We are fairly liberal with interest boundaries here, its could be made a lot tighter as is done in the processing of normal Xstrs. All this means is that bent Xstrs will be instantiated for analysis even when they appear in isolation. Acutally this may be what we want since bent transistors are not so constrained that errors are totally precluded in an isolated object (they are for straight Xstrs). Also we let the other code calculate areas and perims, it is likely to be inaccurate.
SELECT tile.value FROM
difPtr => {
CheckChangeAndAdd: PROCEDURE [t: TilePtr] ~ {
IF t.value = difPtr THEN {
tranGeom.ChangeTile[ t, node];
[] ← cir.AddRect[ lev~ob.layer, dim~t.Area, value~node]
}
ELSE WITH t.value SELECT FROM
cn: REF SX.CircuitNode =>
SX.LookupNode[cn].superceded ← node;
--Ch. J., Jan 30, 1985 included LookupNode without further thinking
ENDCASE;
};
node: REF SX.CircuitNode ← cir.AddRect[lev~ob.layer, dim~tile.Area];
sdList ← CONS[ node, sdList];
tranGeom.ChangeTile[ tile, node];
FOR st: TilePtr ← tile.WS, st.NE WHILE st.WEdge < tile.EEdge DO
CheckChangeAndAdd[ st];
ENDLOOP;
FOR wt: TilePtr ← tile.SW, wt.EN WHILE wt.SEdge < tile.NEdge DO
CheckChangeAndAdd[ wt];
ENDLOOP;
FOR nt: TilePtr ← tile.EN, nt.SW WHILE nt.EEdge > tile.WEdge DO
CheckChangeAndAdd[ nt];
ENDLOOP;
FOR et: TilePtr ← tile.NE, et.WS WHILE et.NEdge > tile.SEdge DO
CheckChangeAndAdd[ et];
ENDLOOP;
};
chanPtr => {
[] ← cir.AddBox[ spinifexLayer~difSpinifex, dim~tile.Area, interestBloat~ [difChanSep, difChanSep, difChanSep, difChanSep], value~difChannel];
};
polPtr => NULL;
ENDCASE
};
AddParm: REF AddRectParameters ~ NEW[AddRectParameters];
tranGeom: CStitching.Tesselation ~ CStitching.NewTesselation [];
sdList: LIST OF REF SX.CircuitNode ← NIL;
dr: CD.DrawRef ~ CD.CreateDrawRef [[]];
chEdge: LIST OF REF CStitching.Region ← NIL;
AddParm.tes ← tranGeom;
AddParm.cir ← cir;
AddParm.PerDrawRect ← PerDrawRect;
AddParm.gateNode ← NIL;
AddParm.postRectList ← NIL;
AddParm.clientData ← data;
dr.drawRect ← AddRectangle;
dr.devicePrivate ← AddParm;
CD.DrawOb[dr, ob, trans, NIL]; --see requirement: does not depend on instance properties
IF (gateNode ← AddParm.gateNode) = NIL THEN ERROR;
[] ← tranGeom.EnumerateArea[ rect~CDBasics.universe, eachTile~FindChannelEdge, data~tranGeom];
[] ← tranGeom.EnumerateArea[ rect~CDBasics.universe, eachTile~ConvertMaskGeom];
IF PostProcessor # NIL THEN
FOR pL: LIST OF REF Post ← AddParm.postRectList, pL.rest WHILE pL # NIL DO
FindNodes: CStitching.TileProc -- [tile: TilePtr, data: REF ANY] RETURNS [REF ANY] -- ~{
Called for pullups where we can make a sensible decision on which node is the source.
WITH tile.value SELECT FROM
cn: REF SX.CircuitNode => PostProcessor[cn, pL.first.r, pL.first.l];
ENDCASE
};
[] ← tranGeom.EnumerateArea[ rect~pL.first.r, eachTile~FindNodes];
ENDLOOP;
WHILE chEdge # NIL DO
[] ← cir.AddBox[ spinifexLayer~polSpinifex, dim~chEdge.first.rect, value~channelEdge];
chEdge ← chEdge.rest
ENDLOOP;
sourceDrainNodes ← NIL;
sourceDrainCount ← 0;
WHILE sdList # NIL DO
sdfirst: LIST OF REF SX.CircuitNode ~ sdList;
sdList ← sdList.rest;
IF sdfirst.first.superceded # NIL THEN LOOP;
FOR alreadySeen: LIST OF REF SX.CircuitNode ← sourceDrainNodes, alreadySeen.rest WHILE alreadySeen # NIL DO
IF alreadySeen.first = sdfirst.first THEN EXIT;
REPEAT FINISHED => {
sdfirst.rest ← sourceDrainNodes;
sourceDrainNodes ← sdfirst;
sourceDrainCount ← sourceDrainCount.SUCC;
}
ENDLOOP;
ENDLOOP;
};
SetUpResolution: PUBLIC PROCEDURE [constrArray: REF SX.ConstraintArray, res: SXTechnology.ResolutionTable] RETURNS [REF SX.ConstraintResolution] ~ {
Index: TYPE ~ SX.ConstraintIndex;
CoreIndex: TYPE ~ [1 .. Index.LAST];
cnsRes: REF SX.ConstraintResolution ~ NEW [SX.ConstraintResolution ← ALL[ALL[NIL]]];
RowUsed, ColumnUsed: ARRAY CoreIndex OF BOOLEANALL[FALSE];
excl: Index ~ SX.excludeIndex; --2
viol: Index ~ SX.violateIndex; --3
exclusionConstraint: REF SX.Constraint ~ NEW[ SX.Constraint ← [ $ExcludeByOpaqueCell, SX.excludeIndex]];
violationConstraint: REF SX.Constraint ~ NEW[ SX.Constraint ← [ $OpaqueCellViolation, SX.violateIndex]];
First set up technology independent Opaque cell constraints.
RowUsed[excl] ← ColumnUsed[excl] ← RowUsed[viol] ← ColumnUsed[viol] ← TRUE;
cnsRes[0][excl] ← cnsRes[excl][0] ← exclusionConstraint;
cnsRes[0][viol] ← cnsRes[viol][0] ← violationConstraint;
FOR i: Index IN [1 .. Index.LAST] DO
cnsRes[excl][i] ← cnsRes[i][excl] ← exclusionConstraint;
cnsRes[viol][i] ← cnsRes[i][viol] ← violationConstraint;
ENDLOOP;
cnsRes[excl][excl] ← violationConstraint;
Now copy the elements of constrArray to the first row and column of cnsRes.
FOR i: Index IN [0..Index.LAST] DO
xi: Index ~ res[i][0];
xj: Index ~ res[0][i];
cnsRes[0][i] ← cnsRes[i][0] ← constrArray[i];
-- Debugging aid for technology writer.
IF constrArray[i] # NIL AND i # constrArray[i].index THEN
CD.Error[ec~ other, explanation~ "constrArray entry position, index mismatch"];
IF xi # 0 THEN {
IF ColumnUsed[xi] THEN
CD.Error[ec~ other, explanation~ "Duplicate column key in Constraint Resolution Table"];
ColumnUsed[xi] ← TRUE
};
IF xj # 0 THEN {
IF RowUsed[xj] THEN
CD.Error[ec~ other, explanation~ "Duplicate row key in Constraint Resolution Table"];
RowUsed[xj] ← TRUE
};
ENDLOOP;
Debugging aid for technology writer.
FOR i: CoreIndex IN CoreIndex DO
IF RowUsed[i] # ColumnUsed[i] THEN
CD.Error[ec~ other, explanation~ "Inconsistencies in Constraint Resolution Table between row & column keys"];
ENDLOOP;
FOR i: CoreIndex IN CoreIndex DO
xi: Index ~ res[i][0];
IF xi = 0 THEN
FOR j: CoreIndex IN CoreIndex DO
IF res[i][j] # 0 THEN
CD.Error[ec~ other, explanation~ "Inconsistencies in Constraint Resolution Table entries"];
ENDLOOP
ELSE
FOR j: CoreIndex IN CoreIndex DO
xj: Index ~ res[0][j];
IF xj = 0 THEN
FOR k: CoreIndex IN CoreIndex DO
IF res[k][j] # 0 THEN
CD.Error[ec~ other, explanation~ "Inconsistencies in Constraint Resolution Table entries"];
ENDLOOP
ELSE {
result: Index ~ res[i][j];
IF result = 0 THEN
CD.Error[ec~ other, explanation~ "Missing entry in Constraint Resolution Table"];
cnsRes[xi][xj] ← constrArray[ result ]
}
ENDLOOP
ENDLOOP;
FOR i: CoreIndex IN CoreIndex DO
FOR j: CoreIndex IN CoreIndex DO
IF cnsRes[i][j] # cnsRes[j][i] THEN
NULL;
CD.Error[ec~ other, explanation~ "Inconsistencies in Constraint Resolution Table entries"];
ENDLOOP
ENDLOOP;
RETURN [cnsRes]
};
RegisterTechnologyHandle: PUBLIC PROCEDURE [cdTech: CD.Technology, technologyHandle: REF SX.TechHandle] ~ {
FOR i: SX.SpinifexLayerIndex IN [SX.SpinifexLayerIndex.FIRST .. technologyHandle.numSpinifexLayers) DO
IF technologyHandle.constraintResolutions[i] = NIL THEN
technologyHandle.constraintResolutions[i] ← defaultResolution;
ENDLOOP;
CDProperties.PutTechnologyProp[onto~ cdTech, prop~ SXAtoms.spinifex, val~ technologyHandle];
The following stuff was found here and I did not find a reason for it. It now is fully independent of the technology in SXAtomsImpl. Note: Spinifex never could handle concurrently different technologies because of global variables containing the technology.
CDObjectProcs.RegisterFurther[key~ SXAtoms.spinifex, technology~ cdTech ! CD.Error => IF ec = doubleRegistration THEN CONTINUE];
CDObjectProcs.RegisterFurther[key~ SXAtoms.thymePrint, technology~ cdTech ! CD.Error => IF ec = doubleRegistration THEN CONTINUE];
CDObjectProcs.RegisterFurther[key~ SXAtoms.rosePrint, technology~ cdTech ! CD.Error => IF ec = doubleRegistration THEN CONTINUE];
CDObjectProcs.RegisterFurther[key~ SXAtoms.init, technology~ cdTech ! CD.Error => IF ec = doubleRegistration THEN CONTINUE];
CDObjectProcs.RegisterFurther[key~ SXAtoms.fini, technology~ cdTech ! CD.Error => IF ec = doubleRegistration THEN CONTINUE];
};
RegisterSpinifexObjectProcs: PUBLIC PROCEDURE [cdTech: CD.Technology, objectType: ATOM, conv: SX.ConversionProc, thyme, rose: SXOutput.LinkagePrintProc ← NIL, fini: SXOutput.LinkageHousekeeper ← NIL] ~ {
op: CD.ObjectClass;
IF (op←CD.FetchObjectClass[ objectType~objectType, technology~cdTech]) = NIL THEN CD.Error[explanation: "Version mismatch among ChipNDale and Spinifex"];
CDProperties.PutProp[ onto~op.properties, prop~SXAtoms.spinifex, val~ NEW[SX.ConversionProc𡤌onv]];
IF thyme # NIL THEN
CDProperties.PutProp[ onto~op.properties, prop~SXAtoms.thymePrint, val~ NEW[SXOutput.LinkagePrintProc←thyme]];
IF rose # NIL THEN
CDProperties.PutProp[ onto~op.properties, prop~SXAtoms.rosePrint, val~ NEW[SXOutput.LinkagePrintProc←rose]];
IF fini # NIL THEN
CDProperties.PutProp[ onto~op.properties, prop~SXAtoms.fini, val~ NEW[SXOutput.LinkageHousekeeper𡤏ini]];
};
defaultResolution: REF SX.ConstraintResolution;
InitDefaultResolution: PROCEDURE ~ {
Index: TYPE ~ SX.ConstraintIndex;
CoreIndex: TYPE ~ [1 .. Index.LAST];
excl: Index ~ SX.excludeIndex;
viol: Index ~ SX.violateIndex;
res: REF SX.ConstraintResolution;
exclusionConstraint: REF SX.Constraint ~ NEW[ SX.Constraint ← [ $ExcludeByOpaqueCell, SX.excludeIndex]];
violationConstraint: REF SX.Constraint ~ NEW[ SX.Constraint ← [ $OpaqueCellViolation, SX.violateIndex]];
-- Set up default technology independent Opaque cell constraints.
defaultResolution ← NEW[SX.ConstraintResolution];
res ← defaultResolution;
res[0][excl] ← res[excl][0] ← exclusionConstraint;
res[0][viol] ← res[viol][0] ← violationConstraint;
FOR i: CoreIndex IN CoreIndex DO
res[excl][i] ← res[i][excl] ← exclusionConstraint;
res[viol][i] ← res[i][viol] ← violationConstraint;
ENDLOOP;
res[excl][excl] ← violationConstraint;
};
GetCircuitFromCDObject: PUBLIC PROCEDURE [cdOb: CD.Object] RETURNS [c: REF SX.Circuit←NIL] =
BEGIN
sx: REF SX.LogicalCell = SXAccessInternal.GetLogicalCell[cdOb];
IF sx#NIL THEN {
IF sx.analysisState#useCircuit THEN ERROR;
c ← sx.circuit
}
END;
Module Initialization.
InitDefaultResolution[];
END.
Edited on January 30, 1985 8:09:05 pm PST, by jacobi
in CheckChangeAndAdd: "cn.superceded ← node" replaced by "SX.LookupNode[cn].superceded ← node"
Edited on March 7, 1985 1:43:51 am PST, by Shand
Add interest bound to difChannel to detect interatcions between channel and dif
changes to: ProcessMosTransistor new parameter to pass bloat distance, ConvertMaskGeom (local of ProcessMosTransistor) interestBloat parameter passed to AddBox.
Edited on March 9, 1985 5:33:13 pm PST, by Shand
Changed name of CircuitConstraint in SX to Constraint
Added new procedure SetUpResolution to aid technology dependent clients in the construction of ConstraintResolution ARRAYs.
changes to: DIRECTORY, ProcessMosTransistor, SetUpResolution, SetUpResolution
Edited on March 12, 1985 3:04:13 pm PST, by Shand
Technology Independent constraints added for ensuring the integrity of Opaque cells. New procedure GetCircuitFromCDObject to allow SXAtoms to be confined to Technology Independent part.
changes to: DIRECTORY, ProcessMosTransistor, SetUpResolution, SXExtrasImpl, RegisterTechnologyHandle, RegisterSpinifexObjectClass, technologyIndependentRules, InitTechnologyIndependentRules, defaultResolution, InitDefaultResolution, GetCircuitFromCDObject, SetUpResolution
Edited on March 27, 1985 6:39:31 pm PST, by Beretta
changes to: SetUpResolution: debugging.
Edited on May 6, 1985 11:26:55 am PDT, by Beretta
Converted to ChipNDale CD20
gbb August 9, 1985 2:36:53 pm PDT
Implementation of Core output.
changes to: RegisterSpinifexObjectProcs: added parameter for core.
gbb November 24, 1985 4:38:20 pm PST
Removed Core output.
changes to: DIRECTORY, RegisterTechnologyHandle, RegisterSpinifexObjectProcs